The Arithmetic of Elliptic Curves*

David Hansen

11/13/08

1 Some Motivation

Let's start with a classical Diophantine question. Let p be a prime. When can p be written as a sum of two integral squares? It's clear that a necessary condition for this is that $p \equiv 1 \bmod 4$; squares are all 0 or $1 \bmod 4$. Now, it's perfectly fair to guess that, aside from this necessary condition, perhaps there is no elegant sufficient condition! After all, primes are defined by multiplicative properties, and this is a problem about addition of integers.

Nevertheless, here is a theorem of Fermat:
Theorem. The necessary condition we have given is also sufficient. In other words, the equation $x^{2}+y^{2}=p$ has a solution in integers if and only if $p \equiv 1 \bmod 4$.

Now, we might ask, is there a similar criterion for representing a prime as a sum of two cubes? We phrase this formally as

Question A. Given a prime p, is there an elegant criterion to decide if the equation $x^{3}+y^{3}=p$ has a solution in rational numbers?

I don't want to spoil the surprise, but I will mention that in the 19th century, Sylvester and Lucas showed that if $p \equiv 2 \operatorname{or} 5 \bmod 9$, there is no such solution. Our complete answer to this will come from the theory of "elliptic curves", which we will approach shortly. Before that, however, I want to motivate with another Diophantine problem. This one is even older, and goes back to the Greeks. The question is very simple: which right triangles with rational sides can have rational area? By scaling we can in fact restrict to squarefree integral area. We are trying to find a solution in rational numbers to the system of equations $a^{2}+b^{2}=c^{2}, \frac{1}{2} a b=n$. Eliminating a variable brings us to the single equation $y^{2}=x^{3}-n^{2} x$; a solution (x, y) to this corresponds to a triangle with sides $\left(\frac{n^{2}-x^{2}}{y}, \frac{2 n x}{y}, \frac{n^{2}+x^{2}}{y}\right)$. An integer n for which such a solution exists is called a congruent number. It was known to Fermat that 1 is not congruent; in fact the smallest congruent number is 5 , corresponding to the triangle $\left(\frac{40}{6}, \frac{9}{6}, \frac{41}{6}\right)$.

Question B. Given an integer n, is there an elegant criterion to decide if the equation $y^{2}=x^{3}-n^{2} x$ has a solution in rational numbers? (And, therefore, if there exists a rational right triangle with area n ?)

[^0]
2 Elliptic Curves - The Basics

The two curves we arrived at in the above problems are more similar than they might first appear; after a rational transformation, the curve in Question A becomes $y^{2}=x^{3}-432 p^{2}$. So both these curves are of the form

$$
E: y^{2}=x^{3}+a x+b
$$

for special choices of a, b. This is an elliptic curve. The name is something of a misnomer, and will be explained shortly.

Now, you might ask, of all the possible plane curves we could study, why are these special? The answer is quite startling: they are also groups! Even more excitingly, the group law is rational, in the sense that if P and Q are two points on E with rational coordinates, then $P+Q$ is also a point with rational coordinates. Now how do we define the group law? Draw the line through P and Q; this intersects the curve in one other point. Reflect this new point across the y-axis; this is $P+Q$. Explicitly, if $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$, then

$$
P+Q=\left(\lambda^{2}-a-x_{1}-x_{2},-\lambda x_{3}-\nu\right)
$$

with $\lambda=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ and $\nu=y_{1}-\lambda x_{1}$. What is the identity in this group law? It's the point \mathcal{O} which is "infinitely far up" the y-axis. It is not so hard to check that this group law is commutative. To double a point, do the obvious thing - draw a tangent line! This is sometimes called the "chord-and-tangent" procedure.

Now, whenever we encounter a discrete group in mathematics, the most natural question to ask is whether or not it's finitely generated. In the language of elliptic curves, we are asking for a finite set of rational points such that any point in $E(\mathbb{Q})$ can be gotten by applying chord-and-tangent in some finite (though perhaps complicated) manner. There is a slight subtlety here; there are rational torsion points, or in other words points with $n P=\mathcal{O}$. For example, if $x^{3}+a x+b=0$ has a rational root r, then $P=(r, 0)$ is two-torsion. So we can modify our question and ask - aside from torsion, is $E(\mathbb{Q})$ finitely generated? This question was first raised by Poincare, who assumed the answer was yes. The first rigorous proof was provided by Mordell.

Theorem. Let E / \mathbb{Q} be an elliptic curve. Then the group of rational points $E(\mathbb{Q})$ is finitely generated; more specifically, there exists an integer $r(E) \geq 0$ such that

$$
E(\mathbb{Q}) \simeq \mathbb{Z}^{r(E)} \oplus E(\mathbb{Q})_{\text {tors }}
$$

There is a totally explicit bound on the torsion group; a theorem of Mazur gives $\left|E(\mathbb{Q})_{\text {tors }}\right| \leq 16$, and a theorem of Nagell and Lutz gives an explicit criterion for when a point is torsion. This does not concern us here; the rank is much more interesting. In fact, we'll pose the following rather vague

Fundamental Question. How does the rank $r(E)$ vary as E varies?
We're going to provide a conditional answer to this question, but it will be enough to spectacularly resolve Questions A and B. To do this, we will turn for a little while to "local" behavior. The discriminant of E is defined as
$\Delta=4 a^{3}+27 b^{2}$. This integer has the lovely property that, for every prime not dividing Δ, the reduction modulo p of E is a non-singular curve. We can hence count points over \mathbb{F}_{p}. Set

$$
N_{p}(E)=\left|E\left(\mathbb{F}_{p}\right)\right|=\#\left\{(x, y) \in(\mathbb{Z} / p \mathbb{Z})^{2} \text { s.t. } y^{2} \equiv x^{3}+a x+b \bmod p\right\}
$$

So, we're really counting how often $x^{3}+a x+b$ is a square modulo p, for $0<x<p$. Well, an initial guess would be that this polynomial is a square half the time, and a non-square the other half of the time. Counting the point "at infinity," this leads to the guess $N_{p} \approx p+1$. In fact, this estimate is very close to the truth, as the following result of Hasse shows.

Theorem. For $p \nmid \Delta$, we have $\left|N_{p}-p-1\right| \leq 2 \sqrt{p}$.
OK, that's all well and good, but do these local point counting numbers have anything to do with the global structure of the curve over \mathbb{Q} ? Bryan Birch and Peter Swinnerton-Dyer considered this question in the early 1960's, and they decided to do some computer experiments (at the time, still a novel idea in number theory). They considered the product

$$
\phi(x, E)=\prod_{p \leq x} \frac{N_{p}(E)}{p}
$$

Their guess, which they hoped to see borne out in numerical data, was that if E had large rank over \mathbb{Q}, then the individual terms would tend to be slightly larger than p on average and so this function would show some growth as $x \rightarrow \infty$. What they saw was even more surprising, and led them to the following guess.

Conjecture (Birch/Swinnerton-Dyer, weak form). As x grows, ϕ satisfies

$$
\phi(x, E)=(\log x)^{r(E)+o(1)}
$$

We can phrase this even more attractively. Define $a_{p}(E)$ by $N_{p}(E)=p+1-$ $a_{p}(E)$. By Hasse's theorem, this is bounded by $\left|a_{p}\right| \leq 2 \sqrt{p}$. We define the L-function of E by the product

$$
L(s, E)=\prod_{p \nmid \Delta} \frac{1}{1-a_{p} p^{-s}+p^{1-2 s}}
$$

the Hasse estimate guarantees that this product converges for $\Re(s)>3 / 2$. An extremely deep theorem of Wiles asserts that $L(s, E)$ possesses an analytic continuation to the whole complex plane. (This is analogous to the series $1+$ $x+x^{2}+x^{3} \ldots$ only making sense for $|x|<1$, but being "extended" to the whole plane as $1 /(1-x))$ Note that $L(1, E)$ "equals" $\phi(\infty, E)^{-1}$. This is of course total nonsense, but it suggests that there should be a relation between the growth of ϕ and the behavior of $L(s, E)$ near $s=1$; in fact, one can in fact prove rigoursly the following result:

Conjecture (Birch/Swinnerton-Dyer, strong form). If $\phi(x, E)=$ $(\log x)^{r(E)+o(1)}$, then $L(s, E)$ has a zero at $s=1$ of order $r(E)$. The conjecture is then

$$
\operatorname{rank}(E)=\operatorname{ord}_{s=1} L(s, E)
$$

This conjecture is astonishing. The progress to date has been minimal; it is known to be true if $E(\mathbb{Q})$ has rank 0 or 1 , by the work of many authors.

3 Motivation Revisited

Now I'm going to astound you with answers to questions A and B.
Answer A. If $p \equiv 2,5 \bmod 9$, there is no solution. If $p \equiv 4,7,8 \bmod 9$, there is a solution. Now, define polynomials recursively by $f_{0}(t)=1, f_{1}(t)=t^{2}$ and generally

$$
f_{n+1}(t)=\left(1-t^{3}\right) f_{n}^{\prime}(t)+(2 n+1) t^{2} f_{n}(t)-n^{2} t f_{n-1}(t)
$$

Set $A_{k}=f_{3 k}(0)$; note that these are integers. Then there is a solution for $p \equiv 1 \bmod 9$ if and only if $p \mid A_{2(p-1) / 9}$.

Now, as for question B...
Answer B. Let n be odd and squarefree. Define integers A_{n} and B_{n} by

$$
A_{n}=\#\left\{(x, y, z) \in \mathbb{Z}^{3} \text { s.t. } 2 x^{2}+y^{2}+8 x^{2}=n\right\}
$$

and

$$
B_{n}=\#\left\{(x, y, z) \in \mathbb{Z}^{3} \text { s.t. } 2 x^{2}+y^{2}+32 x^{2}=n\right\} .
$$

Then n is a congruent number if and only if $A_{n}=2 B_{n}$.
How does one prove these results? Known results towards the Birch/SwinnertonDyer are a crucial ingredient; suffice it to say a great deal of sophisticated mathematics goes into the solutions. These ancient diophantine problems are best approached using the most finely honed tools in modern mathematics.

[^0]: *This is the text for a talk delivered at Williams College on November 13, 2008

