A two-variable Iwasawa main conjecture over the eigencurve

David Hansen

January 20, 2015

1 The setup

Fix an odd prime p, an algebraic closure $\overline{\mathbf{Q}_{p}}$, and an isomorphism $\mathbf{C} \xrightarrow{\sim} \overline{\mathbf{Q}_{p}}$. Fix an integer $N \geq 1$ prime to p, and let \mathbf{T} be the polynomial algebra over \mathbf{Z} generated by the operators $T_{\ell}, \ell \nmid N p, U_{p}$ and $\langle d\rangle, d \in(\mathbf{Z} / N \mathbf{Z})^{\times}$. Set $\mathfrak{W}=\operatorname{Spf}\left(\mathbf{Z}_{p}\left[\left[\mathbf{Z}_{p}^{\times}\right]\right]\right)$, and let $\mathscr{W}=\mathfrak{W}^{\text {rig }}$ be the rigid analytic space of characters of \mathbf{Z}_{p}^{\times}together with its universal character $\chi_{\mathscr{W}}: \mathbf{Z}_{p}^{\times} \rightarrow \mathscr{O}(\mathscr{W})^{\times}$; we embed \mathbf{Z} in $\mathscr{W}\left(\mathbf{Q}_{p}\right)$ by mapping k to the character $t \mapsto t^{k-2}$. For any $\lambda \in \mathscr{W}\left(\overline{\mathbf{Q}_{p}}\right)$ we (slightly abusively) write

$$
M_{\lambda}^{\dagger}\left(\Gamma_{1}(N)\right) \subset \overline{\mathbf{Q}_{p}}[[q]]
$$

for the space of q-expansions of overconvergent modular forms of weight λ and tame level N. Let $\mathscr{C}(N)$ be the tame level N eigencurve, with weight map $w: \mathscr{C}(N) \rightarrow \mathscr{W}$ and universal Hecke algebra homomorphism $\phi: \mathbf{T} \rightarrow \mathscr{O}(\mathscr{C}(N))$.

Let $\mathscr{C}_{0}^{M-\text { new }}(N)$, for $M \mid N$, be the Zariski closure of the points associated with classical cuspidal newforms of level $\Gamma_{1}(M)$; this sits inside $\mathscr{C}(N)$ as a union of irreducible components. Finally, let $\mathscr{C}=\mathscr{C}_{N}$ be the normalization of $\mathscr{C}_{0}^{N-\text { new }}(N)$, with its natural morphism i : $\mathscr{C}_{N} \rightarrow \mathscr{C}(N)$. This is a disjoint union of smooth, reduced rigid analytic curves. We slightly abusively write $w=w \circ i, \phi=i^{*} \phi$, etc.

Let $\mathscr{X}=\operatorname{Spf}\left(\mathbf{Z}_{p}\left[\left[\mathbf{Z}_{p}^{\times}\right]\right]\right)^{\text {rig. }}$. A point $x \in \mathscr{X}\left(\overline{\mathbf{Q}_{p}}\right)$ defines a continuous character $\psi_{x}: \mathbf{Z}_{p}^{\times} \rightarrow$
 where $x \in \mathscr{X}^{ \pm}$according to $\psi_{x}(-1)= \pm 1$. Set $\mathscr{Y}_{N}=\mathscr{C}_{N} \times \mathscr{X}$ and $\mathscr{Y}_{N}^{ \pm}=\mathscr{C}_{N} \times \mathscr{X}^{ \pm} \subset \mathscr{Y}$. Let pr and $\mathrm{pr}_{ \pm}$denote the projections of \mathscr{Y}_{N} and $\mathscr{Y}_{N}^{ \pm}$onto \mathscr{C}_{N}, respectively.

Our goal is to define the following objects:

- Torsion-free coherent sheaves $\mathscr{V}^{ \pm}(N)$ on $\mathscr{C}(N)$. In the notation introduced below, we have

$$
H^{0}\left(\mathscr{C}_{\Omega, h}(N), \mathscr{V}^{ \pm}(N)\right) \cong \operatorname{Symb}_{\Gamma_{1}(N p)}\left(\mathscr{D}_{\Omega}\right)_{h}^{ \pm} .
$$

On $\mathscr{C}_{0}^{N-\text { new }}(N)$ these sheaves have generic rank one.

- Torsion-free coherent sheaves

$$
\mathscr{M}^{ \pm}(N)=\mathscr{H} \operatorname{om}_{w^{-1} \mathscr{O}_{\mathscr{W}}}\left(\mathscr{V}^{ \pm}(N), w^{-1} \mathscr{O}_{\mathscr{W}}\right)
$$

on $\mathscr{C}(N)$. We need to be careful about the meaning of the right-hand side, since the morphism w isn't finite. Again, these sheaves have generic rank one on $\mathscr{C}_{0}^{N-\text { new }}(N)$. Set

$$
\begin{aligned}
\widetilde{\mathscr{M}}_{N}^{ \pm} & =\left(i \circ \operatorname{pr}_{ \pm}\right)^{*} \mathscr{M}^{ \pm}(N) \\
& =\operatorname{pr}_{ \pm}^{*}\left(i^{*} \mathscr{M}^{ \pm}(N)\right) .
\end{aligned}
$$

Since $i^{*} \mathscr{M}^{ \pm}(N)$ is torsion-free of generic rank one on a smooth reduced curve, it is locally free of rank one. Therefore, $\widetilde{\mathscr{M}}_{N}^{ \pm}$is locally free of rank one (and in fact, $H^{0}\left(\operatorname{pr}_{ \pm}^{-1}(U), \widetilde{\mathscr{M}}_{N}^{ \pm}\right)$is free of rank one over $\mathscr{O}\left(U \times \mathscr{X}^{ \pm}\right)$for suitable affinoids $\left.U \subset \mathscr{C}_{N}\right)$.

- A canonical global section

$$
\mathbf{L} \in H^{0}\left(\mathscr{Y}_{N}, \widetilde{\mathscr{M}}_{N}\right)
$$

Here $\widetilde{\mathscr{M}}_{N}$ denotes the natural line bundle on \mathscr{Y}_{N} which restricts to $\widetilde{\mathscr{M}}_{N}^{ \pm}$on $\mathscr{Y}_{N}^{ \pm}$. The element \mathbf{L} is the canonical two-variable p-adic L-function on $\mathscr{C}_{N} \times \mathscr{X}$, in a sense we will make precise.

Since \mathbf{L} is a section of a line bundle on a normal rigid analytic space, it generates a coherent ideal sheaf $\mathscr{I}_{\mathrm{L}} \subset \mathscr{O}_{\mathscr{y}}$ in the usual way. The general philosophy of Iwasawa theory requires that \mathscr{I}_{L} coincide with the characteristic ideal of a suitable sheaf of Selmer groups over \mathscr{Y}. We have a candidate for this sheaf.

The eigencurve

We very briefly recall the "eigencurve of modular symbols." The main references here are Bellaiche's "Critical p-adic L-functions", Stevens's "Rigid analytic modular symbols", and my eigenvarieties paper.

Let s be a nonnegative integer. Consider the ring of functions

$$
\mathbf{A}^{s}=\left\{f: \mathbf{Z}_{p} \rightarrow \mathbf{Q}_{p} \mid f \text { analytic on each } p^{s} \mathbf{Z}_{p}-\operatorname{coset}\right\} .
$$

Recall that by a fundamental result of Amice, the functions $e_{j}^{s}(x)=\left\lfloor p^{-s} j\right\rfloor!\binom{x}{j}$ define an orthonormal basis of \mathbf{A}^{s}. The ring \mathbf{A}^{s} is affinoid, and we set $\mathbf{B}_{s}=\operatorname{Sp}\left(\mathbf{A}^{s}\right)$, so e.g.

$$
\mathbf{B}_{s}\left(\mathbf{C}_{p}\right)=\left\{x \in \mathbf{C}_{p}\left|\inf _{a \in \mathbf{Z}_{p}}\right| x-a \mid \leq p^{-s}\right\} .
$$

Given an affinoid open $\Omega \subset \mathscr{W}$ with associated character $\chi_{\Omega}: \mathbf{Z}_{p}^{\times} \rightarrow \mathscr{O}(\Omega)^{\times}$, define

$$
\begin{aligned}
\mathbf{A}_{\Omega}^{s} & =\mathscr{O}\left(\mathbf{B}^{s} \times \Omega\right) \\
& =\mathbf{A}^{s} \widehat{\otimes} \mathscr{O}(\Omega) .
\end{aligned}
$$

For suitably large s, we have the left action $(\gamma \cdot f)(x)=\chi_{\Omega}(a+c x) f\left(\frac{b+d x}{a+c x}\right)$ of $\Gamma_{0}(p)$ on this module. Let \mathbf{D}_{Ω}^{s} be the $\mathscr{O}(\Omega)$-Banach dual of \mathbf{A}_{Ω}^{s} with dual right action, and set

$$
\begin{aligned}
\mathscr{D}_{\Omega} & =\lim _{\infty \leftarrow-s} \mathbf{D}_{\Omega}^{s} \\
& \cong \mathscr{D}\left(\mathbf{Z}_{p}\right) \widehat{\otimes} \mathscr{O}(\Omega) .
\end{aligned}
$$

The assignment $\Omega \rightsquigarrow \mathscr{D}_{\Omega}$ is a "Frechet sheaf" on \mathscr{W}. Define

$$
M_{\Omega}^{\dagger}(N)=\operatorname{Symb}_{\Gamma_{1}(N) \cap \Gamma_{0}(p)}\left(\mathscr{D}_{\Omega}\right) .
$$

Here, for any neat $\Gamma<\mathrm{SL}_{2}(\mathbf{Z})$ and any right Γ-module Q,

$$
\operatorname{Symb}_{\Gamma}(Q):=\left\{f \in \operatorname{Hom}_{\mathbf{Z}}\left(\operatorname{Div}^{0} \mathbf{P}^{1}(\mathbf{Q}), Q\right) \mid f(\gamma D) \cdot Q \gamma=f(D) \forall \gamma \in \Gamma, D \in \operatorname{Div}^{0}\right\} .
$$

The algebra \mathbf{T} acts naturally on $M_{\Omega}^{\dagger}(N)$. The matrix $\left(\begin{array}{cc}-1 & \\ & 1\end{array}\right)$ conjugates $\Gamma_{1}(N) \cap \Gamma_{0}(p)$ to itself, and so induces an order two automorphism ι of $M_{\Omega}^{\dagger}(N)$. We write $M_{\Omega}^{\dagger}(N)^{ \pm}=$ $\frac{1 \pm \iota}{2} \circ M_{\Omega}^{\dagger}(N)$ for the two eigenspaces of ι.

For $h \in \mathbf{Q}$, let $\mathbf{B}[h]=\operatorname{Sp} \mathbf{Q}_{p}\left\langle p^{h} X\right\rangle$ be the closed rigid ball of radius p^{h}, and $\mathbf{A}^{1}=$ $\cup_{h} \mathbf{B}[h]$. Let $F(T) \in \mathscr{O}(\mathscr{W})\{\{X\}\}$ be the Fredholm series such that

$$
\left.F\right|_{\Omega}=\operatorname{det}\left(1-U_{p} X\right) \mid M_{\Omega}^{\dagger}(N)
$$

for all Ω. This cuts out a Fredholm hypersurface $\mathscr{Z} \subset \mathscr{W} \times \mathbf{A}^{1}$. Let w be the projection $\mathscr{W} \times \mathbf{A}^{1} \rightarrow \mathscr{W}$. We say (Ω, h) is a slope datum if $M_{\Omega}^{\dagger}(N)$ admits a slope- $\leq h$ direct summand $M_{\Omega}^{\dagger}(N)_{h}$. This is a finite projective $\mathscr{O}(\Omega)$-module, and is Hecke-stable. Note that (Ω, h) is a slope datum if and only if $\mathscr{Z}_{\Omega, h}:=\mathscr{Z} \cap(\Omega \times \mathbf{B}[h])$ is slope-adapted, i.e. finite flat over Ω and disconnected from its complement in $\mathscr{Z}_{\Omega}:=\mathscr{Z} \cap w^{-1}(\Omega)$. The set of slope-adapted $\mathscr{Z}_{\Omega, h}$'s give an admissible covering of \mathscr{Z} (this last is a foundational result of Buzzard). The map " $X \rightarrow U_{p}^{-1 "}$ makes $M_{\Omega}^{\dagger}(N)_{h}$ into a finite $\mathscr{O}\left(\mathscr{Z}_{\Omega, h}\right)$-module.

Let $\mathbf{T}_{\Omega, h}$ denote the subalgebra of $\operatorname{End}_{\mathscr{O}(\Omega)}\left(M_{\Omega}^{\dagger}(N)_{h}\right)$ generated by the image of $\mathbf{T} \otimes \mathbf{Z}$ $\mathscr{O}(\Omega)$. This is finite over $\mathscr{O}(\Omega)$, so affinoid, and the map $\mathscr{O}(\Omega) \rightarrow \mathbf{T}_{\Omega, h}$ factors through $\mathscr{O}(\Omega) \rightarrow \mathscr{O}\left(\mathscr{Z}_{\Omega, h}\right) \rightarrow \mathbf{T}_{\Omega, h}$. The affinoids $\mathscr{C}_{\Omega, h}(N):=\operatorname{Sp}_{\Omega, h} \rightarrow \mathscr{Z}_{\Omega, h}$ glue over the covering of \mathscr{Z} by the $\mathscr{Z}_{\Omega, h}$'s into $\mathscr{C}(N)$. (And from now on we write $\mathbf{T}_{\Omega, h}$ and $\mathscr{O}\left(\mathscr{C}_{\Omega, h}(N)\right)$ interchangeably.) Each $M_{\Omega}^{\dagger}(N)_{h}^{ \pm}$is a finite $\mathbf{T}_{\Omega, h}$-module, and we define $\mathscr{V}^{ \pm}(N)$ to be the coherent sheaf on $\mathscr{C}(N)$ obtained by gluing them up.

The construction

Proposition. The $\mathbf{T}_{\Omega, h}$-modules $\mathscr{M}_{\Omega, h}^{ \pm}(N):=\operatorname{Hom}_{\mathscr{O}(\Omega)}\left(M_{\Omega}^{\dagger}(N)_{h}^{ \pm}, \mathscr{O}(\Omega)\right)$ glue into coherent sheaves $\mathscr{M}^{ \pm}(N)$ over $\mathscr{C}(N)$.

Proof. The key point is the following: suppose $\mathscr{Z}_{\Omega^{\prime}, h^{\prime}} \subset \mathscr{Z}_{\Omega, h}$ is an inclusion of slopeadapted affinoids. We may assume $\Omega^{\prime} \subset \Omega$ and $h^{\prime} \leq h$, so the inclusion $\mathscr{Z}_{\Omega^{\prime}, h^{\prime}} \subset \mathscr{Z}_{\Omega, h}$ "factors" as $\mathscr{Z}_{\Omega^{\prime}, h^{\prime}} \subset \mathscr{Z}_{\Omega^{\prime}, h} \subset \mathscr{Z}_{\Omega, h}$ where $\mathscr{Z}_{\Omega^{\prime}, h}=\mathscr{Z}_{\Omega^{\prime}, h^{\prime}} \amalg \mathscr{Z}_{\Omega^{\prime}, h}^{>h^{\prime}}$ is slope-adapted with both pieces finite flat over Ω. Then $\mathbf{T}_{\Omega, h} \otimes_{\mathscr{O}(\Omega)} \mathscr{O}\left(\Omega^{\prime}\right) \cong \mathbf{T}_{\Omega^{\prime}, h}$, and

$$
\begin{aligned}
\operatorname{Hom}_{\mathscr{O}(\Omega)}\left(M_{\Omega}^{\dagger}(N)_{h}^{ \pm}, \mathscr{O}(\Omega)\right) \otimes_{\mathbf{T}_{\Omega, h}} \mathbf{T}_{\Omega^{\prime}, h} & \cong \operatorname{Hom}_{\mathscr{O}(\Omega)}\left(M_{\Omega}^{\dagger}(N)_{h}^{ \pm}, \mathscr{O}(\Omega)\right) \otimes_{\mathbf{T}_{\Omega, h}} \mathbf{T}_{\Omega, h} \otimes_{\mathscr{O}(\Omega)} \mathscr{O}\left(\Omega^{\prime}\right) \\
& \cong \operatorname{Hom}_{\mathscr{O}(\Omega)}\left(M_{\Omega}^{\dagger}(N)_{h}^{ \pm}, \mathscr{O}(\Omega)\right) \otimes_{\mathscr{O}(\Omega)} \mathscr{O}\left(\Omega^{\prime}\right) \\
& \cong \operatorname{Hom}_{\mathscr{O}\left(\Omega^{\prime}\right)}\left(M_{\Omega}^{\dagger}(N)_{h}^{ \pm} \otimes_{\mathscr{O}(\Omega)} \mathscr{O}\left(\Omega^{\prime}\right), \mathscr{O}\left(\Omega^{\prime}\right)\right) \\
& \cong \operatorname{Hom}_{\mathscr{O}\left(\Omega^{\prime}\right)}\left(M_{\Omega^{\prime}}^{\dagger}(N)_{h}^{ \pm}, \mathscr{O}\left(\Omega^{\prime}\right)\right)
\end{aligned}
$$

as $\mathbf{T}_{\Omega^{\prime}, h^{\prime}}$-modules. The third line here follows from flatness of $\mathscr{O}\left(\Omega^{\prime}\right)$ over $\mathscr{O}(\Omega)$, and the fourth line from a basic property of slope decompositions. Now getting from $\mathbf{T}_{\Omega^{\prime}, h^{-}}$ modules to $\mathbf{T}_{\Omega^{\prime}, h^{\prime} \text {-modules is easy, because everything in sight has an idempotent decom- }}$ position coming from the previously described set-theoretic decomposition of $\mathscr{Z}_{\Omega^{\prime}, h}$. So $\mathscr{M}_{\Omega, h}^{ \pm}(N) \otimes_{\mathbf{T}_{\Omega, h}} \mathbf{T}_{\Omega^{\prime}, h^{\prime}} \cong \mathscr{M}_{\Omega^{\prime}, h^{\prime}}^{ \pm}(N)$ as desired.

Let $\mathscr{D}\left(\mathbf{Z}_{p}^{\times}\right)$denote the ring of locally analytic \mathbf{Q}_{p}-valued distributions on \mathbf{Z}_{p}^{\times}, and let $\mathscr{D}\left(\mathbf{Z}_{p}^{\times}\right)^{ \pm}$denote the subspace of distributions for which

$$
\int_{\mathbf{Z}_{p}^{\times}} f(-x) \mu(x)= \pm \int_{\mathbf{Z}_{p}^{\times}} f(x) \mu(x) .
$$

Recall the Amice isomorphism $\mathscr{D}\left(\mathbf{Z}_{p}^{\times}\right) \cong \mathscr{O}(\mathscr{X})$; this is an isomorphism of Frechet $\mathbf{Q}_{p^{-}}$ algebras, and induces isomorphisms $\mathscr{D}\left(\mathbf{Z}_{p}^{\times}\right)^{ \pm} \cong \mathscr{O}\left(\mathscr{X}^{ \pm}\right)$.

Proposition. There is a natural isomorphism

$$
\operatorname{Hom}_{\mathscr{O}(\Omega)}\left(M_{\Omega}^{\dagger}(N)_{h}^{ \pm}, \mathscr{O}(\Omega) \widehat{\otimes} \mathscr{D}\left(\mathbf{Z}_{p}^{\times}\right)^{ \pm}\right) \cong \mathscr{M}_{\Omega, h}^{ \pm}(N) \otimes_{\mathscr{O}\left(\mathscr{C}_{\Omega, h}(N)\right)} \mathscr{O}\left(\mathscr{C}_{\Omega, h}(N) \times \mathscr{X}^{ \pm}\right)
$$

compatible with all structures.
Proof. By the Amice isomorphism, so we have

$$
\operatorname{Hom}_{\mathscr{O}(\Omega)}\left(M_{\Omega}^{\dagger}(N)_{h}^{ \pm}, \mathscr{O}(\Omega) \widehat{\otimes} \mathscr{D}\left(\mathbf{Z}_{p}^{\times}\right)^{ \pm}\right) \cong \operatorname{Hom}_{\mathscr{O}(\Omega)}\left(M_{\Omega}^{\dagger}(N)_{h}^{ \pm}, \mathscr{O}\left(\Omega \times \mathscr{X}^{ \pm}\right)\right)
$$

Choose an increasing cover of $\mathscr{X}^{ \pm}$by affinoids $\mathscr{X}_{1}^{ \pm} \subset \cdots \subset \mathscr{X}_{n}^{ \pm} \subset \cdots$. Then

$$
\begin{aligned}
\operatorname{Hom}_{\mathscr{O}(\Omega)}\left(M_{\Omega}^{\dagger}(N)_{h}^{ \pm}, \mathscr{O}\left(\Omega \times \mathscr{X}_{n}^{ \pm}\right)\right) & =\operatorname{Hom}_{\mathscr{O}(\Omega)}\left(M_{\Omega}^{\dagger}(N)_{h}^{ \pm}, \mathscr{O}(\Omega)\right) \otimes_{\mathscr{O}(\Omega)} \mathscr{O}\left(\Omega \times \mathscr{X}_{n}^{ \pm}\right) \\
& =\operatorname{Hom}_{\mathscr{O}(\Omega)}\left(M_{\Omega}^{\dagger}(N)_{h}^{ \pm}, \mathscr{O}(\Omega)\right) \otimes_{\mathbf{T}_{\Omega, h}} \mathbf{T}_{\Omega, h} \otimes_{\mathscr{O}(\Omega)} \mathscr{O}\left(\Omega \times \mathscr{X}_{n}^{ \pm}\right) \\
& =\operatorname{Hom}_{\mathscr{O}(\Omega)}\left(M_{\Omega}^{\dagger}(N)_{h}^{ \pm}, \mathscr{O}(\Omega)\right) \otimes_{\mathbf{T}_{\Omega, h}} \mathbf{T}_{\Omega, h} \otimes_{\mathscr{O}(\Omega)} \mathscr{O}(\Omega) \widehat{\otimes} \mathscr{O}\left(\mathscr{X}_{n}^{ \pm}\right) \\
& =\operatorname{Hom}_{\mathscr{O}(\Omega)}\left(M_{\Omega}^{\dagger}(N)_{h}^{ \pm}, \mathscr{O}(\Omega)\right) \otimes_{\mathbf{T}_{\Omega, h}} \mathbf{T}_{\Omega, h} \widehat{\otimes} \mathscr{O}\left(\mathscr{X}_{n}^{ \pm}\right) \\
& =\mathscr{M}_{\Omega, h}^{ \pm}(N) \otimes_{\mathscr{O}\left(\mathscr{C}_{\Omega, h}(N)\right)} \mathscr{O}\left(\mathscr{C}_{\Omega, h}(N) \times \mathscr{X}_{n}^{ \pm}\right) .
\end{aligned}
$$

The second, third, and fifth equalities here are trivial. The first equality follows from the identification $\operatorname{Hom}_{R}(M, N) \otimes_{R} P \cong \operatorname{Hom}_{R}\left(M, N \otimes_{R} P\right)$ for M, N, P any R-modules with M finitely presented and P flat, together with the flatness of $\mathscr{O}\left(\Omega \times \mathscr{X}_{n}^{ \pm}\right)$over $\mathscr{O}(\Omega) .{ }^{1}$ The fourth equality evidently follows from the identity

$$
\mathbf{T}_{\Omega, h} \otimes_{\mathscr{O}(\Omega)} \mathscr{O}(\Omega) \widehat{\otimes} \mathscr{O}\left(\mathscr{X}_{n}^{ \pm}\right) \cong \mathbf{T}_{\Omega, h} \widehat{\otimes} \mathscr{O}\left(\mathscr{X}_{n}^{ \pm}\right),
$$

which is an easy consequence of the ONability of $\mathscr{O}\left(\mathscr{X}_{n}^{ \pm}\right)$and the module-finiteness of $\mathbf{T}_{\Omega, h}$ over $\mathscr{O}(\Omega)$ (or, more conceptually, use Propositions 3.7.3/6 and 2.1.7/7 of BGR). Passing to the inverse limit over n, we conclude.

Definition / Claim. The sheaf

$$
\widetilde{\mathscr{M}}^{ \pm}(N):=\operatorname{pr}_{ \pm}^{*} \mathscr{M}^{ \pm}(N)
$$

on $\mathscr{C}(N) \times \mathscr{X}^{ \pm}$is characterized by the isomorphism

$$
\begin{aligned}
H^{0}\left(\mathscr{C}_{\Omega, h}(N) \times \mathscr{X}^{ \pm}, \widetilde{\mathscr{M}}^{ \pm}(N)\right) & \cong \mathscr{M}_{\Omega, h}^{ \pm}(N) \otimes_{\mathbf{T}_{\Omega, h}} \mathbf{T}_{\Omega, h} \widehat{\otimes} \mathscr{D}\left(\mathbf{Z}_{p}^{\times}\right)^{ \pm} \\
& =\operatorname{Hom}_{\mathscr{O}(\Omega)}\left(M_{\Omega}^{\dagger}(N)_{h}^{ \pm}, \mathscr{O}(\Omega) \widehat{\otimes} \mathscr{D}\left(\mathbf{Z}_{p}^{\times}\right)^{ \pm}\right) .
\end{aligned}
$$

Proof. This is an easy consequence of the previous proposition.
Definition. The sheaf $\widetilde{\mathscr{M}}_{N}^{ \pm}$on $\mathscr{Y}_{N}^{ \pm}$is the pullback of $\widetilde{\mathscr{M}}^{ \pm}(N)$ under $i \times \mathrm{id}: \mathscr{C}_{N} \times \mathscr{X}^{ \pm} \rightarrow$ $\mathscr{C}(N) \times \mathscr{X}^{ \pm}$.

Given any Ω, let $\mathbf{L}_{\Omega}(N)$ denote the composite map

$$
M_{\Omega}^{\dagger}(N)=\operatorname{Symb}_{\Gamma_{1}(N) \cap \Gamma_{0}(p)}\left(\mathscr{D}_{\Omega}\right) \xrightarrow{\Phi \mapsto \Phi((\infty)-(0))} \mathscr{D}_{\Omega} \cong \mathscr{D}\left(\mathbf{Z}_{p}\right) \widehat{\otimes} \mathscr{O}(\Omega) \rightarrow \mathscr{D}\left(\mathbf{Z}_{p}^{\times}\right) \widehat{\otimes} \mathscr{O}(\Omega) .
$$

[^0]The final arrow here is induced by the map $\mathscr{D}\left(\mathbf{Z}_{p}\right) \rightarrow \mathscr{D}\left(\mathbf{Z}_{p}^{\times}\right)$dual to the map $\mathscr{A}\left(\mathbf{Z}_{p}^{\times}\right) \rightarrow$ $\mathscr{A}\left(\mathbf{Z}_{p}\right)$ given by extending functions by zero. Since $\mathbf{L}_{\Omega}(N)$ is $\mathscr{O}(\Omega)$-linear and $M_{\Omega}^{\dagger}(N)_{h}$ is an $\mathscr{O}(\Omega)$-module direct summand of $M_{\Omega}^{\dagger}(N)$ (and likewise the \pm-subspaces), we may regard the restriction $\mathbf{L}_{\Omega, h}^{ \pm}(N):=\left.\mathbf{L}_{\Omega}(N)\right|_{M_{\Omega}^{\dagger}(N)_{h}^{ \pm}}$as an element of

$$
\operatorname{Hom}_{\mathscr{O}(\Omega)}\left(M_{\Omega}^{\dagger}(N)_{h}^{ \pm}, \mathscr{O}(\Omega) \widehat{\otimes} \mathscr{D}^{ \pm}\left(\mathbf{Z}_{p}^{\times}\right)\right)=H^{0}\left(\mathscr{C}_{\Omega, h}(N) \times \mathscr{X}^{ \pm}, \widetilde{\mathscr{M}}^{ \pm}(N)\right)
$$

These glue together into global sections $\mathbf{L}^{ \pm}(N)$ of the sheaf $\widetilde{\mathscr{M}}^{ \pm}(N)$ on $\mathscr{C}(N) \times \mathscr{X}^{ \pm}$. We finally define $\mathbf{L}^{ \pm}$as the global sections of $\widetilde{\mathscr{M}}_{N}^{ \pm}$given by pullback of $\mathbf{L}^{ \pm}(N)$ under $i \times \mathrm{id}$, and then define

$$
\begin{aligned}
\mathbf{L}:=\mathbf{L}^{+}+\mathbf{L}^{-} & \in H^{0}\left(\mathscr{Y}_{N}, \widetilde{\mathscr{M}}_{N}\right) \\
& =H^{0}\left(\mathscr{Y}_{N}^{+}, \widetilde{\mathscr{M}}_{N}^{+}\right) \oplus H^{0}\left(\mathscr{Y}_{N}^{-}, \widetilde{\mathscr{M}}_{N}^{-}\right)
\end{aligned}
$$

(with the obvious meaning).

[^0]: ${ }^{1}$ This flatness can be deduced by factoring the map as $\mathscr{O}(\Omega) \rightarrow \mathscr{O}(\Omega \times \mathbf{X}) \rightarrow \mathscr{O}\left(\Omega \times \mathscr{X}_{n}\right)$ where \mathbf{X} is some finite disjoint union of $\mathbf{B}[0]$'s and $\mathscr{X}_{n} \subset \mathbf{X}$ is an affinoid subdomain. The second arrow is then flat by the flatness of coordinate rings of affinoid subdomains, and the first arrow is flat because $A \rightarrow A\langle X\rangle$ is flat for any Tate algebra A.

