The Petersson norm of the Jacobi theta function

David Hansen

October 3, 2011

Let $\theta(z)=\sum_{n \in \mathbf{Z}} e^{2 \pi i n^{2} z}$ be the Jacobi theta function. This is a modular form of weight $1 / 2$ for the group $\Gamma_{0}(4)$, and is well-known to be square-integrable; in fact, it's the first interesting non-cuspidal but square-integrable automorphic form. In this note we compute the norm

$$
\|\theta\|^{2}:=\int_{\Gamma_{0}(4) \backslash \mathfrak{H}} y^{\frac{1}{2}}|\theta(z)|^{2} \frac{d x d y}{y^{2}} .
$$

Theorem. The Petersson norm of θ is $\|\theta\|^{2}=4 \pi$.
Rather surprisingly, I have never seen this number calculated anywhere, and I have seen at least one prominent researcher introduce it as a kind of "fundamental constant" in a paper. The problem is that the constant term of θ prevents one from immediately realizing $\|\theta\|^{2}$ as the residue of a Rankin-Selberg style integral. We get around this by a little trick.

Fix an arbitrary odd prime p, and consider the integral

$$
I_{p}(s)=\int_{[0,1] \times \mathbf{R}_{>0}} y^{s+\frac{1}{2}}\left(|\theta(z)|^{2}-\left|\theta\left(p^{2} z\right)\right|^{2}\right) \frac{d x d y}{y^{2}} .
$$

This converges absolutely for Res >1 and is easily calculated as

$$
\begin{aligned}
I_{p}(s) & =2 \int_{\mathbf{R}_{>0}} y^{s-1 / 2} \sum_{n \geq 1, p \nmid n} e^{-4 \pi n^{2} y} \frac{d y}{y} \\
& =2 \cdot(4 \pi)^{1 / 2-s} \sum_{n \geq 1, p \nmid n} n^{1-2 s} \int_{\mathbf{R}_{>0}} y^{s-1 / 2} \frac{d y}{y} \\
& =2 \cdot(4 \pi)^{1 / 2-s} \Gamma\left(s-\frac{1}{2}\right)\left(1-p^{1-2 s}\right) \zeta(2 s-1) .
\end{aligned}
$$

On the other hand, the function $y^{\frac{1}{2}}\left(|\theta(z)|^{2}-\left|\theta\left(p^{2} z\right)\right|^{2}\right)$ is invariant under the group $\Gamma_{0}\left(4 p^{2}\right)$, so folding up gives

$$
I_{p}(s)=\int_{\Gamma_{0}\left(4 p^{2}\right) \backslash \mathfrak{H}} E_{4 p^{2}}(z, s) y^{\frac{1}{2}}\left(|\theta(z)|^{2}-\left|\theta\left(p^{2} z\right)\right|^{2}\right) d \mu(z),
$$

where $E_{4 p^{2}}(z, s)=\sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma_{0}\left(4 p^{2}\right)} \operatorname{Im}(\gamma z)^{s}$ is the usual nonholomorphic Eisenstein series and $d \mu(z)=\frac{d x d y}{y^{2}}$. This series has a simple pole at $s=1$ with residue $\frac{3}{\pi} \cdot\left[\Gamma_{0}(1): \Gamma_{0}\left(4 p^{2}\right)\right]^{-1}=$ $\frac{1}{2 p(p+1) \pi}$. Hence taking residues gives

$$
\begin{aligned}
\operatorname{res}_{s=1} I_{p}(s) & =\frac{1}{2 p(p+1) \pi} \int_{\Gamma_{0}\left(4 p^{2}\right) \backslash \mathfrak{H}} y^{\frac{1}{2}}\left(|\theta(z)|^{2}-\left|\theta\left(p^{2} z\right)\right|^{2}\right) d \mu(z) \\
& =\frac{1}{2 \pi} \int_{\Gamma_{0}(4) \backslash \mathfrak{H}} y^{\frac{1}{2}}|\theta(z)|^{2} d \mu(z)-\frac{1}{2 p(p+1) \pi} \int_{\Gamma_{0}\left(4 p^{2}\right) \backslash \mathfrak{H}} y^{\frac{1}{2}}\left|\theta\left(p^{2} z\right)\right|^{2} d \mu(z) \\
& =\frac{1}{2 \pi}\|\theta\|^{2}-\frac{1}{2 p^{2}(p+1) \pi} \int_{\Gamma_{0}\left(4 p^{2}\right) \backslash \mathfrak{H}} y^{\frac{1}{2}}|\theta(z)|^{2} d \mu(z) \\
& =\frac{1}{2 \pi}\left(1-p^{-1}\right)\|\theta\|^{2},
\end{aligned}
$$

where the third line follows from changing variables in the second integral via the involution $z \rightarrow \frac{-1}{4 p^{2} z}$ and the transformation law $\theta\left(\frac{-1}{4 z}\right)=\sqrt{\frac{2 z}{i}} \theta(z)$. But our first computation gives

$$
\operatorname{res}_{s=1} I_{p}(s)=2\left(1-p^{-1}\right),
$$

and p was arbitrary, so $\|\theta\|^{2}=4 \pi$.

