The Petersson norm of the Jacobi theta function

David Hansen

October 3, 2011

Let $\theta(z) = \sum_{n \in \mathbb{Z}} e^{2\pi i n^2 z}$ be the Jacobi theta function. This is a modular form of weight 1/2 for the group $\Gamma_0(4)$, and is well-known to be square-integrable; in fact, it's the first interesting non-cuspidal but square-integrable automorphic form. In this note we compute the norm

$$\|\theta\|^2 := \int_{\Gamma_0(4)\backslash \mathfrak{H}} y^{\frac{1}{2}} |\theta(z)|^2 \frac{dxdy}{y^2}.$$

Theorem. The Petersson norm of θ is $\|\theta\|^2 = 4\pi$.

Rather surprisingly, I have never seen this number calculated anywhere, and I have seen at least one prominent researcher introduce it as a kind of "fundamental constant" in a paper. The problem is that the constant term of θ prevents one from immediately realizing $\|\theta\|^2$ as the residue of a Rankin-Selberg style integral. We get around this by a little trick.

Fix an arbitrary odd prime p, and consider the integral

$$I_p(s) = \int_{[0,1]\times\mathbf{R}_{>0}} y^{s+\frac{1}{2}} \left(|\theta(z)|^2 - |\theta(p^2 z)|^2 \right) \frac{dxdy}{y^2}.$$

This converges absolutely for Res > 1 and is easily calculated as

$$I_p(s) = 2 \int_{\mathbf{R}_{>0}} y^{s-1/2} \sum_{n \ge 1, p \nmid n} e^{-4\pi n^2 y} \frac{dy}{y}$$

$$= 2 \cdot (4\pi)^{1/2 - s} \sum_{n \ge 1, p \nmid n} n^{1 - 2s} \int_{\mathbf{R}_{>0}} y^{s-1/2} \frac{dy}{y}$$

$$= 2 \cdot (4\pi)^{1/2 - s} \Gamma(s - \frac{1}{2}) (1 - p^{1 - 2s}) \zeta(2s - 1).$$

On the other hand, the function $y^{\frac{1}{2}} (|\theta(z)|^2 - |\theta(p^2z)|^2)$ is invariant under the group $\Gamma_0(4p^2)$, so folding up gives

$$I_p(s) = \int_{\Gamma_0(4p^2)\backslash \mathfrak{H}} E_{4p^2}(z,s) y^{\frac{1}{2}} \left(|\theta(z)|^2 - |\theta(p^2z)|^2 \right) d\mu(z),$$

where $E_{4p^2}(z,s) = \sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma_0(4p^2)} \operatorname{Im}(\gamma z)^s$ is the usual nonholomorphic Eisenstein series and $d\mu(z) = \frac{dxdy}{y^2}$. This series has a simple pole at s = 1 with residue $\frac{3}{\pi} \cdot [\Gamma_0(1) : \Gamma_0(4p^2)]^{-1} = \frac{1}{2p(p+1)\pi}$. Hence taking residues gives

$$\operatorname{res}_{s=1} I_{p}(s) = \frac{1}{2p(p+1)\pi} \int_{\Gamma_{0}(4p^{2})\backslash \mathfrak{H}} y^{\frac{1}{2}} \left(|\theta(z)|^{2} - |\theta(p^{2}z)|^{2} \right) d\mu(z)$$

$$= \frac{1}{2\pi} \int_{\Gamma_{0}(4)\backslash \mathfrak{H}} y^{\frac{1}{2}} |\theta(z)|^{2} d\mu(z) - \frac{1}{2p(p+1)\pi} \int_{\Gamma_{0}(4p^{2})\backslash \mathfrak{H}} y^{\frac{1}{2}} |\theta(p^{2}z)|^{2} d\mu(z)$$

$$= \frac{1}{2\pi} \|\theta\|^{2} - \frac{1}{2p^{2}(p+1)\pi} \int_{\Gamma_{0}(4p^{2})\backslash \mathfrak{H}} y^{\frac{1}{2}} |\theta(z)|^{2} d\mu(z)$$

$$= \frac{1}{2\pi} (1-p^{-1}) \|\theta\|^{2},$$

where the third line follows from changing variables in the second integral via the involution $z \to \frac{-1}{4p^2z}$ and the transformation law $\theta(\frac{-1}{4z}) = \sqrt{\frac{2z}{i}}\theta(z)$. But our first computation gives

$$\operatorname{res}_{s=1} I_p(s) = 2(1 - p^{-1}),$$

and p was arbitrary, so $\|\theta\|^2 = 4\pi$. \square