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Let 0(2) =) ,cz €2™n’% he the Jacobi theta function. This is a modular form of weight
1/2 for the group I'g(4), and is well-known to be square-integrable; in fact, it’s the first
interesting non-cuspidal but square-integrable automorphic form. In this note we compute
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Theorem. The Petersson norm of 0 is ||0]|* = 4.

Rather surprisingly, I have never seen this number calculated anywhere, and I have seen
at least one prominent researcher introduce it as a kind of “fundamental constant” in a paper.
The problem is that the constant term of @ prevents one from immediately realizing ||| as
the residue of a Rankin-Selberg style integral. We get around this by a little trick.

Fix an arbitrary odd prime p, and consider the integral
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This converges absolutely for Res > 1 and is easily calculated as
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On the other hand, the function y% (16(2)* — |6(p*z)|?) is invariant under the group I'g(4p?),
so folding up gives
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where Ey2(2,8) = 3 cr \ry(4p2) m(72)" is the usual nonholomorphic Eisenstein series and
du(z) = % This series has a simple pole at s = 1 with residue 2 - [[o(1) : To(4p?)] ™! =

m. Hence taking residues gives
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where the third line follows from changing variables in the second integral via the involution

z — = and the transformation law 6(72) = /226(z). But our first computation gives
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and p was arbitrary, so [|0]|* = 47. O



