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Abstract

We prove that the Fargues-Scholze construction of elements in the Bernstein center via ex-
cursion operators always yields stable distributions. We also prove a strong quantitative com-
patibility of the Fargues-Scholze construction with transfer across extended pure inner forms.
The proofs combine the character formulas from [HKW22], the commutation of Hecke operators
with excursion operators, an averaging trick due to Fu [Fu24], and Arthur’s theory of elliptic
tempered virtual characters. The arguments work uniformly for all connected reductive groups
over p-adic local fields.

Contents

1 Introduction 1

1.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Proofs 4

2.1 Harmonic analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Excursion versus Hecke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Inner forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1 Introduction

1.1 Main results

Fix a finite extension E/Qp, and let G/E be a connected reductive group. Let Z(G) be the Bernstein
center of G, regarded as the convolution algebra of essentially compact invariant distributions on
G(E). This acts by convolution on the space of functions Cc(G(E)), and on all smooth G(E)-
modules via the identification of Z(G) with the center of the category. If π is a smooth irreducible
G(E)-representation, we write zπ for the scalar with z · π = zππ.

Following the usual terminology, we say a distribution z ∈ Z(G) is stable if it vanishes on unstable
functions f , i.e. on functions with vanishing stable orbital integrals. These form a submodule
Zst(G) ⊂ Z(G). We say a distribution z is very stable if z ∗ f is unstable for all unstable f .
Although this condition (first singled out by Scholze-Shin [SS13]) is a priori more restrictive than
stability, in practice it is much easier to verify. It is easy to see that very stable distributions are
stable, and that they form a commutative subalgebra Zvst(G) ⊂ Z(G) such that Zst(G) is naturally
a Zvst(G)-module.
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These stability conditions are expected to play a key role in local harmonic analysis and the
local Langlands correspondence. Indeed, it is a by-now-standard conjecture that stable and very
stable elements of Z(G) coincide, and that z is (very) stable if and only if for all tempered L-
packets Πφ(G), zπ1

= zπ2
for all π1,π2 ∈ Πφ(G). For groups with a sufficiently well-understood

local Langlands correspondence, this conjecture was recently proved by Varma in a beautiful paper
[Var24, Theorem 4.4.2]. However, the second part of this conjecture certainly doesn’t make any
sense without prior knowledge of the local Langlands correspondence, and it seems extremely hard
to construct (very) stable central elements from scratch (see [BKV15, BKV16] for some interesting
results in this direction). The importance of constructing elements of the stable center for global
purposes has previously been emphasized by Haines [Hai14], who also highlighted the expected
connection with algebraic functions on the variety of semisimple L-parameters.

In this paper we show that the Fargues-Scholze machinery is perfectly suited to the construction
of very stable central distributions. More precisely, let Zspec(G) be the ring of global functions
on the variety of semisimple L-parameters for G. In their amazing paper [FS24], Fargues-Scholze
constructed a canonical ring map ΨG : Zspec(G) → Z(G) satisfying a long list of compatibilities, using
V. Lafforgue’s formalism of excursion operators [Laf18] adapted to the Fargues-Fontaine curve.1 To
streamline the discussion, let us write ZFS(G) for the image of ΨG. Our first main result is the
following theorem, essentially confirming a conjecture of Haines [Hai14] and Scholze-Shin [SS13,
Conjecture 6.3].

Theorem 1.1. The map ΨG : Zspec(G) → Z(G) factors over the subalgebra of very stable central
distributions. Equivalently, there is an inclusion ZFS(G) ⊆ Zvst(G).

We emphasize that G is completely arbitrary. While we expect the inclusion ZFS(G) ⊆ Zvst(G)
is an equality for all groups, this seems far out of reach.

This theorem has several corollaries. First, recall that a virtual character Θ =
∑

1≤i≤j aiΘπi

is atomically stable if Θ is stable, with all coefficients ai &= 0, and no smaller linear combination∑
i∈I![1,j] biΘπi is stable.

Corollary 1.2. If Θ =
∑

aiΘπi is an atomically stable virtual character, the Fargues-Scholze
parameter ϕπi is independent of i.

Now suppose G splits over a tame extension and p ! |WG|. Then for any regular supercuspidal pa-
rameter φ : WE → LG, Kaletha [Kal19] explicitly constructed a supercuspidal L-packet Πφ(G). By
work of Fintzen-Kaletha-Spice [FKS23], the linear combination SΘφ =

∑
π∈Πφ(G)Θπ is atomically

stable. The previous corollary then immediately gives the following result.

Corollary 1.3. For varying π ∈ Πφ(G), the Fargues-Scholze parameter ϕπ depends only on φ.

Of course, we expect that ϕπ = φ, but this seems to be a very difficult problem.
More generally, our main result immediately shows that for any group G for which the existence

of tempered L-packets for G is known in the precise sense of [Var24, Hypothesis 2.5.1], the Fargues-
Scholze parameter is constant on any such packet. By the results of [Art13, Mok15], this condition
is satisfied for all quasisplit classical groups.

1As written, [FS24] in fact defines an analogous map Zspec(G,Q!) → Z(G,Q!) for any fixed prime ! "= p and any
fixed algebraic closure Q!, where the source is the ring of functions on the variety of semisimple L-parameters into
LG(Q!), and the target is the center of the category of smooth Q!-representations of G(E). In this paper, we simply

transport this map across a fixed choice of isomorphism ι : Q!
∼

→ C, for some fixed ! "= p. However, by recent work
of Scholze [Sch25], the resulting map is completely canonical and independent of the choices involved.
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We can also say something about how the image of the map ΨG changes as G varies across inner
forms. To explain this, note that Zspec(G) depends only on the inner isomorphism class of G. In
particular, if G∗ is quasisplit and b ∈ B(G∗) is a basic element with associated extended pure inner
form G := G∗

b , Theorem 1.1 gives a pair of maps

Zvst(G∗)

Zspec(G∗)

ΨG∗

!!!!!!!!!!!!

ΨG

"""
""

""
""

""
"

Zvst(G)

which of course factor over the relevant subrings ZFS. According to a conjecture of Scholze-Shin
[SS13, Remark 6.4], we expect that ΨG is always surjective and that ΨG∗ is an isomorphism. In
particular, we expect there is a unique surjective ring map Zvst(G∗) → Zvst(G) compatible with the
diagram above. The following theorem gives an unconditional substitute for this map.

Theorem 1.4. If ΨG∗(f) = 0, then ΨG(f) = 0. In other words, there is a unique surjective
Zspec(G∗)-algebra map τG : ZFS(G∗) → ZFS(G). This map enjoys the following compatibilities.

i. If M ⊂ G is any Levi subgroup, with corresponding Levi M∗ ⊂ G∗, the diagram

ZFS(G∗)
τG ##

$$

ZFS(G)

$$
ZFS(M∗)

τM ## ZFS(M)

commutes.
ii. The map τG is compatible with the usual transfer map TransG : SDtemp(G∗) → SDtemp(G)

on stable tempered virtual characters, in the sense that TransG(z · Θ) = τG(z) · TransG(Θ) for all
z ∈ ZFS(G∗) and all Θ ∈ SDtemp(G∗).

More generally, if f∗ and f are any compactly supported functions on G∗(E) and G(E) with
matching stable orbital integrals, then z ∗ f∗ and τG(z) ∗ f have matching stable orbital integrals.

Note that the existence of τG is not obviously related to stability, but our construction of this
map crucially relies on Theorem 1.1. Part ii. is closely related to conjectures of Haines on “Z-
transfer” for endoscopic groups [Hai14], and essentially confirms his conjectures in the special case
of extended pure inner forms. It is surely true that Theorem 1.4 could be easily extended to all
inner forms by some simple argument with z-extensions, but we have not attempted this.

The proofs of these results are not very long, but they involve several different flavors of math-
ematics, so let us briefly highlight the key ingredients. One basic idea is that Hecke operators
acting on sheaves on BunG give rise to certain extra endomorphisms Tµ of the space of virtual
characters D(G) which commute with the action of elements of ZFS(G) (see Lemma 2.4). This is
a decategorification of the well-known principle that Hecke operators and excursion operators com-
mute on D(BunG,Q$). In principle, these endomorphisms could depend on our chosen isomorphism
ι : Q$

∼
→ C, but this dependence is actually harmless for our purposes.

We also adapt a wonderful idea from a recent paper of Chenji Fu [Fu24], who showed that Hecke
eigensheaves on BunG at supercuspidal Fargues-Scholze parameters automatically give stable virtual
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characters at their stalks. The key observation here (recalled in a quantitative form in Section 2.2)
is that the character formulas from [HKW22] show that as µ → ∞ in the appropriate sense, the
limiting value of Tµ on the regular elliptic set is a naive stable averaging.

Unfortunately, the character formulas in [HKW22] only give control over Tµ on the regular
elliptic set. The final key idea is to combine this control with Arthur’s theory of elliptic tempered
virtual characters [Art93, Art96]. The essential property of these gadgets is that they exactly span
the subspace of tempered virtual characters which are fully controlled by their values on the regular
elliptic set, and the complement of this subspace is spanned by parabolic inductions. Since the
Fargues-Scholze map ΨG is compatible with parabolic induction, all together this gives precisely the
right leverage to run arguments by induction on Levi subgroups. Although this aspect of Arthur’s
theory is certainly well-known in harmonic analysis, its use here in combination with the Fargues-
Scholze machinery is new and seems to be very powerful. We will give some more applications of
this technique elsewhere.

Acknowledgements
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his paper [Fu24], Alexander Bertoloni Meli for alerting me to Fu’s work in early November, and
Alexander Bertoloni Meli, Michael Harris, Peter Scholze, and Sug Woo Shin for some feedback on
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2 Proofs

2.1 Harmonic analysis

In this section we collect some standard results in harmonic analysis. We learned essentially all
of this material from [Var24]. Our notational conventions on Haar measures, Levis, Weyl groups,
spaces of characters, etc. mostly follow Arthur’s paper [Art96] and also coincide with the conventions
in [Var24]. In particular, we fix a minimal Levi M0 ⊂ G, with absolute Weyl group W0, and then
write L the set of standard Levis with its natural W0-action, W (M) = NG(M)(E)/M(E) for any
M ∈ L, etc. We also fix once and for all a Haar measure dm on M(E) for all M ∈ L. We write
G(E)ell for the set of strongly regular elliptic elements.

Inside Cc(G(E)), we have the subspace Cc(G(E))null of null functions f characterized by four
equivalent conditions (see [Kaz86, Theorem 0], and see also [Dat00] for a nice discussion):

• tr(f |π) = 0 for all irreducible representations π.

• tr(f |π) = 0 for all tempered irreducible representations π.

• All regular semisimple orbital integrals of f are zero.
2More precisely, the crucial idea emerged in Frankfurt airport while waiting to board my flight home.
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• f is in the subspace of commutators, i.e. the linear span of functions of the form h(x) −
h(gxg−1).

We write I(G) = Cc(G(E))/Cc(G(E))null. Note that the action of Z(G) on Cc(G(E)) preserves null
functions: if f ∈ Cc(G(E))null and z ∈ Z(G), then tr(z ∗ f |π) = zπtr(f |π) = 0 for all irreducible π,
so z ∗ f is null. Therefore the action descends to an action of Z(G) on I(G) which we also denote
as z ∗ f .

For any Levi M , there is a canonical map Z(G) → Z(M), denoted z )→ rM (z) or just z )→ r(z)
if M is clear from context. There is also a canonical constant term map

I(G) → I(M)

f )→ fM = δ1/2P (m)

∫
U(E)

∫
K
f(kmuk−1)dkdu

which strictly speaking is defined on Cc(G(E)), but it descends to the quotient I(G). Here P = MU
is any parabolic with Levi M , K ⊂ G(E) is any open compact with dk the normalized Haar measure,
and du is determined by our choices of Haar measures on G(E) and M(E). This map is characterized
by the formula tr(fM |π) = tr(f |iGMπ) for irreducible π. It is easy to see from this formula that
(z ∗ f)M = rM (z) ∗ fM .

We write I(G)cusp for the subspace of cuspidal functions f characterized by the vanishing of fM
for all proper Levis M , or equivalently by the vanishing of all orbital integrals at non-elliptic regular
semisimple elements. There is then a canonical decomposition

I(G) =
⊕

M∈L/W0

(I(M)cusp)W (M) (1)

as recalled e.g. in [Var24, Section 4.2.1].
Dually, let Dist(G) be the linear dual of I(G), so this is the space of all invariant distributions

on G. Let D(G) ⊂ Dist(G) be the subspace of virtual characters, and let Dtemp(G) ⊂ D(G) be the
span of characters of tempered irreducible representations. The Bernstein center acts on Dist(G)
and preserves D(G) and Dtemp(G). We write this action as z ·Θ. This is compatible with the action
on I(G) by the tautological formula (z ·Θ)(f) = Θ(z ∗ f). Of course, if Θ = Θπ is the character of
an irreducible representation, then z ·Θπ = zπΘπ.

Inside Dtemp(G), we have the still smaller subspace Dell(G) defined as the linear span of Arthur’s
elliptic tempered virtual characters Θ(τ), τ ∈ Tell(G) (see [Art93] for the notation). Then there is
a canonical decomposition

Dtemp(G) =
⊕

M∈L/W0

(Dell(M))W (M) (2)

where the inclusion of the M -indexed summand on the right-hand side is induced by the parabolic
induction map iGM : D(M) → D(G). In particular, any Θ ∈ Dtemp(G) admits a unique decomposi-
tion Θ = Θell +Θind where Θell ∈ Dell(G) and Θind is in the span of the M -indexed summands for
proper Levis M . We will freely and crucially use the fact that the pointwise evaluation map

Dell(G) → C(G(E)ell)

Θ )→ Θ|G(E)ell

is injective.
This decompositions (1) and (2) are perfectly dual to each other. In particular, any f ∈ I(G)

admits a unique decomposition f = f cusp + fnc such that f cusp is cuspidal and Θ(fnc) = 0 for all
Θ ∈ Dell(G). Note that for any Θ ∈ Dtemp(G), Θ(f) = Θell(f cusp) +Θind(fnc).
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Lemma 2.1. For any f ∈ I(G) and z ∈ Z(G), (z ∗ f)cusp = z ∗ f cusp and (z ∗ f)nc = z ∗ fnc.

Proof. As noted above, the action of Z(G) on I(G) preserves cuspidal functions. On the other
hand, the subset Dell(G) ⊂ D(G) is stable under the Z(G)-action, because any z ∈ Z(G) acts on
any Θ(τ), τ ∈ Tell(G) through a scalar since all the irreducible characters occurring in a given Θ(τ)
have the same supercuspidal support. Therefore Θ(z ∗ fnc) = (z ·Θ)(fnc) = 0 for all Θ ∈ Dell(G),
so z ∗ fnc has vanishing cuspidal part.

All of the spaces of virtual characters defined above have stable analogues, denoted SD, SDtemp,
SDell, etc. The decomposition of Dtemp(G) above admits a compatible stable analogue

SDtemp(G) =
⊕

M∈L/W0

(SDell(M))W (M).

The elliptic inner product determines a canonical projection Dell(G) → SDell(G) splitting the
obvious inclusion, and the direct sum of these projections over M ∈ L/W0 yields an analogous
projection Dtemp(G) → SDtemp(G).

Recall that a function f ∈ I(G) is unstable if all its stable orbital integrals vanish. It is enough
to impose this vanishing at strongly regular semisimple elements. We will need the result of Arthur
that an element f ∈ I(G) is unstable iff Θ(f) = 0 for all Θ ∈ SDtemp(G). For quasisplit groups this
is explicitly proved in [Art96], and for general groups it is [Var24, Proposition 3.2.10]. This can be
reformulated as follows.

Lemma 2.2. The following conditions on an element z ∈ Z(G) are equivalent.
i. For all unstable f , z ∗ f is unstable.
ii. The endomorphism z· of D(G) preserves SD(G).
iii. The endomorphism z· of Dtemp(G) preserves SDtemp(G).

Proof. Clearly i. implies ii. implies iii. That iii. implies i. is exactly the result of Arthur quoted
before the lemma.

As in the introduction, we call elements of the Bernstein center satisfying these equivalent
conditions very stable. By Kazhdan’s density theorem, it is easy to see that Dtemp(G) is a faithful
Z(G)-module. This result has an easy stable analogue.

Lemma 2.3. Under the natural action, SDtemp(G) is a faithful Zvst(G)-module.

Proof. Let z ∈ Zvst(G) be an element such that z ·Θ = 0 for all stable tempered virtual characters Θ.
Then Θ(z ∗ f) = 0 for all f and all such Θ, so by Arthur’s result recalled above, z ∗ f has vanishing
stable orbital integrals for all f . Now the invariant distribution δ : h → h(1) is stable [Kot88,
Proposition 1], i.e. it is in the closed linear span of stable orbital integrals, so 0 = δ(z ∗ f) = z(f)
for all f . Therefore z = 0 as desired.

2.2 Excursion versus Hecke

The key extra symmetry of elements z ∈ ZFS(G) which will enforce their stability is their commu-
tation with certain endomorphisms of D(G) coming from Hecke operators on BunG. More formally,
let µ : Gm,E → GE be a conjugacy class of cocharacters such that 1 ∈ B(G,µ), or equivalently

such that Vµ|Z(Ĝ)Γ is trivial, where Vµ is the irreducible representation of Ĝ with highest weight µ.
Then i∗1TV ∗

µ
i1! defines an endofunctor on the derived category of smooth G(E)-representations with
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Q$-coefficients, which preserves the finite length objects and hence induces an endomorphism on the
Grothendieck group K0Repfl(G(E),Q$). Transporting this endomorphism across our fixed isomor-
phism ι and C-linearizing, we get an endomorphism Tµ : D(G) → D(G).3 By [HKW22, Theorem
6.5.4], there is a (necessarily unique) linear map tµ : I(G) → I(G) such that Tµ(Θ)(f) = Θ(tµ(f))
for all f .

Lemma 2.4. For any z in ZFS(G), we have z ∗ tµ(f) = tµ(z ∗ f). Equivalently, z· and Tµ commute
as endomorphisms of D(G).

This commutation of z· and Tµ is the crucial extra symmetry we will exploit.

Proof. Fix any irreducible representation π, with z · π = zππ. Write Tµ(Θπ) =
∑

niΘπi . Since
Hecke operators and excursion operators commute, z · πi = zππi for all i. Then

Θπ (tµ(z ∗ f)) = Tµ(Θπ)(z ∗ f)

= (z · Tµ(Θπ))(f)

= zπTµ(Θπ)(f)

= zπΘπ(tµ(f))

= (z ·Θπ)(tµ(f))

= Θπ (z ∗ tµ(f)) .

Therefore z ∗ tµ(f)− tµ(z ∗ f) has trace zero on all irreducible representations, so it vanishes.

We will also need some very non-formal facts about the operator Tµ. These all follow from the
main results of [HKW22], which give an explicit formula for the restriction of Tµ(Θ) to G(E)ell for
any Θ. We now recall this formula. Fix any g ∈ G(E)ell with centralizer Tg, and let [[g]] denote
the set of conjugacy classes in the stable conjugacy class of g. For any element g′ ∈ [[g]], we defined
a certain invariant inv(g, g′) ∈ B(Tg) = X∗(Tg)Γ. This invariant has the property that for each
λ ∈ X∗(Tg) such that dimVµ[λ] &= 0, there is exactly one element g′ ∈ [[g]] such that λ = inv(g, g′)
in X∗(Tg)Γ. Here λ is the natural projection of λ along X∗(Tg) → X∗(Tg)Γ. In this notation, the
character formula proved in [HKW22, Theorem 6.5.2] says that

Tµ(Θ)(g) =
∑

λ∈X∗(Tg), g
′∈[[g]]

inv(g,g′)=λ

dimVµ[λ] ·Θ(g′)

for any Θ ∈ D(G).
We record a few consequences of this result.

Proposition 2.5. Fix µ as above.
i. If f is cuspidal, then tµ(f) is cuspidal.
ii. If Θ ∈ D(G) is stable, then Tµ(Θ) = dimVµ ·Θ+Θ′ where Θ′ is parabolically induced.

Proof. In general, Θ ∈ D(G) is parabolically induced if and only if Θ|G(E)ell vanishes identically
(see [HKW22, Appendix C]).

3This endomorphism depends on our fixed isomorphism ι : C
∼

→ Q!, which we suppress from the notation. Note
however that by the main results of [HKW22] recalled below, the restriction of Tµ(Θ) to G(E)ell is completely
independent of this choice.
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Part i. is dual to the fact that if Θ is parabolically induced, then also Tµ(Θ) is parabolically
induced. This follows from the formula for the character of Tµ(Θ) at elliptic elements recalled
above, since if Θ|G(E)ell = 0 then visibly Tµ(Θ)|G(E)ell = 0. Part ii. follows similarly, since if Θ is
stable then

Tµ(Θ)(g) =
∑

λ∈X∗(Tg), g
′∈[[g]]

inv(g,g′)=λ

dimVµ[λ] ·Θ(g′)

=
∑

λ∈X∗(Tg)

dimVµ[λ] ·Θ(g)

= dimVµ ·Θ(g)

for all g ∈ G(E)ell, so Tµ(Θ)− dimVµ ·Θ vanishes identically on G(E)ell.

We will also adapt a marvelous idea from Chenji Fu’s paper [Fu24], showing that as µ → ∞ in
an appropriate sense, Tµ implements a stable averaging. We will need a version of this result with
some uniformity in g. To explain this, note that for any given g ∈ G(E)ell, we can rearrange the
character formula as

Tµ(Θ)(g) =
∑

g′∈[[g]]

Θ(g′)
∑

λ∈X∗(Tg)

inv(g,g′)=λ

dimVµ[λ].

Now set µm = 4mρG for m ≥ 1, and consider the rational number

Cm(g, g′) =

∑
λ∈X∗(Tg)

inv(g,g′)=λ

dimVµm [λ]

dimVµm

,

so we trivially get
1

dimVµm

Tµm(Θ)(g) =
∑

g′∈[[g]]

Θ(g′)Cm(g, g′).

On the other hand, Fu’s analysis shows that for sufficiently large m, we have |Cm(g, g′)− 1
|[[g]]| | ≤

C
m

for some fixed constant C which depends only on the ambient group G. Now for any function
φ ∈ C(G(E)ell//G(E)), define its stable average by the formula φst(g) =

1
|[[g]]|

∑
g′∈[[g]] φ(g

′). Then

we get that 1
dimVµm

Tµm(Θ)(g) → Θst(g) pointwise on G(E)ell, and in fact that

|
1

dimVµm

Tµm(Θ)(g)−Θst(g)| ≤
C

m
supx∈[[g]]|Θ(x)|

for all g ∈ G(E)ell where C depends only on G. Since the Weyl discriminant is invariant under
stable conjugacy, we can insert it into the above estimate, giving

|D(g)|1/2|
1

dimVµm

Tµm(Θ)(g)−Θst(g)| ≤
C

m
supx∈[[g]]|D(x)|1/2|Θ(x)|.

Now by a deep theorem of Harish-Chandra, |D(x)|1/2|Θ(x)| (extended by zero from G(E)reg.ss to
G(E)) is bounded on any compact subset of G(E). (See e.g. [Clo87] for a proof of a more general
result.) Putting things together, we deduce in particular that if U ⊂ G(E) is any compact subset
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whose elliptic part is stably invariant in the weak sense that for all g ∈ G(E)ell either [[g]] ∩ U = 0
or U meets every conjugacy class in [[g]], then

|D(g)|1/2|
1

dimVµm

Tµm(Θ)(g)−Θst(g)|

tends to zero uniformly for g ∈ G(E)ell ∩ U as m → ∞.

2.3 Stability

In this section we prove Theorem 1.1.
Let z ∈ Z(G) be in the image of the Fargues-Scholze map ΨG. We need to prove that for

any unstable f ∈ I(G), z ∗ f is unstable. For this, it is enough to see that Θ(z ∗ f) = 0 for all
Θ ∈ SDtemp(G) as recalled in Section 2.1. We will prove this by induction on the semisimple rank
of G.

First suppose Θ is parabolically induced. Without loss of generality we can assume Θ = iGMΘM

for some ΘM ∈ SDtemp(M) and some proper Levi M . Then

Θ(z ∗ f) = ΘM ((z ∗ f)M ) = ΘM (rM (z) ∗ fM ).

Since f is unstable, also fM is unstable. Now rM (z) is in the image of ΨM by compatiblity of the
Fargues-Scholze map with parabolic induction, so by induction on the semisimple rank we know
that rM (z) ∗ fM is unstable, and thus ΘM (rM (z) ∗ fM ) = 0.

This reduces us to the case where Θ ∈ SDell(G). By Lemma 2.1, we can assume our unstable
function f is cuspidal, in which case also z ∗ f is cuspidal. Now, with µ as in Section 2.2, consider
the quantity

Cµ :=
1

dimVµ
Tµ(Θ)(z ∗ f)

By Proposition 2.5, Tµ(Θ) = dimVµ · Θ + Θ′ for some parabolically induced Θ′. Since z ∗ f is
cuspidal, Θ′(z ∗f) = 0, so this simplifies to Cµ = Θ(z ∗f) which is evidently a constant independent
of µ. Our goal is to show that this constant vanishes. Writing Ξ = z ·Θ, Lemma 2.4 shows that

Cµ =
1

dimVµ
(z · Tµ(Θ))(f)

=
1

dimVµ
Tµ(z ·Θ)(f)

=
1

dimVµ
Tµ(Ξ)(f)

for any µ. Note that although Θ is stable, Ξ certainly need not be stable a priori.4

At this point we use Fu’s method. More precisely, taking µ = µm with m → ∞ as in Section
2.2, we will use that the operator 1

dimVµ
Tµ(Ξ) effects a stable averaging as discussed there. To

implement this, for any Θ ∈ Dtemp(G), let Θst ∈ SDtemp(G) be its stable projection. Writing
1

dimVµm
Tµm(Ξ) = Ξst + Φµm , it is clear that Ξst(f) = 0 since f is unstable, so Cµm = Φµm(f). We

will now show that as m → ∞, Φµm(f) → 0.
To proceed further, we exploit the cuspidality of f to rewrite Φµm(f) via a simple form the

Weyl integration formula. More precisely, fix a Haar measure da on the split center AG(E), and set

4In fact, by Lemma 2.2, we are exactly trying to prove that z· preserves stability.
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Oγ(f) =
∫
AG(E)\G(E) f(x

−1γx)dx as a function on G(E)ell, where dx = dg/da in the usual manner.
Then for any Θ ∈ D(G) and any f ∈ I(G)cusp, the Weyl integration formula can be written as

Θ(f) =
∑
T

1

|W (G, T )(E)|

∫
T (E)

Θ(t)Ot(f)|D(t)|dt.

Here the sum runs over a (finite) set of representatives for the G(E)-conjugacy classes of elliptic
maximal tori in G, and dt is the Haar measure on T (E) determined by the chosen Haar measure on
AG(E) and the normalized Haar measure on the compact group T (E)/AG(E). We briefly recall some
facts about convergence. For each T , the set of elements t ∈ T (E) ∩ G(E)ell such that Ot(f) &= 0
has compact closure CT in T (E). Now, by fundamental results of Harish-Chandra, the function
|D(g)|1/2Θ(g) (extended by zero from the regular semisimple locus) is locally bounded on G(E)
(as recalled in Section 2.2), and |D(γ)|1/2Oγ(f) is a bounded function on G(E)ell (see e.g. [Art91,
Section 4]). In particular, for a fixed cuspidal f and varying Θ, we can replace each integral above
by an integral over the fixed compact subset CT ⊂ T (E), and the integrand is a bounded function
on that compact subset and is locally constant on a dense open subset thereof.

Now substituting in Φµm for Θ in the Weyl integration formula above, we are reduced to showing
that |D(t)|1/2Φµm(t) → 0 uniformly on CT as m → ∞. Here again, |D(t)|1/2Φµm(t) is defined a
priori as a bounded function on CT ∩G(E)ell and extended by zero to CT . Recall that by definition,
Φµm = 1

dimVµm
Tµm(Ξ) − Ξst. First we compute the restriction of Ξst to G(E)ell. This follows from

some general theory: by [Var24, Lemma 3.4.5], Θst|G(E)ell = (Θ|G(E)ell)st for any Θ ∈ D(G), where
f )→ fst is the naive stable averaging discussed in Section 2.2. In particular, this applies to Ξ, so we
get

Φµm(g) =
1

dimVµm

Tµm(Ξ)(g) − Ξst(g)

for any g ∈ G(E)ell. Now choose a compact subset U ⊂ G(E)ell as in the discussion at the end of Sec-
tion 2.2 which moreover contains CT for each T . Then by the discussion there, |D(g)|1/2Φµm(g) → 0
uniformly in m for all g ∈ U ∩ G(E)ell, and in particular for all t ∈ CT ∩ G(E)ell. But then this
immediately extends to the same statement for all t ∈ CT since |D(g)|1/2Φµm(g) is extended by zero
from the regular semisimple part.

Putting all of this together, we get that

Φµm(f) =
∑
T

1

|W (G, T )(E)|

∫
CT

|D(t)|1/2Φµm(t) · |D(t)|1/2Ot(f)dt

where CT ⊂ T (E) is compact, both halves of the integrand are bounded on CT , and |D(t)|1/2Φµm(t) →
0 uniformly on CT for each T as m → ∞. Therefore Φµm(f) → 0 as m → ∞. This gives the result.

2.4 Inner forms

In this section we deal with Theorem 1.4. To construct the map τG, we proceed by induction on
the semisimple rank. More precisely, fix some element f ∈ Zspec(G∗) such that z := ΨG(f) &= 0. We
need to show that z∗ := ΨG∗(f) &= 0.

By Lemma 2.3, SDtemp(G) is a faithful Zvst(G)-module, thus a faithful ZFS(G)-module by The-
orem 1.1. In particular, the endomorphism z· of SDtemp(G) is not identically zero. Suppose first
that z · Θ &= 0 for some parabolically induced Θ = iGMΘM with ΘM ∈ SDtemp(M). Let M∗ be the
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Levi subgroup corresponding to M . We have a commutative diagram

ZFS(G)

r

$$

Zspec(G∗)
ΨG∗

##

ΨG

%%####################

rspec

$$

ZFS(G∗)

r∗

$$
Zspec(M∗)

ΨM∗

##

ΨM
&&$$$

$$
$$

$$
$$

$$
$$

$$
$$

$
ZFS(M∗)

τM

''%
%%

%%
%%

%%
%

ZFS(M)

where τM exists and is surjective by induction on the semisimple rank. Now by basic properties
of the Bernstein center, the linear map z · iGM (−) coincides with the linear map iGM (r(z) · −). In
particular, since z · iGMΘM &= 0, we get that r(z) &= 0. But then

r(z) = ΨM (rspec(f))

= τM (ΨM∗(rspec(f)))

= τM (r∗(ΨG∗(f)))

= τM (r∗(z∗))

using the commutativity of the diagram, so z∗ &= 0.
It remains to deal with the case where z annihilates all parabolically induced elements of

SDtemp(G). By Lemma 2.3, we may choose some Θ ∈ SDell(G) such that z · Θ &= 0. Pick some µ
as in Section 2.2 such that b ∈ B(G∗, µ), and let Tµ : D(G) → D(G∗) be the linear map induced by
i∗1TV ∗

µ
ib! (and our choice of isomorphism C - Q$) as in the discussion there. By the commutation

of Hecke operators with excursion operators, we get that z∗ · Tµ(Θ) = Tµ(z · Θ) as in Lemma
2.4. By assumption, z · Θ ∈ SDell(G) is nonzero, so it is not identically zero on G(E)ell. Now the
character formula [HKW22, Theorem 6.5.2] again shows that for all matching stably conjugate pairs
G∗(E)ell . g∗ ∼st g ∈ G(E)ell,

Tµ(z ·Θ)(g∗) = e(G)dimVµ(z ·Θ)(g),

so Tµ(z ·Θ)(g∗) is nonzero for some g∗ ∈ G∗(E)ell. Therefore Tµ(z ·Θ) = z∗ ·Tµ(Θ) &= 0, so z∗ &= 0
as desired.
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Next, for the compatibility with parabolic induction, note that we already have a diagram

ZFS(G)

r

$$

Zspec(G∗)
ΨG∗

##

ΨG

%%####################

rspec

$$

ZFS(G∗)

r∗

$$

τG

((&&&&&&&&&&

Zspec(M∗)
ΨM∗

##

ΨM
&&$$$

$$
$$

$$
$$

$$
$$

$$
$$

$
ZFS(M∗)

τM

''%
%%

%%
%%

%%
%

ZFS(M)

where everything commutes except possibly the trapezoid spanned by r, r∗, τG, τM . But the surjec-
tivity of ΨG∗ immediately implies that this trapezoid commutes as well.

It remains to show compatibility with the transfer map. We first recall some properties of this
map, referring to [Var24, Section 3.2] for details.5 Fixing an inner twist and all other data as in
[Var24, Section 3.2], we get a canonical injection L/W0 → L∗/W ∗

0 . The transfer map TransG :
SDtemp(G∗) → SDtemp(G) is then compatible with the grading

SDtemp(G∗) =
⊕

M∗∈L∗/W∗

0

(SDell(M∗))W (M∗)

and its analogue for G in the following very strong sense.

• Its restriction to the summand SDell(G∗) factors over an isomorphism TransellG : SDell(G∗)
∼
→

SDell(G) characterized by the equality TransellG (Θ)(g) = e(G)Θ(g∗) for all matching stably
conjugate pairs G∗(E)ell . g∗ ∼st g ∈ G(E)ell.

• If M∗ ∈ L∗/W ∗
0 is irrelevant in the sense that it is not the image of some M ∈ L/W0, TransG

is identically zero on the M∗-indexed summand.

• If M∗ is the image of some M , then TransGiG
∗

M∗ΘM∗ = iGMTransellMΘM∗ for all ΘM∗ ∈
(SDell(M∗))W (M∗), compatibly with the Weyl equivariance via the appropriate identification
W (M) = W (M∗).

Now let z ∈ ZFS(G∗) be any element, and pick any Θ ∈ SDtemp(G∗). We need to show that
TransG(z ·Θ) = τG(z) ·TransG(Θ). First suppose Θ is parabolically induced, say of the form iG

∗

M∗Ξ
for some Ξ ∈ SDell(M∗). Then by the remarks on the grading above and compatibility of the
Bernstein center action with parabolic induction, we compute that

TransG(z · i
G∗

M∗Ξ) = TransG(i
G∗

M∗(r∗(z) · Ξ)).

If M∗ is irrelevant, this is identically zero, as is TransG(Θ), so there is nothing to prove. If M∗ is

5Our convention differs from Varma’s in one place only: we normalize the transfer factor between G and G∗ to be
the Kottwitz sign e(G), rather than the scalar 1 as in [Var24].
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relevant, we compute further that

TransG(i
G∗

M∗(r∗(z) · Ξ)) = iGMTransellM (r∗(z) · Ξ)

= iGMτM (r∗(z)) · TransellMΞ

= iGMr(τG(z)) · Trans
ell
MΞ

= τG(z) · i
G
MTransellMΞ

= τG(z) · TransG(Θ),

where the second equality follows by induction on the semisimple rank.
This reduces us to the case that Θ ∈ SDell(G∗). Here we just need to see that (τ(z) ·

TransellG (Θ))(g) = TransellG (z · Θ)(g) for all g ∈ G(E)ell. Now we exploit [HKW22] one more time.
More precisely, defining T ∗

µ : D(G∗) → D(G) as the map induced by i∗bTVµ ii! (with b and µ as
above), the character formula [HKW22, Theorem 6.5.2] shows that

T
∗
µ (Θ)(g) = dimVµ · TransellG (Θ)(g)

for all g ∈ G(E)ell. But again, Hecke operators commute with excursion operators, so we get that
T ∗

µ (z ·Θ) = τG(z) ·T ∗
µ (Θ). Evaluating both sides of this equality on any g ∈ G(E)ell and invoking

the character formula, we get the result.
Finally, suppose f∗ and f are any matching functions. Fix any z ∈ ZFS(G∗), and let (τG(z)∗f)∗

be a function on G∗(E) matching τG(z)∗f . We need to see that h := z∗f∗−(τG(z)∗f)∗ is unstable.
For this, pick any Θ ∈ SDtemp(G∗). We then compute

Θ(z ∗ f∗) = (z ·Θ)(f∗)

= TransG(z ·Θ)(f)

= (τG(z) · TransGΘ)(f)

= TransG(Θ)(τG(z) ∗ f)

= Θ ((τG(z) ∗ f)
∗)

where the first and fourth equalities are trivial, the second and fifth equalities follow from the
definition of the transfer map, and the third equality follows from our results so far. Therefore
Θ(h) = 0, and since Θ ∈ SDtemp(G∗) is arbitrary, this implies that h is unstable, as desired.
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