What is a spectral sequence?

David Hansen

June 5, 2012

Very short answer: A spectral sequence is a piece of terminology used by algebraists to intimidate other mathematicians.

Short answer / slogan: A spectral sequence is a machine which breaks difficult homological calculations apart into many easier (?) ones, and then glues their results together.

Long answer: A (first quadrant cohomology) E_r -page spectral sequence consists of the following data:

- A collection of abelian groups $E_s^{i,j}$ for integers $i \ge 0, j \ge 0, s \ge r$. The data of $E_s^{i,j}$ for s fixed and varying i, j is referred to as the E_s -page.
- Homomorphisms of abelian groups $d_s^{i,j} : E_s^{i,j} \to E_s^{i+s,j+1-s}$, the differentials, such that $\operatorname{im} d_s^{i-s,j-1+s} \subset \ker d_s^{i,j}$. The differentials into $E_s^{i,j}$ are trivial for s > i, and the differentials out of $E_s^{i,j}$ are trivial if s > j + 1.
- Canonical isomorphisms $E_{s+1}^{i,j} \simeq \frac{\ker d_s^{i,j}}{\operatorname{im} d_s^{i-s,j-1+s}}$.

You can and should think of the $E_s^{i,j}$'s for fixed s as indexed by integer points in the first quadrant of the plane; the condition on the differentials says that the groups lying along each line of slope $-\frac{s-1}{s}$ form a complex, and the E_{s+1} -page formed by taking the cohomology of the E_s -page. Note also that each $E_{s+1}^{i,j}$ is a quotient of a subgroup of $E_s^{i,j}$, and that eventually every differential entering or leaving a fixed entry $E_s^{i,j}$ is identically zero, because either the *i*-coordinate of the source or the *j*-coordinate of the target is negative. In other words, the entries $E_s^{i,j}$ evolve as you "turn the pages", but eventually they stop changing: they stabilize, and we write $E_{\infty}^{i,j}$ for the stable value of $E_s^{i,j}$. The following picture must be

regarded:

 $E^{0,3}_{\bullet}$

Note that no entry on the E_1 -page has stabilized, since a differential leaves every entry on the page. However, on the E_2 -page, the entries $E_2^{0,0}$ and $E_2^{1,0}$ have stabilized, so e.g. $E_{\infty}^{1,0} = E_2^{1,0}$.

This mass of data *abuts to an abelian group* $H^* = \bigoplus_{n \ge 0} H^n$ if there exists a descending chain of subgroups

$$H^n = \operatorname{Fil}^0 H^n \supset \operatorname{Fil}^1 H^n \supset \cdots \supset \operatorname{Fil}^i H^n \supset \cdots \supset \operatorname{Fil}^n H^n \supset \operatorname{Fil}^{n+1} H^n = 0$$

together with canonical isomorphisms $\operatorname{Fil}^{i+1}H^n \setminus \operatorname{Fil}^iH^n \simeq E_{\infty}^{i,n-i}$; more colloquially, H^n is determined up to extension data by the groups $E_{\infty}^{i,j}$ with i + j = n. Alllll this information is traditionally abbreviated into the notation

$$E_r^{i,j} \Rightarrow H^{i+j}.$$

The vast majority of spectral sequences are E_2 -page spectral sequences, which is to say you begin with the data of the entries on the E_2 -page.

Examples.

(Serre) Let $f : E \to B$ be a continuous map of topological spaces (say of CW complexes). This map f is a *Serre fibration* if the fibers $F = F_b = f^{-1}(b), b \in B$ "satisfying the homotopy lifting property for CW complexes" - fiber bundles are a basic example. Given a Serre fibration, the cohomology groups $H^i(F_b, \mathbf{Q})$ naturally form the stalks of a locally constant sheaf $H^i(F)$ over B, and Serre constructed a spectral sequence

$$E_2^{i,j} = H^i(B, H^j(F)) \Rightarrow H^{i+j}(E, \mathbf{Q}).$$

The Serre spectral sequence has some very important extra structure, namely maps

$$E_r^{i,j} \times E_r^{k,l} \to E_r^{i+k,j+l}$$

which agree on the E_2 -page with $(-1)^{jl}$ times the map induced by the cup product maps on the cohomologies of the base and fiber.

Exercise: If $F \to E \to B$ is a fiber bundle, with B path-connected and E orientable, show the equality

$$\chi(E) = \chi(B)\chi(F)$$

where χ denotes Euler characteristic and $\chi(F)$ is the Euler characteristic of "the" fiber.

Exercise: Using the family of fiber bundles $SO(n-1) \to SO(n) \to S^{n-1}$, inductively calculate the cohomology ring of SO(n).

(Grothendieck) Let X be a topological space, with $\mathcal{F} \to X$ a sheaf of abelian groups. Let \mathcal{U} be a covering of X by open sets. Given any open set $U \subset X$, the rule

$$\mathcal{H}^{j}(-,\mathcal{F})$$
: opens in $X \to \text{abelian groups}$
 $U \mapsto H^{j}(U,\mathcal{F}|_{U})$

defines a presheaf on X. Cech cohomology makes sense with coefficients in any presheaf, and we have the *Cech-to-sheaf spectral sequence*

$$E_2^{i,j} = \check{H}^i(\mathcal{U}, \mathcal{H}^j(-, \mathcal{F})) \Rightarrow H^{i+j}(X, \mathcal{F}).$$

Exercise: If $\mathcal{U} = \{U_1, U_2\}$ consists of two open sets, prove that the Cech-to-sheaf spectral sequence yields the Mayer-Vietoras long exact sequence

$$\cdots \to H^i(X,\mathcal{F}) \to H^i(U_1,\mathcal{F}) \oplus H^i(U_2,\mathcal{F}) \to H^i(U_1 \cap U_2,\mathcal{F}) \to H^{i+1}(X,\mathcal{F}) \to \dots$$

Can you show anything when \mathcal{U} consists of three open sets?

Exercise: The covering \mathcal{U} is a *Leray covering relative to* \mathcal{F} if $H^j(U, \mathcal{F}|_U) = 0$ for all j > 0 and all $U \in \mathcal{U}$. Supposing \mathcal{U} is a Leray covering, show the spectral sequence degenerates to an isomorphism

$$H^i(X,\mathcal{F})\simeq \check{H}^i(\mathcal{U},\mathcal{F}).$$

(Grothendieck) Let X be a topological space, with $\mathcal{F} \to X$ a sheaf of abelian groups. Recall that $H^i(X, \mathcal{F})$ is defined as follows: one chooses a long exact sequence $0 \to \mathcal{F} \to \mathcal{I}^0 \to \mathcal{I}^1 \to \mathcal{I}^2 \to \ldots$ with each \mathcal{I}^i an injective sheaf, and $H^i(X, \mathcal{F})$ is the *i*th cohomology group of the complex

$$0 \to \Gamma(X, \mathcal{I}^0) \to \Gamma(X, \mathcal{I}^1) \to \Gamma(X, \mathcal{I}^2) \to \dots$$

Given a complex $\mathcal{G}^{\bullet} = 0 \to \mathcal{G}^0 \to \mathcal{G}^1 \to \dots$ of sheaves, the *i*th cohomology sheaf of \mathcal{G}^{\bullet} is the sheaf $\mathcal{H}^i(\mathcal{G}^{\bullet})$ defined as the sheafification of the presheaf

$$U \mapsto \frac{\ker \Gamma(U, \mathcal{G}^i) \to \Gamma(U, \mathcal{G}^{i+1})}{\operatorname{im} \Gamma(U, \mathcal{G}^{i-1}) \to \Gamma(U, \mathcal{G}^i)}.$$

In the setup above, note that the complexes $\mathcal{F}^{\bullet} : 0 \to \mathcal{F} \to 0$ and $\mathcal{I}^{\bullet} : 0 \to \mathcal{I}^0 \to \mathcal{I}^1 \to \mathcal{I}^2 \to \ldots$ have the same cohomology sheaves, namely $\mathcal{H}^0(\mathcal{F}^{\bullet}) \simeq \mathcal{H}^0(\mathcal{I}^{\bullet}) \simeq \mathcal{F}$ and $\mathcal{H}^i(\mathcal{F}^{\bullet}) \simeq \mathcal{H}^i(\mathcal{I}^{\bullet}) \simeq 0 \,\forall i \geq 1$ - in other words, resolving \mathcal{F} by injective sheaves is equivalent to finding a complex \mathcal{I}^{\bullet} of injective sheaves with $\mathcal{H}^0(\mathcal{I}^{\bullet}) \simeq \mathcal{F}, \, \mathcal{H}^i(\mathcal{I}^{\bullet}) \simeq 0 \,\forall i \geq 1$.

Definition / **Theorem:** Given any complex of sheaves \mathcal{F}^{\bullet} , there exists a complex \mathcal{I}^{\bullet} of injective sheaves with $\mathcal{H}^{i}(\mathcal{I}^{\bullet}) \simeq \mathcal{H}^{i}(\mathcal{F}^{\bullet}) \forall i \geq 0$; call any such complex an injective resolution of \mathcal{F}^{\bullet} . Choose an injective resolution \mathcal{I}^{\bullet} of \mathcal{F}^{\bullet} and define $\mathbf{H}^{i}(X, \mathcal{F}^{\bullet})$ as the *i*th cohomology group of the complex

$$0 \to \Gamma(X, \mathcal{I}^0) \to \Gamma(X, \mathcal{I}^1) \to \Gamma(X, \mathcal{I}^2) \to \dots;$$

then $\mathbf{H}^{i}(X, \mathcal{F}^{\bullet})$ a well-defined abelian group (i.e. it doesn't depend on the specific injective resolution \mathcal{I}^{\bullet} we chose).

The group $\mathbf{H}^{i}(X, \mathcal{F}^{\bullet})$ is the *i*th hypercohomology group of the complex \mathcal{F}^{\bullet} . There are two spectral sequences which abut to $\mathbf{H}^{*}(X, \mathcal{F}^{\bullet})$, namely

$$E_2^{i,j} = H^i(X, \mathcal{H}^j(\mathcal{F}^{\bullet})) \Rightarrow \mathbf{H}^{i+j}(X, \mathcal{F}^{\bullet})$$

and

$$E_1^{i,j} = H^j(X, \mathcal{F}^i) \Rightarrow \mathbf{H}^{i+j}(X, \mathcal{F}^{\bullet})$$

Example: Let X be a smooth complex manifold of complex dimension n. The holomorphic de Rham complex of X is the complex X

$$\Omega_X^{\bullet}: 0 \to \mathcal{O}_X \xrightarrow{d} \Omega_X^1 \xrightarrow{d} \Omega_X^2 \xrightarrow{d} \dots \to \Omega_X^n \to 0,$$

where Ω_X^i is the sheaf of holomorphic *i*-forms. The holomorphic functions with zero derivative are the locally constant functions, so $\mathcal{H}^0(\Omega_X^{\bullet}) \simeq \underline{\mathbf{C}}$; furthermore, a holomorphic analogue of the usual Poincare lemma yields $\mathcal{H}^i(\Omega_X^{\bullet}) = 0 \forall i \geq 1$. Hence the *first* hypercohomology spectral sequence degenerates to an isomorphism

$$H^i_{\text{sing}}(X, \mathbf{C}) \simeq H^i(X, \underline{\mathbf{C}}) \simeq \mathbf{H}^i(X, \Omega^{\bullet}_X),$$

so the *second* hypercohomology spectral sequence now reads

$$E_1^{i,j} = H^j(X, \Omega^i_X) \Rightarrow H^{i+j}_{\rm sing}(X, {\bf C})$$

In other words, sheaf cohomology of the holomorphic objects Ω_X^i suffices to compute the singular cohomology of X! This, to me at least, is much more surprising than the de Rham isomorphism - arbitrary smooth differential forms are very mushy objects, but holomorphic differential forms are extremely rigid.