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Abstract

We develop some tools to compute the Serre functor on quasicoherent and ind-coherent
sheaves on fairly general algebraic stacks. This gives new conceptual proofs of some results of
Beraldo.
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1 Introduction

Fix a field k, with D(k) the derived oo-category of k-vector spaces. Let C be a compactly generated
k-linear presentable stable oo-category, so C = Ind(C¥). For brevity we call any such C a good
k-linear category. For any A, B € C, we write RHom(A, B) € D(k) for the usual k-linear mapping
spectrum.

Any good k-linear category admits a canonical functor S = S¢ : C — C, the Serre functor of C,
characterized by preservation of colimits together with the requirement that

RHom(A, S(B)) = RHom(B, A)*

for all compact objects B and all objects A. Here (—)* denotes the naive dual in D(k). Most
classically, if X is a projective variety over k and C = QCoh(X) is the (unbounded) quasicoherent
derived category, then S(—) = — ® wx is just the functor of tensor product with the normalized
dualizing complex. However, the Serre functor exists much more generally, and is “a very useful
piece of abstract nonsense” in the memorable phrasing of Beraldo [Ber21b].

In [Ber21b], Beraldo computed Serre functors in several situations, with somewhat surprising
and varied outcomes which we now recall. For these two examples we assume k is algebraically
closed of characteristic zero, and we fix a split reductive group G/k.



1. Let X = N/G be the equivariant nilpotent cone of G, and let j : X° — X be the complement
of the zero orbit. Then Beraldo computed the Serre functor of QCoh(X) as

S(—) = — ®cone(Ox — j.Oxo)[dimN — 1].

Note that the auxiliary sheaf cone(Ox — j.Oxo)[dimA — 1] appearing here is not coherent,
but it is still extremely nice: it is concentrated in degree zero for the standard t-structure, it
is set-theoretically supported at the zero orbit, and it has finite tor-dimension.

2. Set X = (0 xl’; 0)/G and let C = IndCohys;(X). This is exactly the category appearing on
the spectral side of the derived Satake equivalence. Beraldo proved that the Serre functor of
this category is Zg_ar/¢ Y ar/G—o[—dimG], where

EO—>/\//G : QCOh(X) = IndCOhN/G(X) : \IJN/G—>O
are the usual adjoint pair of functors recalled below.

In this note we develop some general methods for computing Serre functors on quasicoherent and
ind-coherent sheaves. As a byproduct, we give new conceptual proofs of Beraldo’s results, without
any explicit computations.

Fix a field k of characteristic zero. All our results will be in the setting of QCA stacks lo-
cally almost of finite type over k. In this generality, Drinfeld-Gaitsgory proved that the category
IndCoh(X) is compactly generated by Coh(X), and that QCoh(X) is dualizable [DG13]. Moreover,
the dualizable and compact objects in QCoh(X) agree, and are given by the usual perfect complexes
Perf(X). If QCoh(X) is compactly generated, we say X is perfect. This is a mild condition, and
holds e.g. for all quotient stacks Y/G where Y is a quasiprojective k-scheme and G is a linear
algebraic group [BZFN10].

In general, there is a natural quotient functor ¥ : IndCoh(X) — QCoh(X), which admits a fully
faithful left adjoint = if X is eventually coconnective. If X is quasismooth and V' C Sing(X) is a
closed conical subset, we have a more general pair of adjoint functors

EQ_,V : QCOh(X) = IndCth(X) : \I]V_)Q

which recover the above functors when V' = Sing(X).
Our main result is the following theorem.

Theorem 1.1. Let X be a perfect QCA stack.
i. The Serre functor of QCoh(X) is F — F ® 0x, where 6x € QCoh(X) represents the con-

travariant functor

QCoh(X) — D(k)
G — RT(X,G)".

ii. Suppose moreover that X is Gorenstein. Then the Serre functor of IndCoh(X) is F —
E(¥(F)®0x), with 6x € QCoh(X) as in i.

iii. Suppose moreover that X is quasismooth, and V' C Sing(X) is a closed conical subset
such that IndCohy (X)) is compactly generated. Then the Serre functor of IndCohy (X) is F —
So—v(Pvo(F) ®0x).



Here i. is an easy piece of formal nonsense, and in fact a version of i. holds for any locally rigid
symmetric monoidal good k-linear category. Moreover, iii. is an easy formal consequence of ii. On
the other hand, ii. is not formal at all, and we will comment on its proof below.

This theorem reduces the problem of understanding the Serre functor on quasicoherent or
ind-coherent sheaves to understanding the sheaf dx € QCoh(X). In simple cases, this can be
computed by hand. For instance, if X = SpecA is a (derived) affine scheme, then dx is (the
quasicoherent sheaf associated with) the naive dual RHomy(A, k). In conjunction with Theorem
1.1.iii, this immediately recovers Beraldo’s second result, noting that X = 0 x? 0 is affine with
RHomy, (O(X), k) = O(X)[—dimG].

Moreover, for certain quotient stacks we can give a very clean description of dx. To explain this,
assume k is algebraically closed, and let X = (SpecA)/G be a quotient stack where A is a classical
finite type k-algebra and G is linearly reductive. It is not difficult to prove that the following
conditions are equivalent:

i. A% is an Artinian local k-algebra.

ii. G has a unique closed orbit on SpecA.

iii. There is a presentation X 2 (SpecB)/H where H is linearly reductive and has a unique
closed orbit on SpecB which is moreover a single point x.

The equivalence of i. and ii. follows from the theory of good moduli spaces [Alp13], and the
equivalence of ii. and iii. can be deduced from Luna’s etale slice theorem. We call a presentation
as in iii. a good presentation.

Theorem 1.2. Let X = (SpecA)/G be a good presentation of a quotient stack as above. Let
x € SpecA be the singleton closed orbit, with m C A the associated maximal ideal. Let E =
colim,, Homy (A/m™, k) be the injective hull of the residue field A/m = k, with its natural structure

as a G-equivariant A-module. Then dx = E is the associated quasicoherent sheaf on X .

When X is the equivariant nilpotent cone, it is a simple exercise to identify E with the sheaf
cone(Ox — 7.Oxo)[dimN — 1] exhibited by Beraldo. As such, this immediately recovers Beraldo’s
first result.

Let us mention some ingredients in the proof of Theorem 1.1.ii. One key idea is that if C is a
good category which is equipped with a self-duality Dean : C¥ = C“ on its compact objects, we
can extract a second duality functor Deyx : C — C characterized by continuity together with the
requirement that S = Dgy 0 D¢ay on compact objects. Here “ex” stands for exotic, extra, exciting.
In the particular cases of IndCoh and QCoh we give this functor its own notation:

e Let X be a QCA stack. For IndCoh(X) equipped with the usual Grothendieck-Serre self-
duality Dgs on Coh(X), we write Dagm for the resulting exotic duality functor. This is the
functor of admissible duality defined and studied in [HM26].

e Let X be a perfect QCA stack. For QCoh(X) equipped with the usual naive self-duality Dy,

on Perf(X), we write D?d(igh for the resulting exotic duality functor.

We will need some highly non-obvious facts about these two exotic dualities. The first ingredient is
the following surprising theorem, which was already proved in [HM26].

Theorem 1.3. Let X be a Gorenstein QCA stack. Then for any F € Coh(X), DaamF is in the

essential image of the functor =.

The other ingredient is the following theorem, which is new here but whose proof crucially uses
some results in [HM26].



Theorem 1.4. Let X be a perfect QCA stack which is eventually coconnective. Then DY g

adm

t-bounded: there are integers a,b such that D" F € QCoh!®¥ (X) for all F € QCoh”(X).

adm

With these results in hand, Theorem 1.1.ii follows from some additional arguments exploiting
the t-structure on IndCoh.
As a corollary of Theorem 1.1.ii, we get the following formula for the admissible duality functor.

Corollary 1.5. Let X be a QCA stack which is perfect and Gorenstein. Then for any F € Coh(X),
we have DygmF = E(Dpy UF ® 0x).

We end with a brief comment on our motivations. Our main interest is not primarily in the
Serre functor, but in the exotic duality D,4, on IndCoh, as this duality plays a fundamental role in
the categorical local Langlands correspondence. More precisely, if G/Q, is a quasisplit group and
(B, ) is a Whittaker datum for G, we expect [HM26] a canonical equivalence of categories

Ly : D(Bung) = IndCoh(Parg)

such that ¢*DagmLy =~ Ly -1Dverd, where ¢ is the Chevalley involution. In other words, the categori-
cal local Langlands equivalence intertwines Verdier duality on the automorphic side with (Chevalley-
twisted) admissible duality on the spectral side. This motivated us to develop some tools for com-
puting admissible duals. The results of this paper will be used in the forthcoming NUS PhD thesis
of Jhan-Cyuan Syu.
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2 Proofs

A covariant functor is continuous if it preserves colimits. Since I don’t like opposite categories, I will
say a contravariant functor F' is continuous if F'(colim;A4;) = lim; F'(A;) for all colimit diagrams.

2.1 General formalism

In this section we establish some basic formalism. Some of these ideas were independently observed
by Zhu [Zhu25]|, and we also follow his use of the word “admissible” below.

Fix a field &k, with D(k) the derived oo-category of k-vector spaces. Let C be a compactly
generated k-linear presentable stable co-category, so C = Ind(C*). As in the introduction, we call
such C good. By a standard result, C has all (small) limits. Any such C admits a unique Serre
functor S = S€ : C — C, characterized by continuity together with the requirement that

RHom(A, S(B)) = RHom(B, A)*

for all compact objects B and all objects A, where (—)* denotes the naive dual in D(k). Indeed,
for fixed compact B, the right-hand side transforms colimits in A into limits in D(k), and therefore
is representable. The representing object is S(B) by definition. In general, S is conservative on
compact objects, and fully faithful on compact objects if C is proper, i.e. if RHom(A, B) € Perf(k)



for all A, B € C¥. In the literature S is often defined only for proper C, but this restriction is
unnecessary.

In this level of generality, there is not much more to say. However, it is often the case that
C comes with a canonical self-duality on compact objects, i.e. a contravariant self-equivalence
Dean : C¥ = C¥ such that D%, = id (“biduality”). We can and do extend D,, to a continuous
contravariant endofunctor D¢,y : C — C, i.e. we declare that the value of D¢,, on any ind-system
colim; A; of compact objects is lim;D.a, A;; of course, this extended functor typically won’t be an
equivalence.

Given such a pair (C,Decan), we can extract a second contravariant endofunctor Deyx : C — C,
uniquely characterized by continuity together with the requirement that Dex(B) = (S 0 Dean)(B)
for compact B. Here “ex” stands for exotic, exceptional, extra, exciting. Then it is easy to see that
S = Dex 0 Dcan on compact objects, using biduality for Deay.

The functor Dey has its own good properties, and induces a duality on a distinguished subcat-
egory of C. Say an object A € C is admissible if RHom(B, A) € Perf(k) for all compact B. These
form a subcategory C*d™, stable under finite (co)limits. Note that C is proper iff C* C C2d™.

Proposition 2.1. Let (C,Dcan) be as above.
1. For compact A and arbitrary B, the formula

RHom(A,DexB) = RHom(Dcan A, B)*

holds.

2. The functor Dex is conservative on C.

3. An object A € C is admissible if and only if DoxA is admissible, and Doy restricts to a
contravariant self-equivalence C*d™ 5 C2M sqtisfying biduality.

4. For all A, B € C we have

RHom(A, D¢xB) = RHom(B, Dex A).

The formula in 1. is extremely useful. We call it the duality exchange formula. Note that this
formula can also be taken as the definition of Dey, using the adjoint functor theorem again. Note
also that 4. holds for arbitrary A, B.

Proof. 1. Both sides convert colimits in B into limits, so we can assume B is compact. Then

RHom(A, DexB) = RHom(A, S(DcanB))
= RHom(Dean B, A)*
= RHom(Dea A, B)*

where in the first line we used that D¢y = S 0 Dean on compacts, in the second line we used the
defining equation of the Serre functor, and in the the third line we used the duality and involutivity
of D¢an on compacts.

2. Immediate from 1., using the involutivity of D.,;, on compacts together with the conservativity
of (=)* on D(k).

3. If Doy A is admissible, then RHom (B, DexA) = RHom(Dcan B, A)* is perfect for all compact
B, so RHom(D,.n B, A) is already perfect. Therefore A is admissible by involutivity of D¢ay on
compacts. The other claims are also easy consequences of the duality exchange formula.



4. Both sides define continuous contravariant functors C x C — D(k), so we can assume A, B are
both compact. Then

RHom(A, Doy B) = RHom(Dean A, B)*
= RHom(D.n B, A)*
= RHom(B, D A)

where in the first and third lines we used duality exchange, and in the second line we used the
duality and involutivity of D¢,, on compacts. O

So much for general formalism. The fun is in the examples.

Exercise 2.2. i. Check that RHom(S(A), S(B)) = RHom(A, B) if B is compact and admissible.
ii. Check that if C,D are categories with Serre functors and F' : C — D is fully faithful and
continuous with continuous right adjoint F'%, then S¢ = FFo SP o F.

2.2 The locally rigid case

Keep the setup as in the previous section. Suppose now that C is also presentably symmetric
monoidal and locally rigid [Ram24]. Then compact objects of C are dualizable with compact duals,
so we indeed have a canonical duality D¢, in the picture: on compact objects it is the functor
sending A to AY. Therefore the above paradigm applies, and we get an exotic duality functor Dey.

Proposition 2.3. In this situation, S(A® B) = A® S(B) for all A,B € C. In particular, S(A) =
A®S(1e).

Proof. Both sides commute with colimits in A and B, so we can assume A and B are compact,
whence also A ® B is compact. Then for any compact C, we compute

RHom(C, S(A® B)) = RHom
= RHom
= RHom
= RHom

A® B,C)*
B,AY ® C)*
AV ®C,S(B))
C,A® S(B)).

I~ A~~~

Here we used the defining equation of the Serre functor twice, the dualiziblity of compact objects,
the preservation of compactness under tensor product, and the fact that A® — is both left and right
adjoint to AY ® —. O

If 1¢ is compact, i.e. if C is rigid [GR17], then S(1¢) = Dex1c represents the functor A —
RHom(1c, A)*. In the general locally rigid setting, S(1¢) represents the unique continuous functor
extension of the functor

c¥ — D(k)
A+ RHom(1c, A)*

from compact objects.
Precomposing with D¢,,, we get that

DeX(_) = Dcan(_) ® S(lc)



on compact objects. By general nonsense, this induces a canonical map
Dcan(—) ® S(1c) = Dex(—)

on all objects, which is typically not an isomorphism. In a few exceptional situations discussed
below, this map is an isomorphism on (some!) non-compact objects.

2.3 Quasicoherent sheaves

Let X be a QCA (derived) algebraic stack over Speck.! Assume that chark = 0, or that X is
eventually coconnective and all stabilizers at geometric points are linearly reductive. By Drinfeld-
Gaitsgory in the first case, and a folklore argument in the second case, the compact objects in
QCoh(X) are exactly the perfect complexes. If QCoh(X) is compactly generated, i.e. X has enough
perfect complexes, i.e. X is perfect, then QCoh(X) falls into the paradigm above, with compact
objects Perf(X) and monoidal unit Ox. Here of course D,y is just the internal hom towards Ox.
But Dgy is much weirder, and its behavior varies a lot depending on the specific nature of X.
Let us look at some examples.

Example 2.4. Let X be a smooth projective k-scheme. Then S(Ox) = wx = QU™X [dim X] is the
normalized dualizing sheaf, S(A) = A ® wx for all A, and

Dch - DcanA ® wx

for all A € QCoh(X). This is the most classical situation in which “Serre functors” were originally
studied. In this situation, Dey isn’t anything new: it is just normalized Grothendieck-Serre duality,
i.e. internal hom towards wx.

Now let X be any projective k-scheme. Then S(Ox) = wx is still the normalized dualizing
complex, and S(A) = A ® wx for all A, but without further conditions the equation

Dch - DcanA X wx

is only valid for A € Perf(X): for instance, if X is not Gorenstein, then wx is not a compact object
in QCoh, and the right-hand expression need not be a continuous functor of A.

Exercise 2.5. For X a projective k-scheme, check that the following conditions are equivalent.
i. X is Gorenstein.
ii. wx has finite tor-amplitude.
iii. wx is a perfect complex.
iv. The equation DexA = Dean A ® wx remains valid for all A € Coh(X).

As another example, let X = SpecR an affine k-scheme. For M an R-module with associated
sheaf M € QCoh(X), Dex(M) is the quasicoherent sheaf associated with the R-module Homy (M, k).
Note that we are really taking k-linear maps, so this is a pretty disgusting module unless M is very
small. For affine schemes, there’s not much more to say.

Now we turn to stacks, where things are much more interesting. We begin by recording some
stability properties for exotic duals and admissible quasicoherent sheaves.

1For us, QCA means “quasicompact with affine diagonal”. This is slightly more restrictive than the meaning in
Drinfeld-Gaitsgory, so all their theorems apply.



Proposition 2.6. Let f : X =Y be any map of perfect QCA stacks.

i. The pushfoward f, preserves QCohadm, and Dex f« = f«Dex on all sheaves.

ii. If f is schematic, proper and quasismooth, f* preserves QCoh®™ and Dex commutes with
f* up to an explicit invertible twist.

Proof. Since f* preserves perfect complexes, preservation of admissibility under f, is formal. More-
over, for any F € QCoh(X) and G € Perf(Y'), we compute

RHom(G, Dex f+ F) = RHom(DcanG, foF)”
= RHom(f*"Dcang, F)"
= RHom(Dcan f*G, F)*
= RHom(f*G, DexF)
= RHom(G, f«DexF)

where we used the duality exchange formula in the first and fourth lines, along with basic adjunctions
and the commutation of f* with Dcay. Since G is arbitrary, this gives i. by Yoneda. For ii. one
argues similarly, noting that under the stated conditions on f, f, preserves perfect complexes,
commutes up to twist with canonical duality, and is left adjoint to an invertible twist of f*. O

With this in hand, we can prove a very general t-boundedness result for Dex. Note that the
analogue of this result fails for D¢y, in general.

Theorem 2.7. Let X be a perfect QCA stack which is eventually coconnective. Then Dey is t-
bounded: there are integers a,b such that DexF € QCoh@Y(X) for all F € QCoh” (X).

Proof. Let f:U — X be a smooth cover by an eventually coconnective derived affine scheme, and
let f, : U, — X be the Cech nerve of f. Note that all U, are affine and eventually coconnective.
By a trivial computation, the theorem holds with any U,, in place of X.

Now, the sheaf f,Op is a descendable algebra object in QCoh(X) by [HM26, Proposition 2.7.8].
In particular, Ox can be obtained from the objects (f.Oy)®" = f,.Op, by finitely many shifts,
cones and retracts. Tensoring with any F and using a trivial projection formula, this shows that
F € QCoh(X) can be obtained from f,. f:F by finitely many shifts, cones and retracts in a manner
which is independent of F. Dualizing, we see likewise that D¢ F can be obtained from finitely
many of Dex fn« f¥F in a manner which is independent of . Now Dex frs fiF = fnsDexfiF by
Proposition 2.6.1, so to conclude it suffices to see that the functor f,.Dexf;— is t-bounded for every
n. We then observe the following:

i. f¥ is t-exact since f, is smooth;

ii. Dex is t-bounded on QCoh(U,,) since U, is affine and eventually coconnective;

iil. fn« is t-bounded by [DG13, Corollary 1.4.5].
Putting these results together, we see that f,.Dexf,— is t-bounded for every n, as desired. [l

For most applications, it suffices to consider quotient stacks of the form X = (SpecA)/G where
A is a finite type classical k-algebra and G is linearly reductive. We restrict ourselves to this case
for the moment. It is well-known that for such stacks, QCoh(X) is compactly generated, with an
explicit set of compact generators given by vector bundles of the form A ® V as V varies over
irreducible representations of G. In this case we get a much stronger form of t-boundedness.

Theorem 2.8. For a quotient stack X = (SpecA)/G as above, Doy is t-anti-exact for the standard

t-structure on QCoh. More precisely, if A € QCoh[a’b] (X) then Dex A € QCoh[fb’fa] (X). Moreover,
D..Ox is an injective object in QCoh(X)Y.



Proof. Consider the natural map 7 : Spec(A)/G — BG. For any irreducible representation V of G,
let 7*V be the associated vector bundle on X. Then the collection of functors

QCoh(X) — D(k)
F s RI(X, F@1*V)

is a t-exact conservative family as V varies over Irr(G). On the other hand, it is clear from the
definitions that
RI'(X,DexF @ V) = R['(X, F@ n*V¥)*

for all V, which easily gives the result since (—)* : D(k) — D(k) is t-anti-exact.
The final injectivity claim is clear, since the argument so far shows that

Hom(—,DexOx) = H°(RT(X, —))*
is an exact functor on QCoh(X)". O

Proposition 2.9. Suppose X = (SpecA)/G is as above, and that A® is an Artinian k-algebra.
Then QCoh(X) is proper, and every irreducible G-representation appears in the coordinate ring A
with finite multiplicity.

One can check that A® is Artinian iff G has finitely many closed orbits on SpecA after base
change to an algebraic closure of k, using the fact that X — SpecA® is a good moduli space.

Proof. To see that QCoh(X) is proper, it suffices to show that RI'(X,F) € Perf(k) for all F €
Perf(X). Let f : X — Spec A9 be the GIT quotient map. According to Alper, this is a good
moduli space, so f,. is exact and preserves coherence. Then for any F € Perf(X) we may write

RT(X,F) = RT(SpecA®, f.F),

and by result recalled in the previous sentence f.F is a bounded complex whose cohomologies are
finitely generated A“-modules. It therefore suffices to see that A® has finite length as a k-vector
space. For this, note that A“ is Artinian by assumption, and moreover it is a finitely generated
k-algebra (by the linear reductivity assumption), so it necessarily has finite length as a k-vector
space.

For the final claim, let @ : X — BG be the canonical map. For V any irreducible G-
representation, it is clear by unwinding definitions that the multiplicity of V in A is given by

dimgHomg (V, A) = dimy (A ® V*)¢ = dim, H(X, 7* V™),
and this HY is a finite-dimensional k-vector space by the first part of the proof. O

Under some further conditions, we can describe S(Ox) = DeOx explicitly for such quo-
tient stacks. For simplicity we restrict to k algebraically closed and consider quotient stacks
X = (SpecA)/G as above satisfying any of the following equivalent conditions:

i. A% is an Artinian local k-algebra.

ii. G has a unique closed orbit on Spec(A).

iii. There is a presentation X = (SpecB)/H where H is linearly reductive and has a unique
closed orbit on Spec(B) which is moreover a single point z.

The equivalence of i. and ii. follows from the theory of good moduli spaces, and the equivalence
of ii. and iii. is a consequence of Luna’s etale slice theorem. We call a choice of presentation as in
iii. a good presentation.



Theorem 2.10. Let X = (SpecA)/G be a good presentation of a quotient stack as above. Let
x € SpecA be the singleton closed orbit, with m C A the associated maximal ideal. Let E =
colim,Homy (A/m"™ k) be the injective hull of the residue field A/m, with its natural structure as a
G-equivariant A-module. Then S(Ox) = E is the associated quasicoherent sheaf.

When A is Gorenstein at m, we can rewrite this in a really pleasant way: letting j : X° — X
denote the complement of the unique closed orbit, S(Ox) is the unique nonzero cohomology sheaf
of the complex cone(Ox — 7.Ox-), and in fact

S(Ox) = cone(Ox — j.Oxo)[dimAy, — 1].

In the particular case where k is of characteristic zero, G is split reductive, and X = A/G is the
equivariant nilpotent cone, this formula for S(Ox) is due to Beraldo [Ber21b, Proposition 4.1.2],
who proved it by a direct computation. Our argument below recovers his result without any explicit
calculations at all.?

In the proof, we will need the following standard form of Matlis duality.

Lemma 2.11. Let (A,m,ka) be a Noetherian local ring containing a field k such that the residue
field ka is of finite degree over k. Then the A-module E := colim,Homy(A/m" k) is an injective
hull of the residue field ks. Moreover, Homy(N, k) = Homa (N, E) functorially in all finite length
A-modules M.

Now we begin the proof. Let E be as in the statement of the theorem, and let E be the associated
quasicoherent sheaf on X. By the defining property of DoxOx, we need to show that

RI(X, F)* = RHom(F, E)

for all F € Perf(X). Switching to equivariant A-modules, we need to prove the equivalent statement
that
RHomy, (N9 k) = RHom4(N, E)¢

for all N € Perf(X) = Perf(A)B%. Note that by linear reductivity of G, we can rewrite the left side
here as RHomy, (N, k)¢. If the total cohomology of N has finite length as an A-module, the desired
result is clear because then N is automatically supported at the unique closed orbit and

RHomy (N, k) = RHomy (N, E)

before taking G-invariants, by the result on Matlis duality recalled above.
Now the key trick is as follows. The ideal m C A is G-stable, so all quotients A/m™ are G-
equivariant. We claim that for any fixed N,

RHomy (N, k)¢ = RHomy(N @ A/m"™, k)¢
for all n > 0, and also that
RHom (N, E)Y = RHom, (N @ A/m"™, E)¢

for all n > 0. Since the total cohomology of N ® A/m"™ has finite length as an A-module for every
n, this reduces us to the trivial case established in the previous paragraph.

2We “only” need that the nilpotent cone is affine and Gorenstein, with a closed point as the unique closed orbit.
The Gorenstein property at least is not trivial.
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It remains to verify this claim. Since Perf(A)P¢ is generated under finite colimits and retracts by
objects of the form V' ® A with V' an irreducible G-representation, we can assume N is of this form
and in degree zero. Then for the first part of the claim, we need to see that RHomy(V @m™, k)¢ =0
for all n > 0. This is equivalent to RHomg (V*, m™) = 0 for all n > 0. But now we win: as proved
earlier, the assumptions on the G-action guarantee that any irreducible G-representation appears
in A with finite multiplicity. Moreover, since G is linearly reductive, we have that A ~ m"™ & A/m"
as G-representations. Using that A is m-adically separated, we deduce that any given irreducible
G-representation does not occur in m” for all sufficiently large n. This gives the desired vanishing
for the first part of the claim. The second part is similar, using Matlis duality to show that any
given irreducible G-representation does not occur in Homy(m”, E) = E/FE[m"] for all large enough
n. The point here is that

E = colim, F[m"]
= colim,Homy (A/m" E)
= colim, Homy (A/m", k)

using Matlis duality again, so the multiplicity of any irreducible representation V' in E equals the
multiplicity of V* in A and thus is finite, and all maps from V into E automatically factor over
E[m"] for all sufficiently large n.

Corollary 2.12. Keep the assumptions of Theorem 2.10, and assume moreover that X is Goren-
stein. Then the equation

DexA = Dean A ® S(Ox)
remains valid for all A € Coh(X).

Proof. For any A € Coh(X) and any large n, we can pick A, € Perf(X) and a map A4, — A
whose cone C), is in degrees < —n. Then both sides of the above equation will transform C), into
something in degrees > n — M for some M depending only on X. For the left-hand side this follows
from Theorem 2.8, and for the right-hand side it follows from the fact that D.,, has uniformly
bounded t-amplitude for Gorenstein stacks, together with the observation that S(Ox) has bounded
tor-dimension, which (again using the Gorenstein condition) is an immediate consequence of the
formula

S(Ox) = cone(Ox — j.Oxo)[dimAy — 1]

recorded earlier. Since both sides of the equation match on A,, they match on A in all degrees
>n — M. Now take n — oo. O

2.4 Ind-coherent sheaves

Fix k of characteristic zero, and let X be a QCA algebraic stack over k. Besides QCoh, we have
another sheaf theory which is better behaved in many ways, namely Gaitsgory’s category IndCoh
of ind-coherent sheaves. Recall that IndCoh(X) comes with its own symmetric monoidal structure
denoted ®', for which the monoidal unit is the dualizing complex wx. It is not rigid symmetric
monoidal in general. It also comes with functors fmdCeh and f'dCeh for £ X — ¥ any morphism
of QCA stacks, which satisfy the abstract properties of a lower-! and upper-* in Mann’s language
of six functor formalisms. There is also a continuous functor ¥ : IndCoh(X) — QCoh(X) which
is the obvious embedding on Coh(X), and which intertwines fI"4¢°" with the usual QCoh push-

foward f.. This gives rise to a (continuous) functor of global sections by setting RI'4Coh (X F) :=
RD(X,UF) € D(k).
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For general prestacks this category still exists and is defined by a descent procedure, but for QCA
stacks Drinfeld-Gaitsgory proved that IndCoh(X) is compactly generated with compact generators
Coh(X), so the formula IndCoh = Ind(Coh) is literally true. Moreover, there is a canonical involutive
duality on Coh(X ), namely Grothendieck-Serre duality which we denote Dgs. Therefore the whole
paradigm of Section 2.1 applies and we get a Serre functor and an exotic duality, which in this case
we call admissible duality and denote D,qy,. Of course the duality exchange formula still applies,
and in this new notation it reads RHom(F, DyamG) = RHom(DgsF, G)* for all F € Coh(X) and
G € IndCoh(X). We write Adm(X) C IndCoh(X) for the subcategory of admissible ind-coherent
sheaves.

Admissible duality satisfies another clean formula in this setting, which can also be taken as its
definition: we have

RHom(F, DagmG) = RN (X F @' G)*

for all ind-coherent sheaves F,G. After a trivial reduction to the case where F is coherent, this is
a consequence of duality exchange plus the formula

RHom(DgsF,G) = R (X F &' G)

which is [DG13, Proposition 4.4.4].
As usual, the category Adm(X) is hard to describe, beyond the tautological fact that if IndCoh(X)
is proper then Coh(X) C Adm(X).

Exercise 2.13. i. Let X be a separated (classical) k-scheme of finite type. Prove that IndCoh(X)
is proper if and only if X is smooth and proper over k.

ii. Let X = A/G be the equivariant nilpotent cone associated with a split reductive G/k. Prove
that IndCoh(X) is not proper.

We also record some basic functorialities; the proofs are formal manipulations and we omit them.

Proposition 2.14. Let f : X — Y be any map of QCA stacks.
1. If f is eventually coconnective, the pushfoward fI*4€oN preserves Adm, and if f is Gorenstein
then Doqm commutes with fIndCOh up to an invertible twist.

¥
fHmdCob yyreserves Adm and Dagm commutes with f

2. If f is schematic and proper, !IndCoh

Under further conditions on X, we can say a lot more. Recall that if X is eventually coconnective,
the functor ¥ has a fully faithful left adjoint Z : QCoh(X) — IndCoh(X). If X is perfect, this is just
the ind-completion of the tautological functor Perf(X) — Coh(X). If X is also Gorenstein (which is
stronger than being eventually coconnective, and holds in most applications), we can compare the
dualities on QCoh and IndCoh. To avoid confusion, we will write Dy, for the canonical self-duality
on Perf(X) used in Section 2.3, and ng(fsh for the associated exotic duality on QCoh(X) which we
discussed at length in that section.

QCohpy o

adm

Proposition 2.15. If X is a QCA stack which is eventually coconnective and perfect, then D
\I/ (DadmwX ) .

If moreover X is Gorenstein, then

UD, g F = wyx @ DMy F

adm

for all F € IndCoh(X). Moreover, U sends admissible ind-coherent sheaves towards admissible
quasicoherent sheaves.

12



Note that if X is Gorenstein, wx is perfect, and in fact invertible.

Proof. The first part follows formally from the general nonsense identity SQCN = ¥ o §IndCoh o =
by evaluating it on Ox.
For the second part, pick any G € Perf(X). It is easy to see that

)

DGSEg = E(WX ® Dnvg)
== EDnv(g ® w;(l)v

using the invertibilty of wx in the second line. We then compute

RHom(G, ¥D,qmF) = RHom(ZG, Daqm F)

= RHomEDgsug F)*

= RHom(Z(D nv(g®wx ) F)*

= RHom(D,y (G ® wy'), UF)*

= RHom(G ® wx!, DM W F)
(

adm

— RHom(G,wx ® DMy F)

adm

where we used duality exchange several times, along with the invertibility of wx and various ad-
junctions. Since G is arbitrary, the desired formula now follows by Yoneda.
The final claim is clear by the Z/¥ adjunction and the inclusion Z(Perf) C Coh. O

This formula is especially useful in combination with the following surprising theorem, which is
proved in [HM26].

Theorem 2.16. Let X be a Gorenstein QCA stack. Then for any F € Coh(X), DaamF lies in the
essential image of =.

Since = is fully faithful, this is equivalent the claim that the counit induces a natural isomorphism
EUD.qmF = DaamF for any coherent 7. Combining this with the previous theorem, we can rewrite
D.awm F further as

Dadm]: == (WX ® DQCOh\If]:) .

adm

In many cases of interest, F arises as an explicit pushfoward from a much smaller stack. Since ¥
and DSCOh interact very cleanly with pushfowards, this often reduces the computation of D,gqyF
to a manageable computation on an auxiliary stack.

The preceding theorem looks extremely weird on first glance. Let us discuss a simple but already
very nontrivial example. Consider the stack

= (Speck[z,y|/(xy))/Gm

where t € G, acts as t - (x,y) = (x,ty). There is a natural map « : X — A! = Speck|[z] which
is a good moduli space. The fiber at any closed point away from 0 is just a BG,,, while the fiber

at 0 is a closed substack Z = A'/G,, <y X. We will sketch a computational proof that for any
F € Coh(X) which is also admissible, D,qnF lies in the image of =.3

3This was our original form of Theorem 2.16, which we discovered experimentally after looking at exactly this
example. Sam Raskin suggested to us later that admissibility is not actually needed.
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It is easy to see that if F € Coh(X) is admissible, then F is supported on finitely many closed
fibers of the map a. The summands supported on the fibers away from 0 are uninteresting since
those fibers are smooth, so we restrict our attention to the subcategory Coh(X)z of objects set-
theoretically supported on the interesting fiber. By a direct calculation, first done independently
by Bertoloni Meli and Koshikawa, one can show that all objects of Coh(X)z are admissible. This
is not obvious because the stack X is singular! Nevertheless, it is true. Moreover, with some effort
one can show that the kernel of ¥ : IndCoh(X) — QCoh(X) is freely generated by a single sheaf
F 7T, which moreover is its own admissible dual up to a shift.*

Now take any F € Coh(X)z. The theorem claims that D,g,, F € im=. Since the kernel of ¥
is freely generated by F T, this claim is equivalent to the statement that RHom(D,quF, F ) = 0.
Now, using the fact that F* = DaqmF T[m] for some (irrelevant) m, we can rewrite this RHom as
RHom(FT,D?, F[m]). But F is admissible, so biduality lets us rewrite this as RHom(F T, F[m]).

adm
But now we win, since

RHOIn(fl, ]:2) = RHOHI(‘I’]‘H, \I/]:g)
for all /1 € IndCoh and all 75 € Coh, so

RHom(F", F[m]) = RHom(VF+, U F[m])
=0

because WFT = 0.
Pushing these ideas further, we compute the Serre functor on all of IndCoh.

Theorem 2.17. Let X be a QCA stack which is Gorenstein and perfect. Then the Serre functor
on IndCoh(X) is given explicitly as Z(¥(—) ® D?d(i(:h(’)x).
If moreover X is quasismooth and V C Sing(X) is any closed conical subset, the Serre functor

QCOhOX).

adm

on IndCohy (X) is given explicitly as Zo—v (Py_o(—) @D
Proof. Since S™d¢°h = D, 4, Dgs on Coh(X), Theorem 2.16 shows that

SIndCoh _ ':\IJSIndCOh

after restricting to Coh(X), and then also on IndCoh(X) = Ind(Coh(X)) since all functors are
compatible with filtered colimits. Now for any F € Coh(X) we can rewrite

USMACR F — WD, amDasF
=—wx ® DQCOh\I/DGSJT

adm

=wx @ DNy @ D, UF)

adm

_ 1yQCoh
=D "Dy O F
where the second line follows from Proposition 2.15 and the final line follows from the invertibility of
wx. Now, this final composite has uniformly bounded t-amplitude as a functor Coh — QCoh, using
the Gorenstein condition to control the amplitude of D, and Theorem 2.7 to control the amplitude

of D?d(igh. This calculation shows that S™dCeh carries Coh=" into IndCoh="*" for some fixed N,

4There are some obvious coherent sheaves £, € Coh(X)QZQ arising from the usual weight n line bundle on Z.
These come with canonical injective maps L, < L,_1, and less obviously there are also canonical nonzero maps
Ln — Ln4+1[2] in the derived category. The sheaf F7T is defined as “colim”;_, oo £;[2i]. It is immediate from this
definition that WF+ = 0.
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s0 passing to colimits and taking n — —oo we see that S™4Ch takes IndCoh=""" into IndCoh=""°,

But we already proved that it takes values in QCoh C IndCoh, and QCoh N IndCohS"% = 0, so
G§mdCoh ginihilates IndCoh=~°°. Said differently, §dCoh — §IndCoh={ 5 combining this with the
first inset equation we get

SIndCoh — E\PSIndCOhE\P
= =50y

QCoh

where the second line is general nonsense. Since SN (—) = (-)@ D2

The final part is formal, by writing

Ox, this gives the result.

IndCoh IndCoh—
SOV = WLy ST By Lan

= Coh =

= Vi v Zoman S oy 0=y San
= Coh

= :‘OHVSQ Wy

where the first and third lines are straightforward, and the second line follows from the first part of
the theorem. |

Example 2.18. Suppose k is algebraically closed with G/k split reductive. In [Ber21b, Theorem
4.3.11], Beraldo computed the Serre functor of the spectral derived Satake category IndCoh /(0 xﬁ‘
0/G). Through hard effort, he showed that it is Zg_xr ¢V ar/G—o[—dimG]. From our perspective

this is nearly trivial, and the only thing one needs to actually compute is DQCOhO x where X =
0 ><g 0. But it is straightforward to see that DE"Ox = Ox[-dimG]: this is an immediate

adm

consequence of the fact that RHomy(O(X), k) = O(X)[—dimG]

Note that for X QCA perfect and eventually coconnective, DQCOhOX = U(Daamwx) as noted

adm QCoh
o
Ox

i . As discussed in the

earlier, and if X is also Gorenstein then additionally Daygmwx = ZD
introduction, this puts the sheaf

6X — SQCOh(OX) _ SIndCOh(OX) — DadmwX
at center stage. For affine quotient stacks, one can compute all the !-stalks of this sheaf.

Theorem 2.19. Assume k is algebraically closed, and consider a quotient stack X = (SpecA)/G
where A is a classical finite type k-algebra and G is linearly reductive. Let x € X be any k-point,
with residual gerbe i, : BG, — X. Then

1ndCoh Opg, if xis closed
X =0 0ot
if no

Proof. For brevity we erte it = ¢"mdCoh Tet ¥ be the scheme-theoretic closure of z in X. We
can factor iz as BG, ENNS —> X where j is an open immersion and 7 is a closed immersion. Then
i', = j*i' by construction, so then
Z;(SX = j*i!DadmwX
= j*Dadmi!wX
= j*DadeV
=j"ov
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where in the second line we used the commutation of admissible duality with !-pullback along proper
morphisms stated above. If x is a closed point, then j is the identity morphism and it is easy to
calculate that d gy = Oppy for any linearly reductive H. This gives the claim when z is closed. If x is
not closed, V is a quotient stack satisfying the conditions of Theorem 2.10, so Jy is set-theoretically
supported at the closed orbit of V', which is disjoint from x. Therefore j*dy = 0 as claimed. O

It is not hard to extend the previous theorem to any classical QCA stack admitting a good
moduli space. This applies in particular to the stack LS of G-local systems on a projective curve.
Comparing the previous result to [Ber2la, Theorem D’] strongly suggests some direct relationship
between Beraldo’s Steinberg sheaf Sty [Ber21a] and the sheaf drs,,. It would be very interesting to
understand this more explicitly.
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