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Warning

These are (no longer) private notes written by DH in October 2020, lightly edited and posted publicly
in April 2022 at the request of V. Drinfeld. The main content of these notes is an alternative proof
of the main theorem in the paper [HS], namely the existence of a relative perverse t-structure, at
least in the case of torsion coefficients. See Theorem 0.13 below. The results proved in [HS] are
more general, but the strategy here is rather different and much more classical. All errors and
misconceptions here are the sole responsibility of DH.

Setup

We say a scheme S is nice if it is excellent, Noetherian and finite-dimensional. Any such scheme
admits a dimension function δS : |S| → Z Zariski-locally, and globally under some mild conditions.
In particular:

• If S is normal (e.g. regular), then s 7→ −dimOS,s is a dimension function.

• If all irreducible components of S are equicodimensional, then s 7→ dim {s} is a dimension
function. This holds e.g. for schemes of finite type over Z, over a field, or over a K-affinoid
ring.

To avoid certain circumlocutions, we will say that a nice scheme S is really nice if it admits a
dimension function and every connected component of S is irreducible. The normalization of any
nice scheme is really nice, and every nice scheme admits a really nice dense open subscheme: the
image of the normal locus or the regular locus in Sred does the job.

If S is a nice scheme equipped with a dimension function δS , any locally finite type S-scheme
f : X → S inherits a canonical dimension function from δS by setting

δ(x) = δS(f(x)) + tr.deg k(x)/k(f(x)).

We also think of these as functions on geometric points x lying over points x ∈ X in the obvious
way.

Set Λ = Z/nZ for some n invertible on S. Unless noted otherwise, all derived categories will
be derived categories of étale sheaves of Λ-modules, and we write D(X) := D(Xét,Λ) for any
scheme X , similarly for decorated versions etc.1 For any pair (S, δS) with S nice, the results

1Essentially all statements and proofs below also hold with Qℓ-coefficients on nice schemes, with only minor
changes. The most significant point is that one must decide on the “correct” definition of universal local acyclicity
for objects in Db

c(X,Qℓ), such that all the usual properties of ULA sheaves still hold. The correct definition seems
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in [ILO] give a dualizing complex ωS ∈ Db
ctf(S) uniquely determined by the requirement that

RΓ{s}(Ss, ωS) ≃ Λ[2δS(s)](δS(s)) for all geometric points s lying over all points s ∈ S, Ss denoting

strict Henselization. Similarly for any finite type X/S, with ωX = Rf !ωS as usual.
For S nice and equipped with a dimension function, any finite type X/S gets a natural perverse

t-structure on D(X) by defining pD≤0(X) as the full subcategory of objects such that Hi(Fx) = 0
for all i > −δ(x) and all x→ X . The truncation functors for this t-structure preserve Db

c(X), and
on Db

c the perverse t-structure is self-dual for DX := RH om(−, ωX). 2 If S = Spec k is a field and
δS ≡ 0 then this is the classical (middle-)perverse t-structure as considered in [BBDG], which we
notate pD≤0(X); we will only use this notation for schemes of finite type over a field.

Main results

Here is the central definition.

Definition 0.1. For any scheme S and any finite type morphism f : X → S, define p/SD≤0(X) as
the full subcategory of D(X) spanned by objects F such that F|Xs ∈

pD≤0(Xs) for all geometric
points s→ S.

This definition is unchanged by instead taking fibers over all algebraic geometric points s =
Spec k(s) → S, or over all separable closures ssep → S of points s ∈ S, or just over all points
Spec k(s) → S. It is clear that p/SD≤0(X) is preserved under extensions and (after upgrading
to derived ∞-categories) under filtered colimits, and is set-theoretically reasonable, so p/SD≤0(X)
defines the connective part of a t-structure on D(X) by [Lur16, Proposition 1.4.4.11]. We denote
the coconnective part by p/SD≥0(X), and we call this the relative perverse t-structure on X / on
D(X) (relative to S). We write p/Sτ≤n and p/Sτ≥n for the truncation functors for this t-structure.

This t-structure interpolates between two well-known cases: if f : X → X is the identity map
it reduces to the standard t-structure on D(X), while if S = Spec k is a point it gives the usual
perverse t-structure on D(X). We first establish some easy formal properties, which hold over any
base scheme S.

Lemma 0.2. Let f : X → S be a finite type map of arbitrary schemes.
1. Let j : U → X resp. i : Z → X be an étale map (resp. a finite map). Then we have the

following t-exactness properties with respect to the relative perverse t-structures: i∗ and j! are right
t-exact, i∗ and j∗ are t-exact, and Rj∗ and Ri! are left t-exact.

2. Let U
j
→ X

i
← Z be an open-closed decomposition. Then the relative perverse t-structure on

D(X) is glued by recollement from the relative perverse t-structures on D(U) and D(Z).
3. If g : S → S′ is a monomorphism or a quasifinite morphism, then p/SD≤0(X) = p/S′

D≤0(X),
and similarly on coconnective parts.

4. If g : T → S is any morphism, with base change g̃ : XT → X, then g̃∗ is right t-exact and
Rg̃∗ is left t-exact.

We will freely use these results without comment.

to be that an object F ∈ Db
c(X,Qℓ) is f -ULA (for f a finite type morphism of nice schemes) if it is dualizable in

the category CS,Qℓ
, in the notation and terminology of [LZ20]. Crucially, Deligne’s generic ULA theorem still holds

with this definition. (Sketch. The map α : DX/SF ⊠S F → RH om(pr∗
1
F , Rpr!

2
F) is an isomorphism over all generic

points of S by regular base change and some standard Kunneth formulas (ILO, SGA5), and the source and target of
α are bounded and constructible, so then α is an isomorphism over a dense open subset of S.)

2Note that the perverse t-structure on D(X) depends on the chosen dimension function for S; however, a different
choice of dimension function will only change this t-structure by a shift which is locally constant on S.
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Proof. 1. The right t-exactness of i∗, i∗, j! and j∗ is trivial, and the remaining claims follow formally
by adjunction: i∗ and j∗ are also left t-exact because they have right t-exact left adjoints, and then
Rj∗ and Ri! are left t-exact by the same reasoning.

2. By part 1., j!j
∗ carries p/SD≤0(X) into itself, i.e. is right t-exact, so Proposition 1.4.12

in [BBDG] shows that the relative perverse t-structure on X is obtained by gluing from suitable
t-structures on D(U) and D(Z). Moreover, the proof of that proposition identifies the left halves of
these t-structures with j∗p/SD≤0(X) and i∗p/SD≤0(X). These are full subcategories of p/SD≤0(U)
and p/SD≤0(Z), and an easy exercise (using part 1.) shows that they actually give everything in
the latter left halves.

3. A geometric fiber of g ◦ f is a finite disjoint union of geometric fibers of f .
4. The fact that g̃∗ carries p/SD≤0(X) into p/TD≤0(XT ) is clear from the definitions, and then

the left t-exactness of Rg̃∗ follows by adjunction.

The next order of business is to check that for any finite type map of nice schemes f : X → S,
the relative perverse truncation functors preserve bounded constructible complexes.

Proposition 0.3. Let S be a Noetherian scheme and let f : X → S be any finite type morphism.
Then the function

p : X → Z

x 7→ −tr.degk(x)/k(f(x))

is a weak perversity function in the sense of [G]. Moreover, if S is universally catenary, the conditions
of [G, Theorem 8.2] hold: for all x ∈ X, there is a dense open subset U ⊂ {x} such that

p(y) ≤ p(x) + 2codim({y}, {x})

for all y ∈ U .

Recall that for a Noetherian scheme X , a function p : X → Z is a weak perversity function if for
every x ∈ X and every m ∈ Z, p(y) ≥ min(p(x),m) for all y in some nonempty open U ⊂ {x}. Any
such function defines a t-structure on D(X) by the results in [G]. By definition, the relative perverse
t-structure is the t-structure associated with the weak perversity function x 7→ −tr.degk(x)/k(f(x)).

Proof. Fix a point x ∈ X with scheme-theoretic closure {x}. Let Z ⊂ S be the scheme-theoretic
closure of x in S, so {x} → Z is a finite type map of integral Noetherian schemes with scheme-
theoretically dense image. By Chevalley’s theorem and generic flatness, there is a dense open V ⊂ Z
such that U = {x} ×Z V → V is flat and surjective. Note that U is a dense open subscheme of {x}
and that x resp. f(x) is the generic point of the integral scheme U resp. V . I claim that for all y ∈ U ,
p(y) ≥ p(x) and that if additionally S is universally catenary then also p(y) ≤ p(x)+2codim({y}, U).
Since U is dense in {x} and codim({y}, U) = codim({y}, {x}), these inequalities imply the desired
results.

Rephrasing slightly, we need to show that if f : Y → T is a flat surjective finite type map of
integral Noetherian schemes, then for any point y ∈ Y we have an inequality

tr.degk(y)/k(f(y)) ≤ tr.degk(η)/k(f(η)),

and if T is universally catenary then also

tr.degk(η)/k(f(η)) ≤ tr.degk(y)/k(f(y)) + 2codim({y}, Y ).
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Here η ∈ Y denotes the generic point. Since f(η) is the generic point of T , the first inequality is
immediate from constancy of fiber dimensions for finite type flat maps of irreducible Noetherian
schemes. For the second inequality, note that equality holds for y = η, so it suffices to see that the
function

α(y) = tr.degk(y)/k(f(y)) + 2codim({y}, Y )

is non-decreasing under specializations in Y . This reduces immediately to the case of immediate spe-
cializations. If y  z is an immediate specialization in Y , then 2codim({z}, Y ) = 2codim({y}, Y )+2
by universal catenarity, so to conclude it’s enough to observe that

tr.degk(z)/k(f(z)) ≥ tr.degk(y)/k(f(y))− 1.

For this last statement, there are two cases:
• f(y) = f(z), in which case tr.deg drops by 1.
• f(y) f(z) is a nontrivial immediate specialization, in which case tr.deg does not change by

Nagata’s altitude formula.

Corollary 0.4. Let f : X → S be a finite type map of Noetherian schemes. Then p/SD≥0(X) is
stable under filtered colimits.

If moreover S is nice, the truncation functors p/Sτ≥n and p/Sτ≤n preserve Db
c(X).

Proof. The first claim is a general property of the coconnective part of the t-structure associated
with any weak perversity function.

For the second claim, we can work locally on S, so then S (and then also X) admits a dimension
function and a dualizing complex. The result is then immediate from the previous proposition and
[G, Theorem 8.2].

From now on, we assume unless stated otherwise that our base scheme S is nice, i.e. excellent
Noetherian finite dimensional.

If S is a nice scheme equipped with a dimension function δS , let dimS : |S| → Z be the locally
constant function sending any point s ∈ S to maxηδS(η), where η runs over the generic points
of the connected component of S containing s.3 This function is “stupid” unless S has irreducible
connected components, i.e. unless S is really nice. We will primarily use this function to renormalize
the perverse t-structure on finite type S-schemes X : the category pD≤0(X)[−dimS ], when it makes
sense, is independent of the choice of dimension function δS . In light of this, we will be somewhat
sloppy about notating the dependence of things on δS in what follows; this should cause no confusion.

Proposition 0.5. Let f : X → S be a finite type map of nice schemes. For any point s ∈ S, write
is : Xs = X ×S s→ X for the inclusion of the fiber over s.

1. Suppose that S is equipped with a dimension function. If η → S is the inclusion of a generic
point, then i∗η(−)[−δS(η)] : D

b
c(X) → Db

c(Xη) carries pD≥0(X) into pD≥0(Xη) and pD≤0(X) into
pD≤0(Xη), i.e. i∗η(−)[−δS(η)] is perverse t-exact. If S is really nice, then i∗η(−)[−dimS ] is perverse
t-exact for all generic points η ∈ S.

2. Let F ∈ Db
c(X) be any given object. Then there is a dense open really nice subscheme S′ ⊂ S

such that for all s ∈ S′, i∗s(−)[−dimS′ ] commutes with all perverse truncations of F|XS′ , i.e. such
that

i∗s(
pτ≥nF|XS′)[−dimS′ ] ∼= pτ≥n(i∗sF [−dimS′ ])

for all n ∈ Z.

3This function has nothing to do with the Krull dimension of S, unless the dimension function is the function
s 7→ dim {s}.
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This result has the following attractive and useful consequences, which we’ll use many times: if
f : X → S is a finite type morphism of nice schemes and F ∈ Db

c(X) is any given object, then
there is a dense open really nice subscheme S′ ⊂ S such that for every generic point η ∈ S, the
perverse cohomological amplitude of i∗ηF coincides with the perverse cohomological amplitude of

(F|XS′∩{η})[dimS′ ]4 and bounds the perverse cohomological amplitudes of i∗sF for all s ∈ S′ ∩ {η}.

I will call this (and very minor variants) the generic amplitude principle.

Proof. 1. is standard and left to the reader.
For 2., we can assume S is reduced. By Deligne’s generic ULA theorem, we can choose some

dense open regular subscheme S′ ⊂ S such that pHn(F|XS′) is ULA for the morphism XS′ → S′

for all n ∈ Z. This reduces us to showing that for any s ∈ S′, i∗s[−dimS′ ] is t-exact as a functor
from Db

c,f−ULA(XS′) to Db
c(Xs) where the source and target are equipped with the t-structures pD

resp. pD.5Factor is as Xs
u
→ XT

h
→ XS′ where T is the scheme-theoretic closure of s in S′ and

h is the base change of the closed immersion T → S′. Replacing S′ by the connected component
containing T and discarding a nowhere-dense closed subset of T , we can assume that T is regular
and irreducible, so T → S′ is a regular immersion of some pure codimension c. Note that T inherits
a dimension function from S′, and that dimT +c = dimS′ |T . By this numerology and part 1. applied
to u, we are reduced to proving that

h∗[−c] : Db
c(XS′)→ Db

c(XT )

is perverse t-exact on ULA objects. Using Gabber’s theorem on the cohomological dimension of affine
morphisms and induction on c, it is an easy exercise to check that Rh![c] is right perverse t-exact, and
hence by duality that h∗[−c] is left perverse t-exact. By Lemma 0.6 below, h∗G[−c]

∼
→ Rh!G[c](c)

for f -ULA objects G ∈ Db
c(XS′), so the desired t-exactness follows.

In the previous proof, we used the following crucial lemma, which is essentially due to Lu-Zheng.

Lemma 0.6. Let g : T → S be an immersion of regular Noetherian schemes of codimension c. Let
f : X → S be a locally finite type morphism, and let F ∈ Db(X,Λ) be a complex which is f -locally
acyclic. Then the Gysin map g̃∗F [−2c](−c)→ Rg̃!F is an isomorphism, where g̃ : XT → X is the
obvious pullback of g.

Proof. This follows from Remark 4.7 and Theorem 6.8 in [LZ19]. In particular, an examination of
the proof of [LZ19, Theorem 6.8] shows that the assumption of finite tor-dimension in loc. cit. is
unnecessary under the stated hypotheses.

Proposition 0.7. Let f : X → S be a finite type map of nice schemes, and suppose S is
equipped with a dimension function. Then p/SD≤0(X) ⊂ pD≤0(X)[−dimS ] and pD≥0(X)[−dimS ] ⊂
p/SD≥0(X).

Moreover, if S is regular there is an inclusion

pD≤0(X)[−dimS ] ∩D
b
c,f−ULA(X) ⊂ p/SD≤0(X).

4Use the fact that f(supp pHn(F)) ⊂ S is constructible for each n.
5This is a slight abuse of terminology, since the p-truncation functors don’t obviously preserve the ULA condition

(although we will prove later that this actually holds). Of course what we really mean is that i∗s [−dimS′ ] carries
Db

c,f−ULA
(XS′ ) ∩ pD≤n(XS′) into pD≤n(Xs), and likewise on coconnective parts.
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Proof. For the first claim, the second inclusion follows formally from the first by taking right or-
thogonals. Suppose F ∈ p/SD≤0(X) is given, so Hn(Fx) = 0 for all n > −tr.degk(x)/k(f(x)). Then
Hn(Fx[dimS ]) = 0 for all

n > −tr.degk(x)/k(f(x)) − dimS(f(x)).

Since

δ(x) = tr.degk(x)/k(f(x)) + δS(f(x))

≤ tr.degk(x)/k(f(x)) + dimS(f(x))

by the definition of dimS , we get that also Hn(Fx[dimS ]) = 0 for all n > −δ(x), so then F [dimS ] ∈
pD≤0(X) by definition.

The second claim follows by arguing as in the proof of part 2. of the previous proposition.

The next goal is Theorem 0.13, which gives a concrete description of the objects in p/SD≥0(X).
In preparation for this, we first show that generically on S, a given object in Db

c is contained in
p/SD≥0 if and only if its pullback to every geometric fiber of X → S lies in pD≥0. The next two
propositions make this statement precise.

Proposition 0.8. Let f : X → S be a finite type map of nice schemes, and let F ∈ Db
c(X) be

given. If F|Xs ∈
pD≥0(Xs) for all geometric points s→ S, there is a dense open S′ ⊂ S such that

F|XS′ ∈ p/SD≥0(XS′).

Proof. The assumption applied at the generic points of S together with the generic amplitude
principle implies that (F|XS′)[dimS′ ] ∈ pD≥0(XS′) for some dense open really nice S′ ⊂ S. The
result now follows from the previous proposition.

Proposition 0.9. Let f : X → S be a finite type map of nice schemes, and let F ∈ Db
c(X) ∩

p/SD≥0(X) be given. Then there is a dense open subset S′ ⊂ S such that F|Xs ∈
pD≥0(Xs) for all

geometric points s→ S′.

Proof. We can assume S reduced. By the generic amplitude principle, it’s enough to show that i∗ηF ∈
pD≥0(Xη) for all generic points η ∈ S. To verify this, it suffices to check that RH om(G, i∗ηF) ∈

D≥1(Xη) for all G ∈ pD≤−1(Xη) ∩D
b
c. We can assume that G is a shifted perverse sheaf, and then

(filtering G) that G is a shifted IC sheaf. By the definition of IC sheaves, any such G spreads out
to some G′ ∈ Db

c(XU ) over a small open neighborhood j : U → S of η. By the generic amplitude
principle and Deligne’s generic ULA theorem, we can assume (after possibly shrinking U further)
that U is regular and connected, G′ ∈ pD≤−1(XU )[−dimU ], and that G′ is ULA for the morphism
XU → U . By Proposition 0.7, this implies that G′ ∈ p/SD≤−1(XU ).

Since Xη → XU is a regular morphism, RH om(G, i∗ηF) is the pullback of RH om(G′,F|XU ),

so it’s enough to show that RH om(G′,F|XU ) ∈ D
≥1(XU ). Since G′ ∈ p/SD≤−1(XU ) and F|XU ∈

p/SD≥0(XU ), so this follows from the subsequent lemma.

Lemma 0.10. Let f : X → S be a finite type morphism of arbitrary schemes, and let G ∈
p/SD≤−1(X) and F ∈ p/SD≥0(X) be any objects. Then RH om(G,F) ∈ D≥1(X).

Proof. For any n ≥ 0 and any étale map j : U → X , we have

H−n(RΓ(U, j∗RH om(G,F))) = HomD(U)(j
∗G, j∗F [−n])

= HomD(U)(X,Y )
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for some X ∈ p/SD≤−1(U) and Y ∈ p/SD≥n(U), using that j∗ is relative perverse t-exact. Then
HomD(U)(X,Y ) = 0, and the result follows.

We now have the following result, which is the key technical ingredient in the characterization
of Db

c ∩
p/SD≥0 proved below.

Theorem 0.11. Let S be a nice scheme. Let f : X → S be a finite type map, and let F ∈ Db
c(X)

be any object. Then the following are equivalent.
1) There is a dense open S′ ⊂ S such that F|XS′ ∈ p/SD≥0(XS′).
2) There is a really nice dense open S′′ ⊂ S with S′′red normal such that F|XS′′ ∈ pD≥0(XS′′)[−dimS′′ ].
3) There is a dense open S′′′ ⊂ S such that F|Xs ∈

pD≥0(Xs) for all geometric points s→ S′′′.
Moreover, if any of these conditions holds, there is a dense open immersion j : U → S with closed

complement i : Z → S such that ĩ∗Rj̃∗j̃
∗F ∈ p/SD≥0(XZ), where ĩ : XZ → X and j̃ : XU → X are

the obvious base changes.

Note that the appropriate dense open subsets in 1)-3) and in the conclusion may differ. However,
the proof will show that in passing from 2) to 1) we can take S′ = S′′, and in passing to the
conclusion we can take U = S′′. The argument also shows that we can replace each of S′, S′′, S′′′,
or U with any dense open subset thereof without affecting the truth of 1), 2), 3), or the conclusion
(respectively). In particular, over the dense open S′′ ∩ S′′′, conditions 1)-3) and the conclusion all
hold simultaneously.

Proof. 2) implies 1). This is the first half of Proposition 0.7.
1) implies 3). This is Proposition 0.9.
3) implies 2). This is the generic amplitude principle, combined with the density of the normal

locus in Sred.
Finally, we prove that 2) implies the conclusion, with U = S′′ (or any dense open subset thereof).

First, we can assume S reduced. We can then replace S by its normalization; since this doesn’t
change U , the justification for this is an easier variant of the proper base change argument in the
next paragraph, and I omit it. We can now work one irreducible component of S at a time, so we
can assume that S is irreducible and admits a dimension function.

Next, let b : Š → S be the blowup of Z in S, so Š is irreducible and admits a dimension function,
and Ž = b−1(Z) ⊂ S̃ is an effective Cartier divisor. In particular, U = b−1(U) → Š is an affine
open immersion. We get an obvious diagram of base changes

XŽ
ǐ //

h

��

XŠ

g

��

XU

≀

��

ǰ
oo

j̃

}}④④
④
④
④
④
④
④

XZ
ĩ // X XU

j̃
oo

with j̃ affine. By proper base change, there is an isomorphism

ĩ∗Rj̃∗j̃
∗F ∼= ĩ∗Rg∗Rǰ∗j̃

∗F ∼= Rh∗ǐ
∗Rǰ∗j̃

∗F .

Since h is obtained via base change from the morphism Ž → Z, Rh∗ is left t-exact for the relative
perverse t-structures, so it suffices to show that

ǐ∗Rǰ∗j̃
∗F ∈ p/ŽD≥0(XŽ) =

p/ŠD≥0(XŽ).
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In other words, we have reduced the general case of “2) implies the conclusion” to the special case
where S is irreducible and admits a dimension function, and U is the complement of an effective
Cartier divisor Z. For the remainder of the proof, we put ourselves in that case (and revert to our
usual notation).

Note that Z and U inherit dimension functions from S, and that dimZ < dimS by the density
of U , so trivially we get an inclusion

pD≥0(XZ)[−dimS + 1] ⊆ pD≥0(XZ)[−dimZ ].

By Proposition 0.7, there is also an inclusion pD≥0(XZ)[−dimZ ] ⊆
p/SD≥0(XZ), so we get a

composite inclusion
pD≥0(XZ)[−dimS + 1] ⊆ p/SD≥0(XZ).

Therefore, starting with any F as in 2) (and with SrU an effective Cartier divisor), the conclusion
of the theorem follows if we can prove that

ĩ∗Rj̃∗ : Db
c(XU )→ Db

c(XZ)

carries pD≥0(XU )[−dimS ] into pD≥0(XZ)[−dimS+1], or equivalently that it carries pD≥0(XU ) into
pD≥−1(XZ). Since XZ ⊂ X is an effective Cartier divisor, this follows from the next lemma.

Lemma 0.12. Let X be a nice scheme equipped with a dimension function. Let j : U → X
be an open immersion which is the complement of an effective Cartier divisor i : Z → X. Then
i∗Rj∗ : Db

c(U)→ Db
c(Z) has perverse cohomological amplitude [−1, 0], i.e. it is perverse right t-exact

and carries pD≥0(U) into pD≥−1(Z).

Proof. By Gabber’s results on biduality and his Artin-Grothendieck theorem for affine morphisms of
nice schemes, Rj∗ and j! are perverse t-exact. Then i∗ has perverse cohomological amplitude [−1, 0]
by looking at the triangle j!j

∗ → id→ i∗i
∗ → where the other functors are perverse t-exact.

Remark. The numerology in this lemma might seem inconsistent with the more familiar result that
if S is a Henselian DVR with generic and special point η, s ∈ S (equipped with the canonical
dimension function sending s to 0) and f : X → S is of finite type, then the nearby cycles Rψ :
Db

c(Xη)→ Db
c(Xs) are perverse t-exact and ĩ∗Rj̃∗ : Db

c(Xη)→ Db
c(Xs) has perverse cohomological

amplitude [0, 1]. The thing to remember is that a shift intervenes when gluing pD≤0(X) from data
on the special and generic fibers: pD≤0(X) is glued from pD≤0(Xs) and pD≤−1(Xη). In other
words, pD≥0(Xη) = pD≥−1(Xη), so the lemma is consistent with this result after accounting for
this shift.

Granted this result, we get the following characterization of bounded constructible objects in
p/SD≥0(X).

Theorem 0.13. Let f : X → S be a finite type map of nice schemes, and let F ∈ D(X) be any
object. Then F ∈ p/SD≥0(X) if and only if F|Xs ∈

pD≥0(Xs) for all geometric points s→ S.

Proof. We first prove the theorem for objects F ∈ Db
c(X), by simultaneous induction on dimS.

When dimS = 0 the result is clear. Suppose the result is known for all base schemes of dimension
≤ n− 1. Let S be a nice scheme of dimension n.

“Only if.” Suppose given F ∈ p/SD≥0(X) ∩Db
c. By Theorem 0.11, we can choose a dense open

j : U → S with closed complement i : Z → S such that j̃∗F is fiberwise perverse coconnective
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and ĩ∗Rj̃∗j̃
∗F is relatively perverse coconnective. By the induction hypothesis, ĩ∗Rj̃∗j̃

∗F is also
fiberwise perverse coconnective. Now look at the triangle

Rĩ!F → ĩ∗F → ĩ∗Rj̃∗j̃
∗F → .

Then Rĩ!F is relatively perverse coconnective, so again by the induction hypothesis Rĩ!F is also
fiberwise perverse coconnective. Therefore ĩ∗F is fiberwise perverse coconnective. Since j̃∗F is also
fiberwise perverse coconnective, we deduce that F is fiberwise perverse connective.

“If.” Suppose that F ∈ Db
c is fiberwise perverse coconnective. By Theorem 0.11, we can choose

a dense open j : U → S with closed complement i : Z → S such that j̃∗F is relatively perverse
coconnective and ĩ∗Rj̃∗j̃

∗F is relatively perverse coconnective. Again, look at the triangle

Rĩ!F → ĩ∗F → ĩ∗Rj̃∗j̃
∗F → .

By assumption, the middle term is fiberwise perverse coconnective, hence also relatively perverse
coconnective by the induction hypothesis. Therefore the middle and right terms are relatively
perverse coconnective, so Rĩ!F is relatively perverse coconnective. Since ĩ∗ is t-exact and Rj̃∗ is left
t-exact for the relative perverse t-structures, we now see that the outer terms in the triangle

ĩ∗Rĩ
!F → F → Rj̃∗j̃

∗F →

are relatively perverse coconnective, so F is relatively perverse coconnective as desired.
Finally, we extend the theorem to arbitrary objects ofD(X). Suppose given some F ∈ p/SD≥0(X).

Since p/SD≥0(X) is stable under filtered colimits, any F ∈ p/SD≥0(X) can be written as a filtered
colimit colimFi for some Fi ∈

p/SD≥0(X)∩Db
c. Then each Fi is fiberwise perverse coconnective by

the bounded constructible case of the theorem, so F is fiberwise perverse coconnective.
Conversely, suppose F ∈ D(X) is fiberwise perverse coconnective. Pick an isomorphism F =

colimiFi with Fi ∈ D
b
c(X), so we get a map

α : F = colimiFi → colimi
p/Sτ≥0Fi.

Note that colimi
p/Sτ≥0Fi ∈

p/SD≥0(X) since p/SD≥0(X) is stable under colimits. It thus suffices
to show that α is an isomorphism. This can be checked on geometric fibers of f . But for any
geometric point s→ S,

(colimi
p/Sτ≥0Fi)|Xs

∼= colimi
pτ≥0(Fi|Xs) ∼=

pτ≥0(colimiFi|Xs) =
pτ≥0(F|Xs) = F|Xs,

using the fact that the relative perverse truncations of Fi commute with base change on S. This
gives the result.

This implies some much stronger t-exactness results.

Proposition 0.14. Let f : X → S be a finite type map of nice schemes. Then we have the following
t-exactness properties for the relative perverse t-structures.

1) For any morphism g : T → S with base change g̃ : XT → X, g̃∗ is t-exact. In particular, the
relative perverse truncation functors commute with any base change on S.

2) If h : Y → X is affine and quasifinite, h! is t-exact. If h : Y → X is quasifinite, h! is right
t-exact.

3) If h : Y → X is smooth of pure relative dimension d, h∗[d] is t-exact.

Proof. Immediate from the previous result.
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Proposition 0.15. Let f : X → S be a finite type map of nice schemes. Then F ∈ Db
c(X) lies

in p/SD≥0(X) if and only if for all étale maps j : U → X such that f ◦ j is affine, we have
R(f ◦ j)!j

∗F ∈ D≥0(S).

Proof. By an easy spreading out argument, this reduces (via Theorem 0.13) to the following state-
ment, which follows by duality from [BBDG, Reciproque 4.1.6]: for X of finite type over a separably
closed field k, F ∈ Db

c(X) lies in pD≥0(X) iff RΓc(U,F) ∈ D
≥0(Λ) for all open affines U ⊆ X .

Proposition 0.16. Let f : X → S be a finite type map of nice schemes. Then the relative du-
ality functor DX/S = RH om(−, Rf !Λ) induces a contravariant equivalence of categories between
p/SD≥0(X) ∩Db

c,f−ULA and p/SD≤0(X) ∩ Db
c,f−ULA, and satisfies biduality on each of these cate-

gories.

Proof. By [LZ20, Corollary 2.27], DX/S preserves f -ULA objects, and on f -ULA objects it com-

mutes with any pullback on S. If F ∈ p/SD≥0(X) ∩Db
c,f−ULA is given, we then compute that

i∗sDX/SF = DXs
(F|Xs) ∈

pD≤0(Xs)

for all geometric points s→ S, using Theorem 0.13 to see that F|Xs is perverse coconnective. This
shows that DX/SF is relatively perverse connective. An identical argument handles the opposite

case. Finally, one checks that DX/S satisfies biduality on Db
c,f−ULA: this can be checked after

pullback to any geometric point by [LZ20, Corollary 2.27], so it reduces to usual biduality for
varieties.

Proposition 0.17. Let f : X → S be a finite type map of nice schemes. Then p/SD≥0(X) ∩
Db

c,f−ULA(X) and p/SD≥0(X) ∩Db
c,f−ULA(X) define a t-structure on Db

c,f−ULA(X). In particular,

if F ∈ Db
c(X) is f -ULA, then any relative perverse truncation of F is also f -ULA.

Proof. Fix an f -locally acyclic object F ∈ Db
c(X). By [LZ19, Theorem 6.5 and Remark 6.7(1)],

it suffices to show that relative perverse truncations of F are f -locally acyclic after base change
along all maps T → S where T is the spectrum of a strictly Henselian DVR. Since relative perverse
truncations commute with arbitrary base change, this reduces us to the case where S is a strictly
Henselian DVR. In this situation, universal local acyclicity of G ∈ Db

c(X) is equivalent to the
vanishing of the vanishing cycles RΦ(G).

Fix such an S, with special and generic points s, η ∈ S, and equipped with the canonical
dimension function sending s to 0. By a theorem of Gabber [I, Corollaire 4.6], the functor RΦ[−1] :
Db

c(X)→ Db
c(Xs) is perverse t-exact. In particular, since the perverse truncation functors commute

with RΦ (up to shift), the perverse truncation functors preserve the property of being f -ULA.
In other words, pD≤0(X) ∩ Db

c,f−ULA(X) and pD≥0(X) ∩ Db
c,f−ULA(X) define a t-structure on

Db
c,f−ULA(X). Now, observe that

pD≤0(X) ∩Db
c,f−ULA(X) = p/SD≤−1(X) ∩Db

c,f−ULA(X)

and pD≥0(X) ⊂ p/SD≥−1(X) by Proposition 0.7. Applying Lemma 0.18 below with D = D(X),

D′ = Db
c,f−ULA(X), C≤0

1 = pD≤−1(X), and C≤0
2 = p/SD≤0(X), we deduce that p/SD≤0(X) ∩

Db
c,f−ULA(X) and pD≤−1(X)∩Db

c,f−ULA(X) define (the connective parts of) the same t-structure on

Db
c,f−ULA(X). In particular, the truncation functors pτ≤n−1 and p/Sτ≤n coincide on Db

c,f−ULA(X),

so the relative perverse truncation functors preserve Db
c,f−ULA(X) as required. This gives the

claim.
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Lemma 0.18. Let D be a triangulated category, let D′ ⊂ D be a thick triangulated subcategory, and
let C1 = (C≤0

1 , C≥0
1 ) and C2 = (C≤0

2 , C≥0
2 ) be two t-structures on D. Suppose that C1 ∩ D

′ defines a

t-structure on D′, and that C≤0
1 ∩ D′ = C≤0

2 ∩ D′ and C≥0
1 ∩D′ ⊂ C≥0

2 ∩ D′.
Then C2 ∩ D

′ defines a t-structure on D′ which coincides with the t-structure C1 ∩ D
′.

The final condition holds e.g. if C≤0
1 ⊂ C≤0

2 .

Proof. For any X ∈ D′, there are natural maps τ≤n
2 X ← τ≤n

2 τ≤n
1 X → τ≤n

1 X . Since τ≤n
1 X ∈

C≤n
1 ∩ D′ = C≤n

2 ∩ D′ by assumption, the second arrow is an isomorphism. The cone of the first

arrow is τ≤n
2 τ>n

1 X , which vanishes since τ>n
1 X ∈ C>n

1 ∩ D′ ⊂ C>n
2 ∩ D′ ⊂ C>n

2 by assumption.

Therefore both arrows are isomorphisms, so the truncation functors τ≤n
2 preserve D′ and coincide

with τ≤n
1 on objects of D′, as required.

Theorem 0.19. Let f : X → S be a finite type map of nice schemes, with S regular. Then
pD≤0(X) ∩Db

c,f−ULA and pD≥0(X) ∩Db
c,f−ULA define a t-structure on Db

c,f−ULA(X) which agrees

up to shift with the relative perverse t-structure on Db
c,f−ULA(X) (which makes sense by Proposition

0.17). In particular, if F ∈ Db
c(X) is f -ULA, then all perverse cohomology sheaves pHn(F) are

also f -ULA.

The final claim here reproves and generalizes a theorem of Gaitsgory, who proved this when S
is a smooth variety [Gai, Theorem F].

Proof. We want to apply Lemma 0.18, with D = D(X), D′ = Db
c,f−ULA(X), and the t-structures

with connective parts C≤0
1 = p/SD≤0(X) and C≤0

2 = pD≤0(X)[−dimS ]. By Proposition 0.17, C1∩D
′

defines a t-structure on D′, and C≤0
1 ∩ D′ = C≤0

2 ∩ D′ by Proposition 0.7. It remains to see that

C≥0
1 ∩ D′ ⊂ C≥0

2 ∩ D′, i.e. that

p/SD≥0(X) ∩Db
c,f−ULA(X) ⊂ pD≥0(X)[−dimS ] ∩D

b
c,f−ULA(X).

However, we know that DX/S defines a contravariant equivalence from C≤0
1 ∩ D′ to C≥0

1 ∩ D′ by
Proposition 0.16. We also know that DX = DX/S [2dimS ] defines a contravariant equivalence
from pD≤0

c (X) to pD≥0
c (X); after accounting for the various shifts, this means that DX/S gives a

contravariant equivalence from C≤0
2 ∩D

′ to C≥0
2 ∩D

′. Therefore, applying DX/S to C≤0
1 ∩D

′ = C≤0
2 ∩D

′

gives C≥0
2 ∩ D′ = C≥0

1 ∩D′, which is more than we require.
Applying Lemma 0.18 and Proposition 0.17, we deduce that the relative perverse t-structure on

Db
c(X) restricts to a t-structure on Db

c,f−ULA(X) which coincides (up to shift) with the restriction of

the absolute perverse t-structure. In particular, the truncation functors pτ≤n preserveDb
c,f−ULA(X),

which is what we wanted to show.

Proposition 0.20. Let S be a nice scheme equipped with a dimension function, and let f : X → S
be a finite type map. For any F ∈ Db

c(X), the following are equivalent.
1) F is relatively perverse.
2) There is a finite stratification by locally closed regular subschemes S =

∐
Si such that

(F|Xi)[dimSi
] is perverse and ULA for the morphism Xi = X ×S Si → Si.

Proof. Exercise.
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Proposition 0.21. Let f : X → S be a finite type map of nice schemes, with S regular and equipped
with a dimension function. Let F ∈ Pervf−ULA(X) be any object. Let j : U → S be the complement
of a nowhere-dense closed subscheme Z ⊂ S, with base change j̃ : XU → X. Then F ∼= j̃!∗j̃

∗F . If
moreover Z has codimension ≥ 2, then F ∼= pH0(j̃!j̃

∗F) ∼= pH0(Rj̃∗j̃
∗F).

When S and D are smooth varieties, this was proved by Reich in his thesis.
The argument only depends on the ULA condition in a mild way. In fact, the argument shows

that any F ∈ Db
c(X) such that F [−dimS ] and DX/S(F [−dimS ]) are relatively perverse connective

is automatically perverse and satisfies the conclusion of the Proposition.

Proof. Let ĩ : XZ → X be the base change of the evident closed immersion i : Z → S. It’s enough to
show that the nonzero perverse cohomology sheaves of ĩ∗F resp. Rĩ!F are concentrated in degrees
≤ −1 (resp. ≥ 1), with strict inequalities if Z has codimension ≥ 2. To begin, note that F [−dimS ] is
relatively perverse, so ĩ∗F [−dimS ] is relatively perverse, and thus ĩ∗F [−dimS ] ∈

pD≤0(XZ)[−dimZ ].
Therefore ĩ∗F [dimZ−dimS ] has vanishing perverse cohomology in degrees ≥ 1, so ĩ∗F has vanishing
perverse cohomology in degrees ≥ 1+dimZ −dimS . Since Z is nowhere-dense, 1+dimZ−dimS ≤ 0
with strict inequality if Z has codimension ≥ 2. Therefore ĩ∗F has vanishing perverse cohomology
in degrees ≥ 0, and in degrees ≥ −1 when Z has codimension ≥ 2, as required.

To analyze Rĩ!F , use biduality to write Rĩ!F = DXZ
ĩ∗DXF . Then we understand ĩ∗DXF

by the argument in the previous paragraph, which implies the necessary concentration of Rĩ!F by
duality.
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