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Abstract

Given a de Rham Qp-local system on a connected smooth rigid analytic variety X ,
we use p-adic Hodge theory to define canonical p-adic period morphisms out of a suitable
covering space of X . This construction is exactly analogous with the period morphisms
of classical Hodge theory, and it gives a general conceptual framework for Scholze’s
Hodge-Tate period map. In particular, we construct the Hodge-Tate period map for any
Shimura variety.

Our main tools are relative p-adic Hodge theory and its formalization via the pro-étale
site, together with the theory of diamonds.
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1 Introduction

Let X be a connected complex manifold, and let H = (HZ, Fil• ⊂ HZ⊗ZOX) be a rank n variation
of Z-Hodge structure over X . Let X̃ be the GLn(Z)-covering of X parametrizing trivializations
α : Zn ∼

→ HZ, and let Flh = Ph(C)\GLn(C) be the variety parametrizing flags in Cn with successive
graded pieces having ranks h = {hi = rankFili/Fili+1}. Then we have a natural period map
π : X̃ → Flh, sitting in a GLn(Z)-equivariant diagram

X̃

!!

π "" Flh

X

of complex manifolds. These period maps have been the subject of intense and fruitful study: among
many other results, we mention Griffiths’s famous transversality theorem constraining the image of
π [Gri70], and Schmid’s profound study of the degeneration of π near the boundary of X̃ [Sch73].

Until recently, p-adic Hodge theory has featured a wide variety of p-adic periods, but not so
many period morphisms.1 The situation changed dramatically with Scholze’s discovery [Sch15b] of
the Hodge-Tate period map for Hodge type Shimura varieties (which was then refined in [CS15]).
More precisely, let SKpKp be a Hodge-type Shimura variety at some level KpKp considered as a
rigid analytic space,2 and let SKp be the associated perfectoid Shimura variety with infinite level
at p [Sch15b]. The Hodge-Tate period map is a G(Qp)-equivariant morphism πHT : SKp → F#G,µ,
which again sits in an equivariant diagram

SKp
πHT ""

!!

F#G,µ

SKpKp

1The notable exception here being the Grothendieck-Messing crystalline period maps defined and studied in [GH94]
and then vastly generalized in [RZ96]. However, these period maps differ rather significantly from those studied in
classical Hodge theory and in this paper: they only exist in very specific situations, they depend on noncanonical
choices (namely, a horizontal trivialization of some F -isocrystal), and they don’t utilize Fontaine’s p-adic period rings
in their constructions.

2Cf. §1.2 for an explanation of the notation here.
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of adic spaces over Qp. This map is a p-adic analogue of the Borel embedding X ↪→ Xc of a
Hermitian symmetric space into its compact dual. Note that Xc = FlG,µ(C) is a flag variety and
the Borel embedding is really a special case of the archimedean period map π considered above.3

This suggests the natural question of whether SKp and πHT are also special cases of some general
p-adic construction.

In this article, we answer this question affirmatively. As a particular corollary of our results,
we obtain the existence of the Hodge-Tate period map for any Shimura variety. Along the way,
we prove a number of results about the geometry of Qp-local systems (and their analogues with
G-structure) on p-adic analytic spaces.

First of all, if X is any analytic adic space and V is a Qp-local system of rank n on X , we construct
a space T rivV/X over X parametrizing trivializations of V. We’d like to say that T rivV/X is a
GLn(Qp)-torsor over X , but unfortunately it’s not clear whether T rivV/X is even a reasonable adic
space in general. The correct setting here seems to be that of diamonds [Sch14, SW16]: we prove
that T rivV/X is naturally a diamond, and that its natural map to the diamond X♦ associated with
X is a pro-étale GLn(Qp)-torsor. The necessity of changing to a “looser” category of geometric
objects here seems roughly analogous to the fact that, in the complex analytic situation above,
X̃ → X is defined only in the complex analytic category even when X begins its life as a projective
variety. We also take G-structures into account from the beginning: we define and study G(Qp)-
local systems uniformly for any reductive group G/Qp, and we prove that the associated space
T rivV/X is a diamond and a well-behaved pro-étale G(Qp)-torsor over X♦. These spaces recover
both perfectoid Shimura varieties (cf. §1.2) and the moduli spaces of local shtukas introduced in
[Sch14] (cf. Remark 4.15) as special cases.

When X is a smooth rigid space and V is a Hodge-Tate local system, we construct a canonical
Hodge-Tate period morphism πHT from T rivV/X to a flag variety F#♦

GLn,h (where h again records
the Hodge numbers of V). In fact, when V is de Rham, we go beyond Hodge-Tate periods and
construct a de Rham period morphism πdR from T rivV/X to an open Schubert cell GrGLn,h in
a de Rham affine Grassmannian, from which πHT can be recovered. We remark that the target
GrGLn,h of the de Rham period morphism only exists as a diamond in general; analogously, the
open subspace of Flh parametrizing Hodge structures (and through which π : X̃ → Flh factors) is
a non-algebraic complex manifold.

We now turn to a more detailed description of our results.

1.1 Torsors for Qp-local systems, and period maps

We start with a very brief recollection on Qp-local systems.

Proposition 1.1. Let X be a locally Noetherian adic space, or a perfectoid space, or a diamond.
Then we have a natural category QpLoc(X) of Qp-local systems on X ; these are (certain) sheaves
of Qp-vector spaces on the pro-étale site Xproet which are locally free of finite rank. When X
is locally Noetherian or perfectoid, with associated diamond X♦, there is a natural equivalence
QpLoc(X) ∼= QpLoc(X♦).

These arise quite naturally in geometry: if f : Y → X is a proper smooth morphism of locally
Noetherian adic spaces over Qp, then any Rifproet∗Qp is naturally a Qp-local system on X (as
announced by Gabber, Kedlaya-Liu, and Scholze-Weinstein). We also remark that if X is a variety
over Qp, then any lisse Qp-sheaf on Xet induces a Qp-local system on Xad.

Our first result is the following theorem.
3At least after generalizing the construction of π to account for “VHSs with G-structure”.
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Theorem 1.2 (cf. Theorems 4.11, 4.13). Let D be any diamond, and let V be a Qp-local system
on D of constant rank n. Then the functor

T rivV/D : Perf/D → Sets

{f : T → D} %→ IsomQpLoc(T )(Qp
n, f∗V)

is representable by a diamond pro-étale over D, and the natural map T rivV/D → D is a pro-étale
GLn(Qp)-torsor. The functor from rank n Qp-local systems on D to pro-étale GLn(Qp)-torsors
over D given by V %→ T rivV/D is an equivalence of categories, with essential inverse given by

D̃ %→ D̃ ×GLn(Qp) Qp
n.

With applications in mind, we also consider the following more general situation. Let G be a
reductive group over Qp, so G = G(Qp) is a locally profinite group. Then for X as in Proposition
1.1, we define G-local systems on X as additive exact tensor functors

V : Rep(G) → QpLoc(X)

(W, ρ) %→ VW

in the obvious way.4 This generality is not artificial; for example, polarized Qp-local systems
correspond to GSp2n- or GOn-local systems, and we get even more general examples from Shimura
varieties (as we’ll see below). When X is a diamond, we prove that the natural functor T rivV/X is a
pro-étale G-torsor over X , and we again prove (cf. Theorem 4.13) that the association V %→ T rivV/X

is an equivalence of categories, with essential inverse given by sending a pro-étale G-torsor X̃ over
X to the G-local system

V(X̃) : Rep(G) → QpLoc(X)

(W, ρ) %→ X̃ ×G,ρ W.

Next we recall the definition of a de Rham Qp-local system on a smooth rigid analytic space X ,
following the notation and terminology in [Sch13]. This seems to be the correct p-adic analogue of
a variation of (Q− or Z−)Hodge structures on a complex manifold.

Definition 1.3. Let E/Qp be a discretely valued nonarchimedean field with perfect residue field
of characteristic p, and let X be a smooth rigid analytic space over Spa E. Let λ : Xproet → Xan be
the natural projection of sites, and let B+

dR, BdR,OB+
dR,OBdR be the usual period sheaves on Xproet

as defined in [Sch13]. Given a Qp-local system V on X , define

DdR(V) = λ∗(V ⊗Qp OBdR).

This is a locally free OX -module of finite rank, equipped with a decreasing exhaustive separated fil-
tration by OX -local-direct summands and with an integrable connection satisfying Griffiths transver-
sality. There is a natural injective map

αdR : λ∗DdR(V) ⊗λ∗OX OBdR → V ⊗Qp OBdR

of OBdR-modules compatible with all structures. We say V is de Rham if αdR is an isomorphism.5

4Here of course Rep(G) denotes the tensor category of pairs (W, ρ) with W a finite-dimensional Qp-vector space
and ρ : G → GL(W ) a morphism of algebraic groups over Qp.

5Our definition of de Rham is not the same as the definition given in [Sch13], but one easily checks that the two
formulations are equivalent.

4



Maintain the setup of the previous definition, and assume V is de Rham. Then we get two
B+

dR-lattices in the BdR-local system V⊗Qp BdR: one given by M := V⊗Qp B+
dR and the other given

by the image of (
λ∗DdR(V) ⊗λ∗OX OB+

dR

)∇=0

under the isomorphism

α∇=0
dR : (λ∗DdR(V) ⊗λ∗OX OBdR)∇=0 ∼

→ V ⊗Qp BdR

induced by αdR. Call this second one M0. When Fil0DdR(V) = DdR(V), we have M0 ⊆ M. More
generally, let

hi = rankOX griDdR(V) = rankOX (FiliDdR/Fili+1DdR)

be the Hodge numbers of V, and let µV : Gm → GLn be the cocharacter in which the weight i
appears with multiplicity hi. We remark that the hi’s are constant on connected components of X ,
and thus µV is as well.

Proposition 1.4. The relative positions of M0 and M inside V ⊗Qp BdR are given by µV.

More generally, we say a G-local system V is de Rham if the associated Qp-local systems VW

are de Rham for all (W, ρ) ∈ Rep(G). Using the fact that the comparison isomorphism αdR is
compatible with direct sums, tensor products, and subquotients, the Tannakian formalism (plus a
little more) gives a conjugacy class of Hodge cocharacters µV : Gm,Qp

→ GQp
such that ρ ◦ µV

measures the Hodge filtration on DdR(VW ) for any (W, ρ).
The following theorem is our main result on period morphisms.

Theorem 1.5. Let V be a de Rham G = G(Qp)-local system on a smooth rigid analytic space X,
with constant Hodge cocharacter µ. Then we have natural G-equivariant period morphisms

πdR : T rivV/X♦ → GrG,µ

and
πHT : T rivV/X♦ → F#♦

G,µ

of diamonds over Spd E, fitting into a G-equivariant commutative diagram

T rivV/X♦
πdR ""

πHT

##!!!!!!!!!
GrG,µ

σBB

!!

F#♦
G,µ

where σBB is the Bialynicki-Birula morphism.

The map σBB was defined and studied in [CS15], where the authors also prove that σBB is an
isomorphism exactly when µ is minuscule; we reprove this by a direct group-theoretic calculation
(cf. Corollary 3.19). We also define πHT directly, in the more general situation where V is only
assumed to be Hodge-Tate.
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1.2 Some applications to Shimura varieties

Let (G, X) be a Shimura datum, with associated Hodge cocharacter µ and reflex field E. For any
sufficiently small open subgroup K ⊂ G(Af ), the associated Shimura variety ShK is a smooth
quasiprojective variety over E. Choose a prime p of E lying over p, and let SK = (ShK ×E Ep)ad

be the associated rigid analytic space over SpaEp. Let SK = S♦
K be the associated diamond over

SpdEp. Finally, let G = G(Qp) be as before.

Proposition 1.6. For any sufficiently small Kp ⊂ G(Ap
f ), there is a diamond SKp over Spd Ep

with an action of G such that
SKp ∼= lim

←Kp

SKpKp

G-equivariantly and compatibly with changing Kp (or even with changing the Shimura data).

When (G, X) is of Hodge type, Scholze [Sch15b] constructed a perfectoid Shimura variety, i.e. a
perfectoid space SKp with continuous G-action such that

SKp ∼ lim
←Kp

SKpKp

as adic spaces. Whenever such an SKp exists, we necessarily have SKp ∼= S♦
Kp for formal reasons.

However, unlike the difficult construction of SKp , the proof of Proposition 1.6 is essentially trivial
once the theory of diamonds is set up: the inverse limit of any projective system of diamonds with
finite étale transition maps is a diamond. We also point out that knowledge of SKp is strictly
weaker than knowledge of SKp : the construction of the latter object also gives very rich information
about the existence of certain affinoid coverings, formal models, compactifications, etc., and SKp

doesn’t a priori have the same applications to p-adic automorphic forms as SKp . In any case, it
seems likely that SKp always exists (and X. Shen has recently constructed such perfectoid Shimura
varieties when (G, X) is of abelian type), but this is probably out of reach in general. Therefore, it
might be surprising that the following result is within reach.

Theorem 1.7. There is a natural G-equivariant Hodge-Tate period morphism

πHT : SKp → F#♦
G,µ

of diamonds over SpdEp, compatible with changing Kp and functorial in morphisms of arbitrary
Shimura data. When (G, X) is of Hodge type (or more generally, of abelian type), this is the
morphism of diamonds associated with the “refined Hodge-Tate period morphism”

πHT : SKp → F#G,µ

of Caraiani-Scholze.

We remark that when SKp is the diamond of a perfectoid Shimura variety SKp , any morphism
of diamonds

f♦ : SKp = S♦
Kp → F#♦

G,µ

arises uniquely from a morphism
f : SKp → F#G,µ

of adic spaces. In particular, the proof of Theorem 1.7 actually gives a new construction of the
refined Hodge-Tate period map for perfectoid Shimura varieties of Hodge type (or abelian type).

6



This proof is of course related to Caraiani-Scholze’s proof, but the details are rather different: in
particular, we never need to make any of the noncanonical choices which arise from choosing an
embedding of a Hodge-type Shimura datum into a Siegel Shimura datum.

We briefly sketch the construction of πHT. For any fixed level Kp, the map SKp → SKpKp is
naturally a pro-étale Kp-torsor,6 so the pushout

S̃KpKp := SKp ×Kp G

is naturally a pro-étale G-torsor over SKpKp , compatibly with varying KpKp. Note that via the
G-action on SKp , we get a canonical splitting

S̃KpKp
∼= SKp × Kp\G

which is G-equivariant for the diagonal G-action on the right-hand side. By our previous equivalence
of categories, S̃KpKp gives rise to a G-local system V over SKpKp , or equivalently over SKpKp , which
we call the tautological G-local system. The crucial ingredient is then:

Theorem 1.8 (R. Liu-X. Zhu [LZ16]). The tautological G-local system V over SKpKp is de Rham
(and in particular Hodge-Tate) with Hodge cocharacter µ, for any Shimura variety.

Liu-Zhu prove, surprisingly, that if the stalk of a Qp-local system (or G-local system) V on a
connected rigid analytic space is de Rham at one classical point (in the classical sense of Fontaine),
then V is de Rham. For a Shimura variety, this allows one to check the de Rham property at “special
points”, where everything is explicit.

Thanks to this result, we can apply Theorem 1.5 to get a G-equivariant morphism of diamonds

πHT,Kp : S̃KpKp → F#♦
G,µ

over SpdEp (since µ is minuscule, there is no difference between Hodge-Tate periods and de Rham
periods in this situation). Finally, we check by hand, using the aforementioned splitting, that πHT,Kp

descends along the G-equivariant projection S̃KpKp → SKp to a G-equivariant morphism

πHT : SKp → F#♦
G,µ

independent of the auxiliary choice of Kp.

1.3 Newton strata

As a curious consequence of Theorem 1.5, any de Rham Qp-local system V on a rigid space induces
a “generic fiber Newton stratification” of the space:

Corollary 1.9. Let X be a connected rigid analytic space over Spa E as above, and let V be a de
Rham Qp-local system on X of rank n with constant Hodge cocharacter µV. Then V induces a
natural Newton stratification of X into locally closed subsets

|X | =
∐

b∈B(GLn/Qp,µV)

|X |b

indexed by Newton polygons lying above the Hodge polygon of V and with matching endpoints.

6This is not quite true unless the Shimura datum satisfies Milne’s axiom SV5.
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Proof. Pulling back the Newton strata of GrGLn,µV
defined by Caraiani-Scholze7 under πdR, we get

a stratification of |T rivV/X♦ | by GLn(Qp)-stable locally closed subsets, which descend under the
identifications

|T rivV/X♦ |/GLn(Qp) ∼= |X♦| ∼= |X |

to a stratification of |X |.

Remark. The subsets |X |b are determined by their rank one points: x ∈ |X | lies in a given |X |b if
and only if its unique rank one generization x̃ lies in |X |b. Also, it’s not clear whether the closure of
any given |X |b is a union of |X |b

′

’s, so the term “stratification” is being used in a loose sense here.

Next we compare this “generic fiber” Newton stratification with a suitable “special fiber” Newton
stratification, in a situation where the latter exists in a reasonably canonical way. More precisely,
let f : Y → X be a smooth proper morphism of connected flat p-adic formal schemes over Spf OE ,
with associated morphism of adic generic fibers f : Y → X over SpaE. Assume X is smooth.
Let M = Rifcrys∗(O/W )[ 1p ] be the ith relative crystalline cohomology, and let V = Rifproet∗Qp

be the ith relative p-adic étale cohomology. Then, on the one hand, the Frobenius action on the
specializations of M at geometric points of X gives a natural stratification

|X| =
∐

b∈B(GLn/Qp,µV)

|X|b.

In this context, the fact that the Newton polygon lies over the Hodge polygon is a famous theorem
of Mazur [Maz73]. On the other hand, the previous corollary applied to V gives a decomposition
|X | =

∐
b∈B(GLn/Qp,µV) |X |b with the same indexing set.

Theorem 1.10. The stratification of |X | associated with V agrees on rank one points with the
pullback (under the specialization map s : |X | → |X|) of the stratification of |X| associated with M.

The proof of this result makes use of Fargues’s results on local shtukas and Breuil-Kisin modules
over the ring A = W (OC!), together with Bhatt-Morrow-Scholze’s construction of a new cohomology
theory valued in Breuil-Kisin modules over A.

Finally, we compare the generic and special fiber Newton strata in the setting of Shimura va-
rieties. Again GrG,µ

∼= F#♦
G,µ has a Newton stratification by G-invariant locally closed subsets

indexed by the Kottwitz set B(G, µ), so pulling back under πHT and descending gives a “generic
fiber” Newton stratification of |SKpKp | as before. Suppose now that (G, X) is a Shimura datum of
Hodge type, with p > 2 and G/Qp unramified. Let Kp ⊂ G be hyperspecial, so by work of Kisin
[Kis10], ShKpKp ×E Ep has (among other things) a good integral model S◦

KpKp
over OEp

and the
special fiber of S◦

KpKp
has a natural Newton stratification. Let SKpKp be the formal scheme given

as the p-adic completion of S◦
KpKp

, so the associated rigid analytic space identifies with the locus

of good reduction Sgd
KpKp

⊂ SKpKp . Again we have a specialization map

s : |Sgd
KpKp

| → |SKpKp | = |S◦
KpKp

×OEp
Fq|.

Theorem 1.11. The generic fiber Newton strata of |Sgd
KpKp

| coincide on rank one points with the
pullback under s of the special fiber Newton strata.

7Warning: Here and in what follows, Caraiani-Scholze use B(G, µ−1) everywhere that we use B(G, µ), but
everything matches after noting that the two are in bijection via b #→ b−1.
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The proof naturally combines (the ideas in the proof of) Theorem 1.10 with the Tannakian
formalism and some unwinding of Kisin’s construction. When the ShK ’s are compact PEL Shimura
varieties of type A or C, this is a result of Caraiani-Scholze (cf. Section 4.3 of their paper, especially
Lemma 4.3.20 and the diagram immediately following).
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2 Preliminaries

We assume basic familiarity with adic spaces and perfectoid spaces. Unless explicitly stated other-
wise, all adic spaces are (honest) analytic adic spaces over SpaZp; we denote this category by Adic.
We also follow the convention that perfectoid spaces do not live over a fixed perfectoid base field.

If A is a topological ring, we denote by A◦ the subring of powerbounded elements and by A◦◦

the subset of topologically nilpotent elements.
We reserve the notation ∼= for canonical isomorphisms.

2.1 Sheaves on sites

Let C be a site. We write PSh(C) and Sh(C) for the categories of presheaves and sheaves on C. Given
X ∈ C, we write hX = HomC(−, X) for the Yoneda embedding of X into PSh(C). The following
definition is standard.

Definition 2.1. A morphism F → G of sheaves is surjective if for any U ∈ C and any section
s ∈ G(U), there exists a covering {Ui → U}i∈I in C such that s|Ui ∈ G(Ui) lies in the image of
F(Ui) → G(Ui) for each i ∈ I.

We also adopt the following conventions.

Definition 2.2. Let C be a site. A morphism F → G of (pre)sheaves on C is representable if for every
X ∈ C and every morphism of (pre)sheaves hX → G, there is an isomorphism s : hY

∼
→ F ×G hX

for some Y ∈ C.

As usual, the pair (Y, s) in the previous definition is unique up to unique isomorphism, so we’ll
typically suppress s and just write “...an isomorphism hY + F ×G hX ...”. Note that we follow the
Stacks Project in saying “representable” instead of “relatively representable”.

Definition 2.3. Let C be a site, and let “blah” be a property of morphisms in the category underlying
C which is preserved under arbitrary pullback. A morphism F → G of (pre)sheaves on C is “blah” if
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it is representable and, for every X ∈ C and every morphism of (pre)sheaves hX → G, the morphism
Y → X corresponding to the upper horizontal arrow in the pullback diagram

F ×G hX + hY

!!

"" hX

!!
F "" G

is “blah”.

Proposition 2.4. If F → G is “blah”, then for any H → G the pullback F ×G H → H is “blah”.

Proof. Given hX → H, we have (F ×G H) ×H hX = F ×G hX , so this is immediate.

We also use the following terminology once or twice:

Definition 2.5. Let C′ → C be a morphism of sites, with u : C → C′ the associated (continuous)
functor on underlying categories. We say C′ is finer than C if u is fully faithful and all C-covers are
C′-covers.

2.2 Perfectoid spaces, tilting and untilting

Here we recall some material from [Sch12, Sch14] (cf. also [KL15, KL16]).
Recall that a Tate ring is a topological ring A containing an open subring A0 whose induced

topology is the (-adic topology for some ( ∈ A◦◦
0 ∩ A×. It’s easy to check that A = A0[

1
& ]. Con-

versely, if A is Tate, then for any ( ∈ A◦◦∩A× we can find an open bounded subring A0 containing
( whose induced topology is the (-adic topology. Any ( ∈ A◦◦ ∩ A× is a pseudouniformizer of
A. A Tate ring A is perfectoid if A is complete and the subring of powerbounded elements A◦ is
bounded, and if there exists a pseudouniformizer ( such that p ∈ (p ·A◦ and such that the Frobe-
nius on A◦/( is surjective. An affinoid perfectoid space is an adic space of the form Spa(A, A+)
where A is a perfectoid Tate ring. By definition, an adic space is perfectoid if it admits an open
covering by affinoid perfectoid spaces.

Let P̃erf denote the category of all perfectoid spaces. Let Perf denote the category of perfectoid
spaces in characteristic p, so tilting defines a functor

P̃erf → Perf

X %→ X'.

We remind the reader that on affinoid perfectoid spaces, tilting sends Spa(A, A+) to Spa(A', A+'),
where (−)' is the endofunctor on multiplicative monoids defined by

A' =
{
a = (ai)i≥0 ∈ AN | ap

i+1 = ai ∀i ≥ 0
}

;

it is true but not obvious that for any perfectoid Tate ring A, the monoid A' is a perfectoid Fp-
algebra, with addition given by the formula

(a + a′)i = lim
j→∞

(ai+j + a′
i+j)

pj

.

We also remind the reader that tilting has essentially every compatibility one could dream of: there
is a natural homeomorphism |X | ∼= |X'| compatible with affinoid perfectoid subspaces and with
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rational subsets thereof, there are natural equivalences Xan
∼= X'

an and Xét
∼= X'

ét with associated
equivalences of topoi, etc. However, tilting is forgetful: there are often many non-isomorphic spaces
with tilts isomorphic to a given S ∈ Perf, so one needs to specify extra data to recover X from X'.
Before explaining what extra data is needed, we define precisely the notion of an “untilt”.

Definition 2.6. Given any X ∈ Perf, an untilt of X is a pair (X(, ι) where X( ∈ P̃erf and
ι : X(' ∼

→ X is an isomorphism. A morphism m : (X(, ι) → (X(′, ι′) of untilts of X is a morphism
of perfectoid spaces m : X( → X(′ such that ι′ ◦ m' = ι.

As motivation for the name, observe that any Y ∈ P̃erf is canonically an untilt of its tilt Y ',
by taking Y '( = Y and ι = id. Note that for any morphism m : (X(, ι) → (X(′, ι′) of untilts of
X , m' = ι′−1 ◦ ι is an isomorphism, so m is necessarily an isomorphism as well. Thus the untilts
of X naturally form a groupoid. Note also that a given (X(, ι) has no automorphisms, since if
m : X( → X( tilts to the identity map, then m must be the identity; in particular, the untilts of X
form a setoid in the terminology of the Stacks Project.

Proposition 2.7. If X is a perfectoid space, then the assignment U %→ W (O+
X(U)') on open affinoid

perfectoid subsets U ⊂ X defines a sheaf of rings AX on X which depends only on the tilt of X.
This sheaf of rings comes with a natural surjective ring map θX : AX → O+

X .

Definition 2.8 (after Fargues-Fontaine, Scholze, Kedlaya-Liu (cf. [KL16, §3.2]) ). Let X be a
perfectoid space. An ideal sheaf J ⊂ AX is primitive of degree one if locally on a covering X = ∪iUi

by affinoid perfectoids, J |Ui = (ξi) is principal and generated by an element ξi ∈ W (O+
X(Ui)') of

the form ξi = p + [(i]αi with (i ∈ O+
X(Ui)' some pseudouniformizer and with αi ∈ W (O+

X(Ui)')
arbitrary.

Let Perf+ denote the category of pairs (X,J ) where X ∈ Perf and J ⊂ AX is an ideal sheaf
which is primitive of degree one, with morphisms (X,J ) → (Y, I) given by morphisms f : X → Y

such that f−1I ·AX = J . Note that Perf+ is a category fibered in sets over Perf. For any X ∈ P̃erf,
the ideal sheaf ker θX ⊂ AX = AX! is primitive of degree one, so we get a functor

P̃erf → Perf+

X %→
(
X', ker θX ⊂ AX!

)
.

Proposition 2.9 (Scholze, Kedlaya-Liu). This functor defines a natural equivalence8 P̃erf ∼= Perf+,
and untilts of a given X ∈ Perf correspond to fibers of the map Perf+ → Perf. Explicitly, the untilt
X( ∈ P̃erf associated with a pair (X,J ) ∈ Perf+ has integral structure sheaf O+

X" = AX/J .

For any perfectoid space S, tilting defines a natural equivalence P̃erf/S
∼= Perf/S! .

We will freely use the equivalence P̃erf/S
∼= Perf/S! . The reader may wish to think of this

remarkable result as a kind of “crystalline” property of tilting: an untilt of S' induces unique and
compatible untilts of all perfectoid spaces over S'.

We’ll also repeatedly make use of “almost purity” in the following form (cf. [KL16, Proposition
3.3.18]):

Proposition 2.10. If A is any perfectoid Tate ring and B is a finite étale A-algebra, then B is
perfectoid. In particular, if X is any perfectoid space and f : Y → X is any finite étale morphism,
then Y is automatically perfectoid. Furthermore, tilting induces an equivalence Xfet

∼= X'
fet.

8Here we are implicitly replacing gPerf, which is a category fibered in setoids over Perf, with the equivalent category
fibered in sets; cf. Tag 04S9 of the Stacks Project.
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2.3 The big pro-étale site

In this section we recall some material from [Sch14], and prove some basic properties of the big
pro-étale site.

Definition 2.11.
i. A morphism Spa(B, B+) → Spa(A, A+) of affinoid perfectoid spaces is affinoid pro-étale if

(B, B+) admits a presentation as the completion of a filtered direct limit

(B, B+) = ̂lim
→
i∈I

(Ai, A
+
i )

of perfectoid (A, A+)-algebras with each Spa(Ai, A
+
i ) → Spa(A, A+) étale.

ii. A morphism f : Y → X of perfectoid spaces is pro-étale if for every point y ∈ Y , there is an
open affinoid perfectoid subset V ⊂ Y containing y and an open affinoid perfectoid subset U ⊂ X
containing f(V ) such that the induced morphism V → U is affinoid pro-étale.

iii. A pro-étale morphism of perfectoid spaces f : Y → X is a pro-étale cover(ing) if for every
quasicompact open subset U ⊂ X , there is some quasicompact open subset V ⊂ Y with f(V ) = U .

We record the following basic properties of pro-étale morphisms.

Proposition 2.12. Suppose f : Y → X is a pro-étale morphism of perfectoid spaces.
i. If Z → X is any morphism of perfectoid spaces, then Z ×X Y → Z is a pro-étale morphism.
ii. If Z → X is pro-étale, then Z ×X Y → X is pro-étale.
iii. If g : Z → Y is any morphism of perfectoid spaces, then f ◦ g is pro-étale if and only if g is

pro-étale.

In order to see that perfectoid spaces with pro-étale covers form a site, we need to verify the
following proposition.

Proposition 2.13. Suppose f : Y → X is a pro-étale covering of perfectoid spaces. If g : Z → X
is any morphism of perfectoid spaces, then Z ×X Y → Z is a pro-étale covering.

Proof. Let W ⊂ Z be a quasicompact open subset, so W ⊆ g−1(g(W )). Choose a quasicompact
open U ⊂ X with g(W ) ⊆ U , and then choose a quasicompact open V ⊂ Y with f(V ) = U . Then
W ×U V ⊂ Z ×X Y is a quasicompact open with image W in Z.

Proposition 2.14. Suppose

Z
g

$$"
""

""
""

f◦g "" X

Y

f
%%#######

is a diagram of pro-étale morphisms of perfectoid spaces, and suppose f ◦ g is a pro-étale cover.
Then f is a pro-étale cover.

Proof. Let U ⊂ X be any qc open; we need to find a qc open V ⊂ Y with f(V ) = U . By assumption,
we may choose some qc open W ⊂ Z with (f ◦ g)(W ) = U . Choose a covering ∪i∈IVi of f−1(U) by
qc opens in Y , so ∪i∈Ig−1(Vi) ∩ W is an open covering of W . Since W is qc, we can find a finite
subset I ′ ⊂ I such that ∪i∈I′g−1(Vi) ∩ W is an open covering of W . Then

g(W ) = ∪i∈I′g
(
g−1(Vi) ∩ W

)
⊆ ∪i∈I′Vi,

12



so V := ∪i∈I′Vi is a qc open subset of Y such that g(W ) ⊆ V ⊆ f−1(U), and therefore f(V ) = U
as desired.

Definition 2.15. The big pro-étale site is the site Perfproet whose underlying category is the cate-
gory Perf of perfectoid spaces in characteristic p, with coverings given by pro-étale coverings.

There is also an analogous site P̃erf
proét

with arbitrary perfectoid spaces as objects. We also
have a small pro-étale site Xproét for any perfectoid space X , with objects given by perfectoid spaces
pro-étale over X and covers given by pro-étale covers. These sites are compatible with tilting in the
obvious sense.

We now turn to sheaves on Perfproet. Every structural result we’ll prove for Sh(Perfproet) has

an obvious analogue for Sh(P̃erf
proet

) compatible with tilting; we do not spell this out.

Proposition 2.16. For any X ∈ Perf, the presheaf hX = Hom(−, X) is a sheaf on the big pro-étale
site.

Proof sketch. One reduces to the case of X affinoid. Recall that for any affinoid adic space X =
Spa(R, R+) and any adic space Y , there’s a natural identification

Hom(Y, X) = Hom
(
(R, R+), (O(Y ),O(Y )+)

)
.

Let Y ∈ Perf be some perfectoid space with a given pro-étale cover Ỹ → Y , so we need to show
exactness of the sequence

0 → Hom(Y, X) → Hom(Ỹ , X) ⇒ Hom(Ỹ ×Y Ỹ , X).

But OY and O+
Y are sheaves on Yproet, so we get an exact sequence

0 → (O(Y ),O(Y )+) → (O(Ỹ ),O(Ỹ )+) ⇒ (O(Ỹ ×Y Ỹ ),O(Ỹ ×Y Ỹ )+),

and we’re done upon applying the left-exact functor Hom((R, R+),−).

By our conventions, given any property of morphisms of perfectoid spaces preserved under arbi-
trary pullback, there is a corresponding notion for morphisms of sheaves on Perfproet. In particular,
we may speak of a morphism of sheaves F → G on Perfproet being an open immersion, Zariski closed
immersion, finite étale, étale, pro-finite étale, pro-étale, a pro-étale cover, etc. (Note, however, that
“surjective” will always mean “surjective as a morphism of sheaves.”)

Proposition 2.17. A morphism F → G of sheaves on Perfproet is a pro-étale cover if and only if
it is surjective and pro-étale.

Proof. Let F → G be a pro-étale morphism. By definition, the sheaf morphism F → G is surjective
if, for any hX → G with associated hY + F ×G hX , we can find some pro-étale cover X̃ → X and a
section hX̃ → F such that the diagram

F "" G

hY
""

&&

hX

&&

hX̃

''
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$

((%%%%%%%%%%%%%%%
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commutes. If F → G is a pro-étale cover, then X̃ = Y does the job, so F → G is surjective.
Suppose conversely that F → G is a surjective pro-étale morphism, and consider any map

hX → G, so we get the same diagram as above. We need to show that the associated morphism
Y → X is a pro-étale cover. Since the square is cartesian, we can fill in another arrow from hX̃ to
hX , vis.

F "" G

hY
""

&&

hX

&&

hX̃

''
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$

((%%%%%%%%%%%%%%%

%%&&&&&&&&

Since Y → X and X̃ → X are both pro-étale, the morphism X̃ → Y is pro-étale by Proposition
2.12.iii, so the diagram

X̃

$$'
''

''
''

"" X

Y

))((((((((

satisfies the hypotheses of Proposition 2.14 and thus Y → X is a pro-étale cover.

Finally, we record some facts about pro-finite étale morphisms, which we define as follows:

Definition 2.18. A morphism f : Y → X of perfectoid spaces is pro-finite étale if for some covering
of X by open affinoid perfectoid subsets Ui = Spa(Ai, A

+
i ) ⊂ X we have Y ×X Ui = Spa(Bi, B

+
i )

where (Bi, B
+
i ) admits a presentation as the completion of a filtered direct limit

(Bi, B
+
i ) = ̂lim

→
j∈Ji

(Aij , A
+
ij)

of perfectoid (Ai, A
+
i )-algebras with each Aij finite étale over Ai and with each A+

ij given as the
integral closure of A+

i in Aij . Let Xprofét be the category with objects given by perfectoid spaces
pro-finite étale over X , and with the obvious morphisms.

Note in particular that pro-finite étale morphisms are pro-étale, so they enjoy the same stability
properties: the natural analogues of the results in Proposition 2.12 are true, and in particular, any
pullback of a pro-finite étale morphism is pro-finite étale.

Proposition 2.19. For any perfectoid space X and any inverse system Y = (Yi)i∈I ∈ pro − Xf ét,
there is a unique perfectoid space Ŷ ∈ Xprofét with compatible morphisms Ŷ → Yi such that

Ŷ ∼ lim
←
i∈I

Yi

in the sense of [SW]. The functor Y %→ Ŷ induces a fully faithful embedding pro − Xf ét → Xprofét

which identifies Xprofét with the stackification of the prestack U ∈ Xan %→ pro − Uf ét.
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3 Diamonds

In this section we introduce the notion of a diamond, following [Sch14]. Due to the relative novelty
of this theory and the lack (as yet) of a permanent written reference, we develop strictly more
material than we’ll need later in terms of examples and basic constructions. We hope this increases
the readability of the paper enough to justify some occasional long-windedness in this section.

On the other hand, our goal here is not to establish in detail the foundational properties of
diamonds. Indeed, the properties we need are summarized in Fact 3.4 below, and in our experience
knowing the proofs of these results does not help one use them in practice. Instead, we advise
the reader to simply take the properties enumerated in Fact 3.4 on faith and then to work with
diamonds as they would any other category of reasonably behaved algebro-geometric objects. The
reader wishing to understand these foundational matters should consult [Sch14] or [Han16]. Full
foundations will appear in [SW16].

3.1 Definition and key properties

Definition 3.1 ([Sch14, Definition 8.2.8/2]). A diamond is a sheaf D on Perfproet which admits a
surjective and pro-étale morphism hX → D from a representable sheaf. A morphism of diamonds
is a morphism of sheaves on Perfproet. We write Dia for the category of diamonds.

If D is a diamond, we refer to any choice of a surjective pro-étale morphism hX → D as a
presentation of D. Here is a first sanity check.

Proposition 3.2. The functor

Perf → Dia

X %→ hX

is fully faithful.

Proof. This is an immediate consequence of Proposition 2.16 and the Yoneda lemma.

Given X ∈ Perf, we denote hX interchangeably by X♦ (cf. Fact 3.4.1 below).
We note the following easy bootstrap.

Proposition 3.3. Let F → G be a morphism of sheaves on Perfproet. If F → G is surjective and
pro-étale, then F is a diamond if and only if G is a diamond. If G is a diamond and F → G is
representable, then F is a diamond.

Fact 3.4. We record here the salient facts concerning diamonds (cf. [Sch14, SW16, Han16]).

1. There is a natural functor X %→ X♦ from the category Adic to the category of diamonds,
defined as follows. Given any perfectoid space Y ∈ Perf, an untilt of Y over X is a triple
(Y (, ι, f) where (Y (, ι) is an untilt of Y and f : Y ( → X is a morphism of adic spaces. A
morphism m : (Y (, ι, f) → (Y (′, ι′, f ′) of untilts of Y over X is a morphism of perfectoid
spaces m : Y ( → Y (′ such that ι′ ◦m' = ι and f ′ ◦m = f . Any morphism of untilts of Y over
X is again an isomorphism, and a given (Y (, ι, f) has no automorphisms. Then

X♦ : Perfproet → Sets

15



is the presheaf sending Y ∈ Perf to the set of isomorphism classes of untilts of Y over X . The
association X %→ X♦ is clearly a functor.
When X is a perfectoid space, the equivalence P̃erf/X

∼= Perf/X! easily implies that X♦ ∼= hX!

(explaining our previous notation), so X♦ is a diamond in this case. It is true, but not obvi-
ous, that X♦ is a diamond in general. We sketch the proof for affinoid X in Lemma 3.10 below.

Notation: If R (resp. (R, R+)) is a Tate ring (resp. a Tate-Huber pair) over Zp, we set
Spd R := Spa(R, R◦)♦ (resp. Spd(R, R+) := Spa(R, R+)♦).

2. If E/Qp is a discretely valued nonarchimedean field with perfect residue field of characteristic
p, the functor from normal rigid analytic spaces over Spa E to diamonds over SpdE is fully
faithful.

3. There is a natural functor D %→ |D| from diamonds to topological spaces such that for any
X ∈ Adic, there is a natural homeomorphism |X♦| ∼= |X |.

4. For any diamond D, open immersions E ↪→ D are in natural bijection with open subsets
|E| ⊆ |D|.

5. The category of diamonds admits fiber products and products of pairs, and well-behaved
notions of quasicompact and quasiseparated objects and morphisms.

6. For any S ∈ Adic, there is a natural equivalence Perf/S♦
∼= P̃erf/S , so a diamond over S♦ can

be regarded as a functor on perfectoid spaces over S. For any morphisms Y → S and X → S
with Y perfectoid, we have

HomS(Y, X) ∼= HomS♦

(
Y ♦, X♦

)
.

7. Let D be a diamond, and let • be one of the decorations • ∈ {an, fét, ét, profét, proét}, respec-
tively. Then there is a well-behaved site “D•” with objects given by diamonds E over D such
that the map E → D is (respectively) an open immersion, a finite étale map, an étale map, a
pro-finite étale map, or a pro-étale map, and with covers given by collections {Ei → E} such
that

∐
Ei → E is surjective as a map of sheaves.

8. If X ∈ Adic is locally Noetherian or perfectoid, the functor (−)♦ induces a natural equivalence
X•

∼= X♦
• for • ∈ {an, fét, ét}.

3.2 Pro-étale torsors

This section is partly based on Sections 4.2-4.3 of [Wei15]. Throughout, G denotes a locally profinite
group.

Definition 3.5. Let G be a locally profinite group. A morphism of perfectoid spaces X̃ → X is
a pro-étale G-torsor if there is a G-action on X̃ lying over the trivial G-action on X such that
X̃ ×X X̃ ∼= G× X̃ and such that there exists a G-equivariant isomorphism X̃ ×X X ′ + X ′×G after
pullback to some pro-étale cover X ′ → X .9

A morphism F → G of sheaves on Perfproet is a pro-étale G-torsor if there is a G-action on F
lying over the trivial G-action on G such that, pro-étale locally on G, we have F + G × G.

9These conditions actually guarantee the continuity of the G-action on X̃, in the sense of [Sch15a].
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Remark. If F → G is a pro-étale G-torsor, the induced map F/G → G is an isomorphism (since it
becomes an isomorphism pro-étale-locally on G, and everything is a pro-étale sheaf), and the action
map G × F → F ×G F is an isomorphism as well.

Proposition 3.6. If F → G is a pro-étale G-torsor with G profinite, then F → G is surjective and
pro-étale. In particular, G is a diamond if and only if F is a diamond.

This is slightly tricky, since we don’t know a priori that F → G is even representable.

Proof (after Weinstein). Surjectivity is clear. Since G is profinite, we may write G = lim←i G/Hi

with Hi open normal in G. Then F = lim←i F/Hi as sheaves, so it suffices to show that each
F/Hi → G is finite étale. This is true on a pro-étale cover of G, by definition, so we’re reduced to
showing that whether or not a morphism F → G is finite étale can be checked pro-étale-locally on
G. We may clearly assume G is representable.

So let F → hX be any sheaf map, and let hX̃ → hX be a surjective pro-étale map such that
F ×hX hX̃ is representable, say by hỸ , and such that hỸ → hX̃ is finite étale. Since

Ỹ ×X̃,pri
(X̃ ×X X̃) ∼= F ×X X̃ ×X̃,pri

(X̃ ×X X̃)

∼= F ×X (X̃ ×X X̃),

where pri : X̃ ×X X̃ → X̃ denotes either of the two projections, the two pullbacks of Ỹ under pri

are canonically isomorphic, and one easily checks that these isomorphisms satisfy the usual cocycle
condition. In particular, the finite étale map Ỹ → X̃ inherits a descent datum relative to the
pro-étale cover X̃ → X . Now the key technical point is that finite étale maps form a stack for the
pro-étale topology on any perfectoid space X : precisely, the fibered category p : FÉt → Perf defined
by

p−1(U) = {V → U finite étale}

for any U ∈ Perf is a stack on Perfproet. (This is Lemma 4.2.4 of [Wei15].) Thus Ỹ descends
uniquely to a finite étale map Y → X , and one easily checks that F ∼= hY .

The final claim follows immediately from Proposition 3.3.

Remark 3.7. Let us a say a pro-étale G-torsor F → G (or X̃ → X) is good if the map F → G is
pro-étale (and in particular, representable). By the previous proposition, any pro-étale G-torsor for
a profinite group G is good. It’s unclear, however, if goodness holds for arbitrary locally profinite
G. We’ll prove in Corollary 4.14 below that when D is a diamond and G is (open in) the Qp-points
of a reductive group G/Qp, any pro-étale G-torsor D̃ → D is good, by taking a somewhat circuitous
route through Qp-local systems and relative p-adic Hodge theory.

We also have a nice “punctual” criterion for when the formation of a quotient by a profinite
group action gives a pro-étale torsor:

Theorem 3.8. Let G be a profinite group, and let F be a sheaf on Perfproet equipped with an action
of G. Suppose G acts freely on the sections F(C,OC) for any algebraically closed nonarchimedean
field C in characteristic p. Then F → F/G is a good pro-étale G-torsor.

Here F(C,OC) is of course shorthand for the set of sheaf maps hSpa(C,OC) → F .

Proof. This is exactly Proposition 4.3.2 of [Wei15]. Note however that Proposition 4.3.2 of loc. cit.
is only stated in the case where F is a representable sheaf living over hSpa(C0,OC0) for some fixed
algebraically closed nonarchimedean field C0/Fp, but a careful reading shows that Weinstein’s proof
doesn’t use these assumptions in any way.
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The special case of Theorem 3.8 where F is representable gives the first real mechanism for
constructing diamonds. Due to its importance, we state it separately:

Theorem 3.9. Let X be a perfectoid space in characteristic p, and let G be a profinite group acting
on X. Suppose G acts freely on the set X(C,OC) for any algebraically closed nonarchimedean field
C in characteristic p. Then hX → hX/G is a good pro-étale G-torsor, so hX/G is a diamond and
hX → hX/G is a presentation. Furthermore, there is a natural homeomorphism |hX/G| ∼= |X |/G.

Proof. By Theorem 3.8, hX → hX/G is a pro-étale G-torsor, so the sheaf map hX → hX/G
is surjective and pro-étale by Proposition 3.6. The claim on topological spaces follows from the
definition of |hX/G|, cf. the proof of [Han16, Proposition 3.15].

Lemma 3.10. Let X = Spa(R, R+) be an affinoid adic space. Choose a directed system (Ri, R
+
i ), i ∈

I of finite étale Galois (R, R+)-algebras such that

(R̃, R̃+) = ̂lim
i→

(Ri, R
+
i )

is perfectoid, where the completion is for the topology making limi→ R+
i open and bounded. (By

an argument of Colmez and Faltings, such a direct system always exists.) Let Gi be the Galois
group of Ri over R, so Gi acts on Xi = Spa(Ri, R

+
i ) and by continuity G = lim←i G acts on

X̃ = Spa(R̃, R̃+). Then:

1. The space X̃' with its induced action of G satisfies the hypotheses of Theorem 3.9. Conse-
quently, hX̃! → hX̃!/G is a pro-étale G-torsor and hX̃!/G is a diamond.

2. There is a natural isomorphism
X♦ ∼= hX̃!/G.

In particular, X♦ is a diamond.

3.3 The diamond of SpaQp

By Fact 3.4.1, the adic space SpaQp has an associated diamond SpdQp. We explain here its
canonical presentation, as a special case of Theorem 3.10. Note that as a functor, SpdQp is quote
simple: the set of maps hS → SpdQp is canonically identified with the set of untilts (S(, ι) where
p is invertible in OS" , i.e. the set of untilts where S( is a perfectoid space over SpaQp.

Let ζpn , n ≥ 1 be a compatible sequence of primitive pnth roots of unity, and let Qcyc
p = Q̂p(ζp∞).

Let us describe the tilt of Qcyc
p . Setting On = Zp[ζpn ], we have an isomorphism of Fp-algebras

On/(ζp − 1) = Fp[t]/(tp
n−1(p−1))

ζpn %→ 1 + t,

or equivalently

On/(ζp − 1) = Fp[t
p1−n

]/(tp−1)

ζpn %→ 1 + tp
1−n

.

Taking the inductive limit over n, we get

Zcyc
p /(ζp − 1) = Fp[t

1/p∞

]/(tp−1),
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and then applying (−)' = lim ←
x -→xp(−) gives Zcyc,'

p
∼= Fp[[t1/p∞

]] and Qcyc,'
p

∼= Fp((t1/p∞

)). Note

that the sharp map Qcyc,'
p → Qcyc

p sends t to

( := lim
n→∞

(ζpn − 1)pn−1

.

Since Qcyc
p = Q̂p(ζp∞) is a perfectoid pro-étale Z×

p -torsor over Qp with tilt Qcyc,'
p

∼= Fp((t1/p∞

)),
Lemma 3.10 implies the following result.

Proposition 3.11. There is a natural isomorphism SpdQp
∼= hSpaFp((t1/p∞ ))/Z

×
p , where a ∈ Z×

p

acts by sending t1/pn
to (1 + t1/pn

)a − 1.

A similar result holds for any finite extension K/Qp. Precisely, let Fq be the residue field of
K, and let G ∈ OK [[X, Y ]] be a Lubin-Tate formal OK-module law. For a ∈ OK , let [a](T ) =
expG(a logG(T )) ∈ OK [[T ]] be the series representing multiplication by a on G. Then SpdK ∼=
hSpaFq((t1/q∞ ))/O

×
K where a ∈ O×

K acts by sending t1/qn
to [a](t1/qn

).

Self-products of the diamond of SpaQp

Since diamonds admit products of pairs, the diamond (SpdQp)n is well-defined. This is an intricate
object for n > 1, no longer in the essential image of the functor (−)♦. We note, among other things,
that |(SpdQp)n| has Krull dimension n− 1. This seems to suggest that the (nonexistent) structure
map “SpaQp → SpaF1” has relative dimension one.

3.4 The diamond B+
dR/Filn

For any perfectoid Tate ring R/Qp, we have the de Rham period ring B+
dR(R), defined as the

completion of W (R'◦)[ 1p ] along the kernel of the natural surjection θ : W (R'◦)[ 1p ] " R. When
R = Cp, this is the usual Fontaine ring B+

dR. In general ker θ is principal and generated by some non-
zerodivisor ξ, so B+

dR(R) is filtered by the ideals Fili = (ker θ)i with associated gradeds griB+
dR(R) +

ξiR.
Let B+

dR/Filn → SpdQp be the functor whose sections over a given map Spa(R, R+)♦ → SpdQp

for any Spa(R, R+) ∈ Perf are given by the set B+
dR(R()/Filn, where R( is the untilt of R determined

by the given map to SpdQp.

Theorem 3.12. The functor B+
dR/Filn is a diamond.

This is Proposition 18.2.3 in the Berkeley notes, where a “qpf” proof is given. We complement
this with a “pro-étale” proof here. Note also that B+

dR/Filn is a ring diamond (we recommend
avoiding jokes about B+

dR/Filn being a “diamond ring”).

Proof. Induction on n. The case n = 1 is clear, since B+
dR/Fil1 ∼= A1,♦ where A1 = ∪n≥1SpaQp 〈pnx〉

is the affine line over SpaQp.
Let B = (SpaZcyc

p [[T ]])η, and let B̃ = lim←ϕ B where ϕ is the endomorphism of B given by the
map T %→ (1 + T )p − 1. Explicitly, B̃ = (Spa A)η where A is the (p, T )-adic completion of

Zcyc
p [[T ]][T1, T2, . . . ]/(ϕ(T1) − T, ϕ(T2) − T1, . . . , ϕ(Ti+1) − Ti, . . . ).
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Then B̃ is perfectoid, and the map π : B̃ → A1 characterized by π∗x = log(1 + T ) is a perfectoid
pro-étale covering of A1. (More precisely, B̃♦ → A1,♦ is a good pro-étale G-torsor, with G =
Qp(1) # Z×

p .)
Claim: There is an isomorphism of functors

B+
dR/Filn ×A1,♦ B̃♦ + B+

dR/Filn−1 ×SpdQp B̃♦

for any n ≥ 2.
Granted this claim, we deduce the theorem as follows: Since B̃♦ → A1,♦ is surjective and

pro-étale, the map
B+

dR/Filn ×A1,♦ B̃♦ → B+
dR/Filn

is surjective and pro-étale, so by Proposition 3.3 it’s enough to show that B+
dR/Filn ×A1,♦ B̃♦ is a

diamond. But the claim together with the existence of fiber products reduces this to the fact that
B+

dR/Filn−1 is a diamond, which is exactly our induction hypothesis.
It remains to prove the claim. In general, the map θ induces a natural transformation B+

dR/Filn →
A1,♦ of functors over SpdQp. Let s : B̃ → B+

dR/Filn be the natural transformation sending
r = (r0, r1, r2, . . . ) ∈ B̃(R() to log[1 + r'] where r' = (r0, r1, . . . ) ∈ (R(◦/p)'. Then (θ ◦ s)(r) =
log(1 + r0) = π(r). In particular, the diagram

B̃♦

π

!!
s

**)))))))))

B+
dR/Filn

θ "" A1,♦

commutes, and π is surjective and pro-étale. The claim is then deduced as follows: given (a, b) ∈
B+

dR/Filn × B̃♦ with θ(a) = π(b), the element a− s(b) lives in ker θ ⊂ B+
dR/Filn, so we get a natural

isomorphism

B+
dR/Filn ×A1,♦ B̃♦ ∼= ker θ ×SpdQp B̃♦

(a, b) → (a − s(b), b)

(x + s(y), y) ← (x, y).

Furthermore, after base change to SpdQcyc
p we have an exact sequence

0 → B+
dR/Filn−1 ×SpdQp SpdQcyc

p
t
→ B+

dR/Filn ×SpdQp SpdQcyc
p → A1,♦

Q
cyc
p

→ 0

where t is the usual log[ε] of p-adic Hodge theory, so we get an isomorphism

ker θ ×SpdQp SpdQcyc
p + B+

dR/Filn−1 ×SpdQp SpdQcyc
p

after making a choice of t. But B̃ naturally lives over Qcyc
p , so then

ker θ ×SpdQp B̃♦ ∼= (ker θ ×SpdQp SpdQcyc
p ) ×SpdQ

cyc
p

B̃♦

+
(
B+

dR/Filn−1 ×SpdQp SpdQcyc
p

)
×SpdQ

cyc
p

B̃♦

+ B+
dR/Filn−1 ×SpdQp B̃♦,

and the claim follows.
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3.5 The diamond B+,ϕq=πn

crys,E

If R is any perfectoid Tate ring over Qp, we have the Fontaine rings Acrys(R) and B+
crys(R) =

Acrys(R)[ 1p ], where Acrys(R) is defined as the p-adic completion of the PD envelope of W (R'◦) with
respect to the ideal ker(θ : W (R'◦) → R◦/p). Note that Acrys(R) is flat over Zp, and B+

crys(R) is
naturally a Banach ring over Qp with unit ball Acrys(R). We also recall that W (R'◦) is a subring
of Acrys(R), the Witt vector Frobenius ϕ on W (R'◦) extends to these rings, and there is a natural
injective ring map B+

crys(R) → B+
dR(R) extending the map W (R'◦) → B+

dR(R).
Now let E be a finite extension of Qp, with uniformizer π, maximal unramified subfield E0, and

residue field
OE0/p = OE/π = Fq = Fpf .

If R is any perfectoid Tate ring over E, then B+
crys(R) is naturally an E0-algebra and the action

of ϕq = ϕf is E0-linear. In particular, ϕq acts E-linearly on the base extension B+
crys,E(R) =

B+
crys(R) ⊗E0 E, so we get an E-vector space B

+,ϕq=πn

crys,E (R) inside B+
crys,E(R). The association

R %→ B
+,ϕq=πn

crys,E (R) defines a functor from perfectoid Tate rings over E to E-Banach spaces; we write

B
+,ϕq=πn

crys,E for the associated sheaf on Perfproet
/SpdE . We also note that the map B+

crys(R) → B+
dR(R) ex-

tends (via the canonical E-algebra structure on B+
dR(R)) to an injective E-algebra map B+

crys,E(R) →

B+
dR(R). In particular, we get a natural transformation B

+,ϕq=πn

crys,E → B+
dR/Filn ×SpdQp SpdE.

Theorem 3.13. i. The natural transformation B
+,ϕq=πn

crys,E → B+
dR/Filn ×SpdQp SpdE induces a

short exact sequence

0 → Vπ,n → B
+,ϕq=πn

crys,E → B+
dR/Filn ×SpdQp Spd E → 0

of sheaves of E-vector spaces on Perfproet
/SpdE, where Vπ,n + E pro-étale-locally on Spd E.

ii. The sheaf B
+,ϕq=πn

crys,E is a diamond.

Remark. Explicitly, Vπ,n is the n-fold tensor product ⊗n
EVpGπ, where VpGπ is (the sheaf as-

sociated with) the functor sending a perfectoid (E,OE)-algebra (R, R+) to the E-vector space
VpGπ(R, R+) = (lim←n Gπ[πn](R+)) ⊗OE E. Here Gπ is the Lubin-Tate formal OE-module law as-
sociated with the uniformizer π. In particular, if E = Qp and π = p, then Vπ,n

∼= Qp(n).

Remark. The idea that the functors B+
dR/Filn and B

+,ϕq=πn

crys,E might have some reasonable geo-
metric structure is due to Colmez, who defined [Col02] a beautiful category of “finite-dimensional
Banach Spaces” (with a capital “S”) containing these objects. (We note that Colmez notates these
spaces as Bn and UE,n, respectively.)

3.6 The de Rham affine Grassmannian

Fix a reductive group G over Qp, and let µ : Gm,E → GE be a cocharacter defined over a fixed
finite extension E/Qp. Let Ĕ denote the completion of the maximal unramified extension of E.
The functors of interest in this section are the following:

Definition 3.14. The de Rham affine Grassmannian GrG is the functor on perfectoid (Qp,Zp)-
algebras sending (R, R+) to the set of (isomorphism classes of) G-torsors over Spec B+

dR(R) equipped
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with a trivialization over Spec BdR(R). We regard GrG as a functor fibered over SpdQp in the
obvious way.

For any cocharacter as above, let GrG,≤µ ⊂ GrG ×SpdQp SpdE be the functor on perfectoid
(E,OE)-algebras sending (R, R+) to the set of G-torsors over Spec B+

dR(R) equipped with a µ-
bounded trivialization over Spec BdR(R), and let GrG,µ ⊂ GrG,≤µ be the subfunctor where the
relative position of the trivialization is given exactly by µ.

One checks directly that GrG,µ and GrG,≤µ are sheaves on Perfproet
/Spd E . We remark that GrG,≤µ

coincides with GrG,µ when µ is minuscule, but in general there is a nontrivial stratification GrG,≤µ =∐
ν≤µ GrG,ν . For later use, we also give the Tannakian interpretation of GrG,≤µ and GrG,µ:

Proposition 3.15. GrG,≤µ (resp. GrG,µ) is the functor on perfectoid (E,OE)-algebras sending
(R, R+) to the set of associations

Λ : (ρ, W ) ∈ Rep(G) → {ΛW ⊂ W ⊗Qp BdR(R) a B+
dR(R)−lattice}

compatible with tensor products and short exact sequences, such that for all (ρ, W ) ∈ Rep(G) and
all geometric points s = Spa(C, C+) → Spa(R, R+), there is a B+

dR(C)-basis v1, . . . , vdimW (resp.
e1, . . . , edimW ) of W ⊗Qp B+

dR(C) (resp. of s∗ΛW ) such that





e1

e2
...

edimW




= (ρ ◦ ν)(ξ) ·





v1

v2
...

vdimW





for some generator ξ of ker
(
θ : B+

dR(C) → C
)

and some ν ∈ X∗(T) with ν ≤ µ (resp. with ν = µ).

We’ll only need the space GrG,µ, but we take the trouble to define GrG,≤µ since in some ways
it’s better behaved:

Theorem 3.16 (Scholze). The functors GrG,≤µ and GrG,µ are “spatial” diamonds over Spd E, and
GrG,≤µ is quasicompact.

This is one of the main theorems from [Sch14], and the proof is difficult and indirect. However,
if one restricts attention to GrG,µ, things are more straightforward: using Theorem 3.12, we give
below a direct proof10 that GrG,µ is a diamond.

We also have the flag variety F#G,µ, defined as the adic space over E associated with the flag
variety Pstd

µ \G. Here Pstd
µ ⊂ G is the parabolic with Levi factor Mµ = Cent(µ) and with Lie

algebra
Lie(Pstd

µ ) = ⊕i≤0gµ(i).

We note that in the remainder of this section, we will sometimes pass casually from schemes over
E to adic spaces over E, to functors on perfectoid (E,OE)-algebras, to diamonds over Spd E; in a
parallel abuse, we sometimes write F#G,µ instead of F#♦

G,µ to lighten notation. This should cause
no confusion.

In what follows we set G(R) = G(B+
dR(R)), regarded as a group-valued functor on perfectoid

(E,OE)-algebras (R, R+). Note that θ induces a natural group homomorphism θ : G → G; set
G1 = ker θ. More generally, if H is some algebraic subgroup of G defined over E, we set H =

10To be added.
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H(B+
dR) < G; change of font in this manner always indicates this convention. We always have a

theta map θ : H → H.
If ξ ∈ B+

dR(R) is any element generating ker θ, we consider the subgroup

Gµ(R) = G(B+
dR(R)) ∩ µ(ξ)G(B+

dR(R))µ(ξ)−1 < G(R).

This is well-defined independently of choosing ξ, and is functorial in R.

Proposition 3.17. The sheaf GrG,µ is the pro-étale sheafification of the presheaf on perfectoid
(E,OE)-algebras sending (R, R+) to Gµ(R)\G(R). Under this identification, the Tannakian inter-
pretation of GrG,µ sends Gµ(R)g to the tensor functor

Λ : (ρ, W ) ∈ Rep(G) → {ΛW = ρ(g−1µ(ξ)) · (W ⊗Qp B+
dR(R)) ⊂ W ⊗Qp BdR(R)}.

Proof. Straightforward.

Proposition 3.18. We have
Gµ(R) ⊆ θ−1(Pstd

µ (R))

as subgroups of G(R), with equality if and only if µ is minuscule.

Proof. Let Pµ denote the opposite parabolic to Pstd
µ . After enlarging E if necessary, we may assume

G is split. Let T be a split maximal torus containing im(µ), and choose a Borel B contained in Pµ

such that µ ∈ X∗(T) is B-dominant. The groups in question are generated as subgroups of G(R)
by their intersections with T = T(B+

dR(R)) (which is plainly all of T for either group) together with
their intersections with the root subgroups of G. Therefore it suffices to check that the claim holds
after intersecting both sides with any root group.

Let Uα be a root group of G, with isomorphism uα : Ga
∼
→ Uα, so Uα(R) + B+

dR(R). Note that
ξnUα(R) = uα(ξnB+

dR(R)) is a well-defined subgroup of Uα(R). If α is negative, then

Gµ(R) ∩ Uα(R) = θ−1(Pstd
µ (R)) ∩ Uα(R) = Uα(R).

If α is positive, then Gµ(R)∩Uα(R) = ξ〈µ,α〉Uα(R) while θ−1(Pstd
µ (R))∩Uα(R) = ξmin(〈µ,α〉,1)Uα(R).

This gives the claimed inclusion. Finally we note that a B-dominant cocharacter µ is minuscule if
and only if 〈µ, α〉 = min(〈µ, α〉 , 1) for all positive roots α.

Corollary 3.19. There is a natural G-equivariant Bialynicki-Birula morphism

σBB : GrG,µ → F#G,µ,

which is an isomorphism if and only if µ is minuscule.

Proof. This map is given by the projection

GrG,µ
∼= Gµ\G → θ−1(Pstd

µ )\G ∼= Pstd
µ \G ∼= F#G,µ,

so the result follows from the previous proposition.
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Connection with the Fargues-Fontaine curve

The functor GrG,µ also has an important interpretation in terms of bundles on the Fargues-Fontaine
curve. We briefly recall this circle of ideas, and use it to define the Newton strata of GrG,µ, following
[FF15, KL15, CS15].

Proposition 3.20. Fix a finite extension E/Qp with residue field Fq. Then for any perfectoid space
S ∈ PerfFq we have a functorially associated adic space XS = XS,E over Spa E, the adic Fargues-
Fontaine curve, with diamond given by X♦

S
∼= S♦/FrobZ

q ×Fq SpdE. Any untilt (S(, ι) ∈ (SpdE)(S)

determines a canonical closed immersion i : S( ↪→ XS .

In particular, if S is a perfectoid space over E and E is a vector bundle or G-bundle on XS! , we
can speak of bundles obtained by modifying E along the closed immersion i : S ↪→ XS! . The formal
completion of XS! along S is B+

dR(S), roughly, in the sense that if S = Spa(A, A+) and I is the ideal
sheaf cutting out S in XS! , then H0(OX /In) ∼= B+

dR(A)/Filn for any n. The formal completion of
a vector bundle on XS! along S is then a finite projective B+

dR-module, and modifying the bundle
amounts to changing this lattice. Making these ideas precise, one obtains the following (cf. [CS15,
§3.5]).

Proposition 3.21. The functor GrG,µ coincides with the functor on P̃erf/Spa E sending S to the

set of isomorphism classes of pairs (F , u) where F is a G-bundle on XS! and u : F|X
S!!S

∼
→

Etriv|X
S! !S is an isomorphism extending to a µ-positioned modification of the trivial G-bundle along

the immersion i : S ↪→ XS! .

When G = GLn and µ = (k1 ≥ · · · ≥ kn) with kn ≥ 0, the functor GrG,µ parametrizes certain
sub-B+

dR-modules Ξ ⊆ (B+
dR)n; the associated bundle F is then defined by the exactness of the

sequence
0 → F

u
→ On

X → i∗
(
(B+

dR)n/Ξ
)
→ 0

of coherent sheaves on XS .
When S = Spa(C, C+) is a geometric point, we have a classification result due to Fargues-

Fontaine (for GLn) and Fargues (for general G):

Proposition 3.22. For any perfectoid space S/Fq, any element b ∈ G(Ĕ) gives rise to a functorially
associated G-bundle Eb,S on XS such that the isomorphism class of Eb,S depends only on the σ-
conjugacy class of b. When S is a geometric point, the induced map

B(G) → BunG(XS)

b %→ Eb,S .

is surjective on objects.

Proof. See [FF15] and [Far15].

In particular, for any G-bundle E on any XS , we get an associated function b(−) : |S| →
B(G) such that for any point x = Spa(K, K+) → S with associated geometric point x, we have
x∗E + Eb(x),x as G-bundles on Xx. (Note that for G = GLn, the slopes of the F -isocrystal defined
by b are inverse to the slopes of the vector bundle Eb: the bundle O(1) corresponds to taking
b = π−1 ∈ Gm(Ĕ).)
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Definition 3.23. For any b ∈ B(G), the Newton stratum Grb
G,µ ⊂ GrG,µ is the subfunctor defined

as follows: a given S-point
(F , u) ∈ GrG,µ(S)

as above factors through Grb
G,µ if and only if x∗F + Eb,x for all geometric points x = Spa(C, C+) →

S'.

By [CS15, Proposition 3.5.3], the stratum Grb
G,µ is empty unless b ∈ B(G, µ) (and in fact the

converse holds as well).

4 Geometry of local systems

4.1 Qp-local systems

In this section we define Qp-local systems on arbitrary adic spaces and on diamonds. There is a little
bit of bookkeeping to be done here, since there are multiple competing definitions of “the pro-étale
site” in the literature.

Let X be any adic space.11 Then X has a pro-étale site Xproet defined as in [KL15, Definition
9.1.4] (generalizing the definition given in [Sch13] for locally Noetherian X). Any Y ∈ Xproet has
an associated topological space |Y |.

Definition 4.1. Let X be any adic space. For any topological ring A, let A be the sheaf of rings on
Xproet with sections given by Cont(|U |, A) over any U ∈ Xproet. Then we have a natural category
ALoc(X) of A-local systems on X: an object of ALoc(X) is a sheaf F of flat A-modules on Xproet

such that F|Ui,proet + Ani locally on some pro-étale covering {Ui → X}.

We mostly care about the particular cases A = Qp,Zp, orZ/pjZ (in descending order of both
interest and difficulty).

Remark 4.2. When X is a perfectoid space, we also have the “new” pro-étale site as defined in §2.3,
which we momentarily denote by Xproet,new. There is a natural map of sites η : Xproet,new → Xproet

corresponding to the inclusion of categories Xproet ⊂ Xproet,new, and the topology Xproet,new is finer
than Xproet. However, [KL16, Theorem 4.5.11] implies that for any perfectoid space X and any
A ∈ {Qp,Zp,Z/pjZ}, the pullback map η∗ : ALoc(Xproet) → ALoc(Xproet,new) is an equivalence of
categories, with essential inverse given by η∗. In particular, when X is perfectoid, we can and do
regard ALoc(X) as being interchangeably defined in terms of sheaves on Xproet,new or Xproet. In
light of this, we will essentially always omit the the subscript “new”: the double meaning of Xproet for
perfectoid X causes no ambiguity in the discussion of Qp-local systems and allied objects. Similar
remarks apply to diamonds of the form X♦, where again (X♦)proet is a priori finer than (Xproet)♦.

Now suppose D is a diamond; again, any E ∈ Dproet has an associated topological space |E|, so
the definitions of A and ALoc(−) as above go through verbatim, and we get a category ALoc(D).

Proposition 4.3. Let X be any adic space, with associated diamond X♦. Then there is a natural
equivalence ALoc(X) ∼= ALoc(X♦) for any A ∈ {Qp,Zp,Z/pjZ}.

11The constructions in this section work equally well on the larger category of “generalized adic spaces” in the sense
of [SW13]. Note that spaces of this type play an implicit role in what follows: if X is an analytic adic space, then we
can make sense of generalized adic spaces étale over X, and these spaces may not be true adic spaces.
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Proof. If X is perfectoid, the functor Y %→ Y ♦ induces an equivalence Xproet
∼= X♦

proet compatible
with | · |, so the claim is immediate in this case. (Here again Xproet denotes the “new” pro-étale site
on perfectoid spaces.)

Now let X be arbitrary, and choose a pro-étale cover f : U → X with U perfectoid such that
f♦ : U♦ = hU! → X♦ is a presentation of X♦. Note that U ×X U and U ×X ×U ×X U exist as
perfectoid spaces12: f♦ is representable and pro-étale by assumption, so U♦ ×f,X♦,f U♦ + hY for
some Y ∈ Perf/X♦ , and then the equivalence Perf/X♦

∼= P̃erf/X gives an untilt Y (/X representing
U ×X U . Let ALoc(U, DD(f)) be the category of A-local systems on U equipped with a descent
datum relative to the covering f : U → X . Then

ALoc(X) ∼= ALoc(U, DD(f))
∼= ALoc(U♦, DD(f♦))
∼= ALoc(X♦).

Here the first isomorphism follows from the (tautological) fact that the fibered category over Xproet

given by V ∈ Xproet %→ ALoc(V ) is a stack (with the third isomorphism following analogously), and
the second isomorphism follows from the equivalence ALoc(U) ∼= ALoc(U ') = ALoc(U♦) and the
compatibility of the descent data with tilting. Note that in passing from the first to the second line,
we are implicitly passing through the equivalence

ALoc(Uproet, DD(f)) ∼= ALoc(Uproet,new, DD(f)),

which accounts for the restriction on A.

4.2 The functors of trivializations, lattices, and sections

Definition 4.4. Let X be an adic space, and choose some V ∈ QpLoc(X) of rank n. Then we
consider the presheaves on P̃erf/X defined as follows:

T rivV/X : P̃erf/X → Sets

{f : T → X} %→ IsomQpLoc(T )(Qp
n, f∗V),

and

LatV/X : P̃erf/X → Sets

{f : T → X} %→ {L ⊂ f∗V | L ∈ ZpLoc(T ) of rankn} ,

and

SectV/X : P̃erf/X → Sets

{f : T → X} %→ H0
proet(T, f∗V).

For D a diamond and V ∈ QpLoc(D) of rank n, we make the analogous definitions with P̃erf/X

replaced by Perf/D.

The following proposition is an easy verification from the definitions, but it plays a very important
role in all that follows.

12In general, fiber products Y ×X Z with Y, Z perfectoid and X arbitrary are a bit delicate.
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Proposition 4.5. If X is an adic space (resp. diamond) with a Qp-local system V, and FV/X

is one of the functors of Definition 4.4, then FV/X is a sheaf on P̃erf
proet

/X (resp. Perfproet
/X ). If

f : Y → X is any morphism of adic spaces (resp. diamonds) then FV/X ×X,f Y ∼= Ff∗V/Y . If X
is any adic space, the equivalences QpLoc(X) ∼= QpLoc(X♦) and

Sh(P̃erf
proet

/X ) ∼= Sh(Perfproet
/X♦ )

induce an isomorphism FV/X
∼= FV/X♦ .

Remark 4.6. These functors are related in some natural and pleasant ways. Since we’ll use some of
these relationships explicitly in what follows, we spell them out fully:

1. We have a natural transformation

T rivV/X → LatV/X

given on T -points by sending β ∈ IsomQpLoc(T )(Qp
n, f∗V) to β(Zp

n). This induces an iso-
morphism

LatV/X
∼= T rivV/X/GLn(Zp).

2. Sending β to β(e1) ∈ H0
proet(T, f∗V) (where e1 = (1, 0, . . . , 0)t ∈ Qn

p ) induces a natural
transformation

T rivV/X → SectV/X

which gives rise to an isomorphism

Sect×
V/X

∼= T rivV/X/P .

Here

P =

(
1 Qn−1

p

0 GLn−1(Qp)

)

is the “mirabolic” subgroup of GLn(Qp), and Sect×
V/X ⊂ SectV/X denotes the subfunctor of

nowhere-vanishing sections.

3. We have a natural isomorphism

T rivV/X ×GLn(Qp) Qp
n ∼= SectV/X

(β, v) %→ β(v).

4. We have a natural isomorphism

T rivV/X
∼=

(
SectV/X

)n
×Sect∧nV/X

Sect×∧nV/X

β %→ ((β(ei))1≤i≤n, β(e1) ∧ · · · ∧ β(en)) .

Our immediate goal for now is the following result.
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Theorem 4.7. Let X be a perfectoid space, and let V be a rank n Qp-local system on X. Then each
of the sheaves of Definition 4.4 is representable by a perfectoid space pro-étale over X. Furthermore:

i. T rivV/X → X is a pro-étale GLn(Qp)-torsor.
ii. LatV/X → X is étale.
iii. SectV/X → X is naturally a Qp-module object in Xproet. The subfunctor Sect×

V/X of
nowhere-vanishing sections, defined as the complement of the zero section s : X → SectV/X , is open
and pro-étale over X.

We’ll repeatedly use the following lemma.

Lemma 4.8. If X is any adic space and V is any Qp-local system on X, then V admits a Zp-lattice
locally in the analytic topology on X. Precisely, we can find a covering of X by open affinoids Ui

together with Zp-local systems Li ⊂ V|Ui such that V|Ui + Li ⊗Zp Qp.

Proof. This follows immediately from Remark 8.4.5 and Corollary 8.4.7 in [KL15].

Lemma 4.9. Let X be a perfectoid space, and let L be a Zp-local system on X of constant rank n.
Then the functor

T rivL/X : P̃erf/X → Sets

{f : T → X} %→ IsomZpLoc(T )(Zp
n, f∗L)

is representable by a perfectoid space profinite-étale over X, and the natural map T rivL/X → X is
a pro-étale GLn(Zp)-torsor.

We remark that again, T rivL/X is clearly a sheaf on P̃erf
proet

/X .

Proof. Set L/pj = L ⊗Zp Z/pj, so L/pj is a sheaf of flat Z/pj-modules on Xproet which is locally
free of rank n, and L ∼= lim←j L/pj. Let

T riv(L/pj)/X : P̃erf/X → Sets

{f : T → X} %→ IsomZ/pjLoc(T )((Z/pj)
n
, f∗L/pj)

be the analogous functor with its natural action of GLn(Z/pj). Clearly T rivL/X
∼= lim←j T riv(L/pj)/X ,

so it suffices to show that each T riv(L/pj)/X is representable by a finite étale GLn(Z/pj)-torsor over
X . To show this, note that we may find some pro-étale covering g : Y → X such that g∗(L/pj) is
constant, so g∗T riv(L/pj)/X

∼= T rivg∗(L/pj)/Y is representable by a perfectoid space Y ′ finite étale
over Y , in fact with Y ′ + Y ×GLn(Z/pj). We then get a descent datum for the finite étale morphism
Y ′ → Y relative to the pro-étale covering Y → X ; as already noted in the proof of Proposition
3.6, any such descent datum is effective, so Y ′ → Y descends to a finite étale morphism X ′ → X ,
and the isomorphism T rivg∗(L/pj)/Y + Y ′ then descends to an isomorphism T riv(L/pj)/X + X ′, as
required.

Before proving Theorem 4.7, we need one more lemma.

Lemma 4.10. Let G be a locally profinite group with an open subgroup H, and let Y be a perfectoid
space with a continuous action of H. Then the pushout Y ×H G exists as a perfectoid space with
continuous G-action. If Y → X is a pro-étale H-torsor, then Y ×H G → X is a pro-étale G-torsor.
If Y → X is pro-étale then Y ×H G → X is pro-étale.
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Proof. For existence, one checks that Y ×H G fibers G-equivariantly over the discrete space H\G,
with fibers isomorphic to Y . The remaining statements are then an easy exercise.



Proof of Theorem 4.7. Fix X and V as in the statement. As in Lemma 5.6, we fix a covering
of X by open affinoid perfectoid subsets Ui together with Zp-local systems Li ⊂ V|Ui such that
V|Ui + Li ⊗Zp Qp.

First we prove the claims regarding T rivV/X . By Lemma 4.9, each T rivLi/Ui
is a perfectoid

space which is naturally profinite-étale over Ui and a pro-étale GLn(Zp)-torsor over Ui. Lemma 4.10
then shows that the pushout T rivLi/Ui

×GLn(Zp) GLn(Qp) exists as a perfectoid space and gives a
good pro-étale GLn(Qp)-torsor over Ui. On the other hand, the isomorphism V|Ui + Li ⊗Zp Qp

induces a GLn(Zp)-equivariant natural transformation

T rivLi/Ui
→ T rivV|Ui/Ui

which extends along the pushout to an isomorphism

T rivLi/Ui
×GLn(Zp) GLn(Qp)

∼
→ T rivV|Ui /Ui

,

so each T rivV|Ui /Ui
is a perfectoid space and a good pro-étale GLn(Qp)-torsor over Ui. Since

T rivV|Ui/Ui
×Ui Uij

∼= T rivV|Uij /Uij
canonically, the spaces T rivV|Ui /Ui

glue over the covering {Ui}
in the obvious way, giving a perfectoid space T rivV/X pro-étale over X such that T rivV/X ×X Ui

∼=
T rivV|Ui/Ui

.
For LatV/X , we argue as follows. It again suffices to show that each LatV|Ui /Ui

is representable
and étale over Ui. As in [KL15], Remark 1.4.7, let Lm(Li) be the functor parametrizing Zp-local
systems L′

i ⊂ Li ⊗Zp Qp such that pmLi ⊆ L′
i ⊆ p−mLi. This functor is representable by an affinoid

perfectoid space finite étale over Ui, and Lm(Li) is naturally a subfunctor of LatV|Ui /Ui
; note also

that Lm(Li) → Lm′(Li) is an open and closed immersion for m ≤ m′. Since Ui is quasicompact,
every section of LatV|Ui /Ui

factors through Lm(Li) for some m, so LatV|Ui /Ui
+ ∪m≥0Lm(Li), and

this latter union is clearly étale.
For SectV/X , it again suffices to show that each SectV|Ui/Ui

has the claimed properties. We
note that Sect(Li/pj)/Ui

is clearly representable and finite étale over Ui: pro-étale-locally on Ui,
it becomes a disjoint union of pn copies of Ui. Since each zero section s : Ui → Sect(Li/pn)/Ui

is open-closed, it has an open-closed complement Sect×(Li/pn)/Ui
which is finite étale over Ui. The

inverse limit
SectLi/Ui

∼= lim
←

Sect(Li/pn)/Ui

is clearly representable and pro-finite étale. On the other hand, the natural inclusion SectLi/Ui
⊂

SectV|Ui /Ui
extends to an isomorphism

SectV|Ui /Ui
∼= lim

→
×p

SectLi/Ui
,

and the transition maps here are open-closed immersions, so SectV|Ui /Ui
is pro-étale over Ui. Finally,

note that we can write the subfunctor of SectLi/Ui
parametrizing nonvanishing sections as

Sect×
Li/Ui

∼= ∪n≥1SectLi/Ui
×Sect(Li/pn)/Ui

Sect×(Li/pn)/Ui
,
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where the individual fiber products here correspond to the subfunctors of SectLi/Ui
parametrizing

sections which are nowhere-vanishing mod pn. We claim each of these invididual fiber products
are open. Indeed, each morphism Sect×(Li/pn)/Ui

→ Sect(Li/pn)/Ui
is an open immersion, and the

morphism SectLi/Ui
→ Sect(Li/pn)/Ui

is an inverse limit of finite étale surjective maps, and therefore
is a quotient map, so it pulls back open immersions to open immersions. Finally, Sect×

V|Ui/Ui
is

again covered by p-power dilates of these open subfunctors, and hence is open.

Theorem 4.11. If D is a diamond and V is a rank n Qp-local system on D, then any one of
the functors FV/D from Definition 4.4 is (representable by) a diamond pro-étale over D (so in
particular, FV/D → D is representable), and the exact analogues of all the statements in Theorem
4.7 are true.

Proof. Choose any X ∈ Perf and any map f : X♦ → D, so we get a pullback square

FV/D ×D X♦ ∼= Ff∗V/X♦ ""

!!

X♦

!!
FV/D "" D

of sheaves on Perfproet. Then Ff∗V/X♦
∼= F♦

f∗V/X is a representable sheaf by Proposition 4.5 and
Theorem 4.7, so the map FV/D → D is representable. In particular, if f is surjective and pro-étale,
then F♦

f∗V/X → FV/D is also surjective and pro-étale, so FV/D is a diamond. The analogues for the
map FV/D → D of the statements in Theorem 4.7 are clear, since the representability of FV/D → D
reduces us formally to Theorem 4.7.

4.3 G-local systems and G-torsors

Let G be a reductive algebraic group over Qp, so G = G(Qp) is a locally profinite group. We denote
by Rep(G) the tensor category of pairs (W, ρ) where W is a finite-dimensional Qp-vector space and
ρ : G → GL(W ) is a morphism of algebraic groups over Qp.13

Definition 4.12. Let X be an adic space or diamond. A G-local system on X is an additive exact
tensor functor

V : Rep(G) → QpLoc(X)

(W, ρ) %→ VW .

These form a category GLoc(X), with morphisms given by natural isomorphisms of tensor functors.

Observe that for a given V ∈ GLoc(X) and (W, ρ) ∈ Rep(G), the natural group acting on
the space T rivVW /X is GLdimW (Qp) rather than GL(W ). It will be convenient to consider the
variant T rivW

V/X with a natural GL(W )-action, defined as the functor sending f : T → X to
IsomQpLoc(T )(W, f∗VW ). Note that we can write this functor as the pushout

T rivW
V/X

∼= T rivVW /X ×GLdimW (Qp) IsomQp(W,QdimW
p ).

13We write GL(W ) for the algebraic group with functor of points R #→ Aut(R ⊗Qp W ), as distinguished from the
locally profinite group GL(W ) & GLdimW (Qp) given by its Qp-points.
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Of course, any fixed isomorphism W + QdimW
p determines compatible isomorphisms GL(W ) +

GLdmW (Qp) and T rivVW /X + T rivW
V/X , so the results of Theorems 4.7 and 4.11 apply to T rivW

V/X .
Note that we always have the trivial G-local system given by Vtriv : (W, ρ) %→ W , with

AutGLoc(X)(V
triv) ∼= G.

If X is an adic space (resp. diamond) then we again define a sheaf T rivV/X on P̃erf
proet

/X (resp.
Perfproet

/X ) as the functor sending f : T → X to IsomGLoc(T )(V
triv, f∗V). Note that G acts on

T rivV/X through its natural action on Vtriv.

Theorem 4.13. Let X be a perfectoid space (resp. diamond), and let V be a G-local system on X.
Then

i. T rivV/X is a perfectoid space (resp. diamond) pro-étale over X, and the map T rivV/X → X
is a pro-étale G-torsor.

ii. Given any pro-étale G-torsor X̃ over X, there is a functorially associated G-local system V(X̃)
on X characterized by the fact that for any (W, ρ) ∈ Rep(G), V(X̃)W is the sheafification of the
presheaf sending U ∈ Xproet to the vector space X̃(U)×G,ρ W . Equivalently, V(X̃) is characterized
by the fact that

SectV(X̃)W /X
∼= X̃ ×G,ρ W

functorially in (W, ρ) ∈ Rep(G).
iii. The functor X̃ %→ V(X̃) is an equivalence of categories, with essential inverse given by

V %→ T rivV/X .

Proof. We may assume X is a perfectoid space: the case of diamonds follows formally from the
perfectoid case exactly as in the proof of Theorem 4.11. Let V be a G-local system on X . Note
that for any (W, ρ) ∈ Rep(G) we have a natural isomorphism

T rivV/X ×G,ρ GL(W ) ∼= T rivW
V/X ,

so in particular T rivV/X is a subfunctor of T rivW
V/X if W is a faithful representation of G. We’re

going to prove i. by cutting out T rivV/X explicitly inside a well-chosen T rivW
V/X , reducing the

claim to Theorems 4.7 and 4.11.
To do this, recall that by a standard result (cf. [DMOS82, Proposition I.3.1]) we may choose some

faithful representation (W, ρ) ∈ Rep(G) together with a finite collection of vectors {wα ∈ W}α∈A

such that ρ : G ↪→ GL(W ) identifies G with the pointwise stabilizer of the elements wα. Then for
any f : T → X , the subset

T rivV/X(T ) ⊂ T rivW
V/X(T ) = IsomQpLoc(T )(W, f∗VW )

is characterized as the set of isomorphisms β : W
∼
→ f∗VW such that β(ρ(g) · wα) = β(wα) for all

g ∈ G and α ∈ A. Choose a finite set of elements {gi ∈ G}i∈I generating a Zariski-dense subgroup
Γ ⊂ G. Then β(ρ(g) ·w) = β(w) for all g ∈ G if and only if β(ρ(gi) ·w) = β(w) for all i ∈ I: indeed,
if this latter condition holds, then since β is a linear map we have the identity

β(ρ(gh) · w) − β(w) = β(ρ(g)(ρ(h) − 1) · w) + β((ρ(g) − 1) · w)

which shows that β(ρ(g)·w) = β(w) for all g ∈ Γ, which then extends to all g ∈ G by Zariski-density.
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Now consider the map

ev : T rivW
V/X →

(
SectVW /X

)A×I

β %→ (β(ρ(gi) · wα) − β(wα))α∈A,i∈I ,

where
(
SectVW /X

)A×I
denotes the A× I-fold fiber product over X of copies of SectVW /X . By the

argument of the previous paragraph, T rivV/X is the subfunctor of T rivVW /X cut out by the fiber
product

T rivW
V/X ×

ev,(SectVW /X)A×I
,s

X,

where s : X →
(
SectVW /X

)A×I
is the (diagonal) zero section. Since T rivW

V/X and
(
SectVW /X

)A×I

are perfectoid spaces pro-étale over X , we deduce that T rivV/X is perfectoid and pro-étale over X .
Finally, one easily checks that the action map

G × T rivV/X → T rivV/X ×X T rivV/X

(g, β) %→ (β ◦ g, β)

is an isomorphism, so T rivV/X ×X X ′ + G × X ′ after pullback along the pro-étale cover X ′ → X
given by taking X ′ = T rivV/X itself. This verifies that T rivV/X → X is a pro-étale G-torsor.

For ii., one verifies directly that the recipe described in the statement defines a G-local system.
For iii., let X̃ → X be a pro-étale G-torsor with associated G-local system V(X̃), and choose

any representation (W, ρ). Then clearly

T rivV(X̃)W /X
∼= T rivV(X̃)/X ×G,ρ Isom(Qn

p , W )

where n = dimW . On the other hand, for any rank n Qp-local system S, we have a natural
isomorphism

T rivS/X
∼= (SectS/X)n ×Sect∧nS/X

Sect×∧nS/X .

Applying this to V(X̃)W and taking into account the isomorphism SectV(X̃)W /X
∼= X̃ ×G,ρ W , we

get natural isomorphisms

T rivV(X̃)W /X
∼=

(
SectV(X̃)W /X

)n
×Sect

∧nV(X̃)W /X
Sect×

∧nV(X̃)W /X

∼=
(
X̃ ×G,ρ Wn

)
×(X̃×G,ρ∧nW )

(
(X̃ ×G,ρ ∧nW $ 0)

)

∼= X̃ ×G,ρ

(
Wn ×∧nW ∧nW $ 0

)

∼= X̃ ×G,ρ Isom(Qn
p , W ),

so we have a natural GLdimW (Qp)-equivariant isomorphism

X̃ ×G,ρ Isom(QdimW
p , W ) ∼= T rivV(X̃)/X ×G,ρ Isom(Qn

p , W )

for any (W, ρ). Pushing this out along − ×GLdimW (Qp) IsomQp(W,QdimW
p ) gives a natural GL(W )-

equivariant isomorphism

X̃ ×G,ρ GL(W ) ∼= T rivV(X̃)/X ×G,ρ GL(W ) = T rivW
V(X̃)/X

.

Applying the recipe in the proof of part i. to this isomorphism for some faithful (W, ρ) then cuts
out X̃ and T rivV(X̃)/X as naturally isomorphic subfunctors of T rivW

V(X̃)/X
. This concludes the

proof.
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Corollary 4.14. Suppose D is a diamond and D̃ → D is a pro-étale G-torsor for some G = G(Qp)
as above. Then the map D̃ → D is pro-étale, and the map D̃/K → D is étale for any open compact
subgroup K ⊂ G.

Proof. The first claim follows immediately from the identification D̃ ∼= T rivV(D̃)/D, since we proved
the latter functor is pro-étale over D.

For the second claim, we first handle the case where G = GLn(Qp), so D̃ ∼= T rivV/D for some
rank n V = V(D̃) ∈ QpLoc(D). After conjugation, we may assume K ⊂ GLn(Zp), so we may
factor the map in question as

D̃/K = T rivV/D/K → T rivV/D/GLn(Zp) ∼= LatV/D → D.

By Theorem 4.11, LatV/D is étale over D, so it remains to prove that the map

f : T rivV/D/K → LatV/D

is finite étale. Pulling this map back along the pro-étale cover T rivV/D → LatV/D, we get a pullback
diagram

T rivV/D × GLn(Zp)/K ""

!!

T rivV/D

!!
T rivV/D/K "" LatV/D

where the upper horizontal arrow is finite étale. Thus the map f becomes finite étale after pullback
along a pro-étale cover of the target, and as we’ve already seen in the proof of Proposition 3.6, this
implies that f is finite étale.

Now we deal with the general case. Let V ∈ GLoc(D) be the G-local system associated with
D̃, so we may identify D̃ ∼= T rivV/D. Fix some faithful (W, ρ) ∈ Rep(G), and choose an open
compact subgroup K ′ ⊂ GL(W ) such that ρ−1(ρ(G) ∩ K ′) = K.14 Then the monomorphism
D̃ = T rivV/D → T rivW

V/D = D̃ ×G GL(W ) induces a monomorphism

D̃/K → T rivW
V/D/K ′ = (D̃ ×G GL(W ))/K ′

We claim this map is an open and closed immersion. To see this, note that

(D̃ ×G GL(W ))/K ′ ∼= D̃ ×G (GL(W )/K ′)

fibers over the discrete space G\GL(W )/K ′, and the fiber over the identity double coset e is exactly
D̃/K, so D̃/K → T rivW

V/D/K ′ is the pullback along the map T rivW
V/D/K ′ → G\GL(W )/K ′ of the

open and closed immersion e ↪→ G\GL(W )/K ′. In particular, the map D̃/K → T rivW
V/D/K ′ is

representable and étale. Since we already proved in the previous paragraph that T rivW
V/D/K ′ → D

is étale, we’re done.

Remark 4.15. Corollary 4.14 has direct applications to the construction of moduli spaces of local
shtukas and local Shimura varieties. More precisely, let E/Qp be a finite extension and let D =

14Fix a maximal compact subgroup K0 ⊂ GL(W ) containing ρ(K), and let N $ K0 be an open normal subgroup
small enough that ρ(G) ∩ N ⊂ ρ(K); then we can take K ′ = Nρ(K).
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(G, µ, b) be a triple15 where G/E is a quasisplit reductive group, µ : Gm,E → G is a cocharacter,
and b ∈ G(Ĕ); set G = G(E). We then have a diamond

GrEb
G,µ

∼= GrG,µ ×SpdE Spd Ĕ

whose functor of points sends S ∈ P̃erf/Spa Ĕ to the set of G-bundle isomorphisms {u : F|X
S! !S

∼
→

Eb,S! |X
S!!S} such that u extends to a µ-positioned modification of Eb,S! along the graph of S. The

subfunctor GrD = GrEb,adm
G,µ is defined by the condition that a given point f : S → GrEb

G,µ factors
through GrD if and only if the corresponding G-bundle F/XS! is pointwise-trivial. Applying results
of Kedlaya-Liu, one shows that the functor GrD is an open and partially proper subdiamond of
GrEb

G,µ and that there is a universal G-local system Vuniv/GrD such that f∗Vuniv corresponds to
the pointwise-trivial G-bundle F for any f : S → GrD.16 Applying Theorem 4.13 and Corollary 4.14
to this local system (for the group G0 = ResE/Qp

G), we get a diamond ShtD,∞ = T rivVuniv/GrD
which is a good pro-étale G-torsor over GrD: this is exactly the moduli space of local shtukas with
infinite level structure associated with the datum D = (G, µ, b). When K ⊂ G is open compact,
Corollary 4.14 shows that the quotient ShtD,K = ShtD,∞/K parametrizing local shtukas with K-
level structure is étale over GrD.

If µ is minuscule, we’ve seen in Corollay 3.19 that the diamond

GrEb
G,µ

∼= F#♦
G,µ ×SpdE Spd Ĕ

comes from a smooth rigid space over Spa Ĕ via the functor (−)♦. Since ShtD,K → GrEb
G,µ is étale,

the equivalence of étale sites associated with (−)♦ then produces a rigid space MD,K in the étale
site of F#G,µ ×SpaE Spa Ĕ such that M♦

D,K
∼= ShtD,K . The space MD,K is the local Shimura

variety associated with the datum D (and with K-level structure) whose existence was conjectured
by Rapoport and Viehmann [RV14].

4.4 Introducing pro-étale analytic stacks

In this section we consider the following structures.

Definition 4.16. Fix an adic space S. A pro-étale analytic stack over S is a fibered category

p : X → Perf/S♦

such that
1. X is a stack in groupoids over Perfproet

/S♦ .17

2. The diagonal X ∆
→ X × X is representable in diamonds.

3. There exists a diamond D and a 1-morphism Perfproet
/D → X 18 which is surjective and pro-étale.

By design, a pro-étale analytic stack is a perfectoid analogue of a Deligne-Mumford stack, and
reasonable Deligne-Mumford stacks over SpecQp can be “analytified” to pro-étale analytic stacks
over SpaQp. However, the following theorem gives a slew of more exotic examples.

15A “local shtuka datum” in the terminology of [Sch14], although we certainly don’t take the most general setup
possible.

16One also shows that GrD is nonempty iff [b] ∈ B(G, µ−1).
17Recall the natural equivalence Perfproet

/S♦
∼= gPerf

proet

/S ; we’ll use this without comment in what follows.
18Of course we’ll usually just write “a morphism D → X ” like a human being.
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Theorem 4.17. Let S be a fixed adic space, and let D → S♦ be a diamond with an action of a
locally profinite group G lying over the trivial action on S♦. Suppose that G is either profinite or
isomorphic to (an open subgroup of) G(Qp) for some reductive group G/Qp. Then [D/G] is a
pro-étale analytic stack over S.

Proof. Let us spell out the fibered category [D/G] for arbitrary locally profinite G. An object of
[D/G] is a quadruple (U, P, π, ϕ) where U ∈ Perf/S♦ , π : P → U is a pro-étale G-torsor, and
ϕ : P♦ → D is a G-equivariant map compatible with the structure maps to S♦. A morphism

(U ′, P ′, π′, ϕ′) → (U, P, π, ϕ)

in [D/G] is a morphism f : U ′ → U of perfectoid spaces over S♦ together with a G-equivariant
morphism h : P ′ → P over f which induces a G-equivariant isomorphism P ′ ∼= P ×π,U,f U ′ and
such that ϕ = ϕ′ ◦ h. The functor p is given by

(U, P, π, ϕ) %→ U ∈ Perf/S♦ .

In other words, the fiber category of [D/G] over a given U ∈ Perf/S♦ is the groupoid of pro-étale
G-torsors over U equipped with a G-equivariant map to D.

Suppose now that G is restricted as in the theorem. Then we claim [D/G] is a stack in groupoids
over Perfproet

/S♦ : i.e., pro-étale G-torsors over U satisfy effective descent for pro-étale covers. For G
profinite, one easily reduces to the straightforward case of finite G and pro-étale descent for finite
étale G-torsors as in the proof of Proposition 3.6. For G = G(Qp), the equivalence proved in
Theorem 4.13.iii reduces this claim to the fact that Qp-local systems satisfy pro-étale descent.

Now we consider the diagonal. For any morphism U
(x1,x2)
−→ X × X with U ∈ Perf/S♦ , we need

to show that
IsomU (x1, x2) = U ×X×X ,∆ X

is representable by a diamond. Specifying x1 and x2 amounts to specifying quadruples (U, Pi, πi, ϕi)
as above, and by definition IsomU (x1, x2) is the sheaf on Perf/U sending f : T → U to the set of
isomorphisms i : f∗P♦

1
∼
→ f∗P♦

2 fitting into a G-equivariant commutative diagram

D

f∗P♦
1

f∗π1

!!

i

∼ ""

ϕ1

++*********

f∗P♦
2

ϕ2

&&

f∗π1,,++
++

++
++

+

T ♦

of diamonds over S♦. In particular, IsomU (x1, x2) is naturally a subfunctor of the sheaf IsomGTor(U)(P1, P2)

on Perf/U which sends f : T → U to the set of G-equivariant isomorphisms i : f∗P1
∼
→ f∗P2 over
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T . We claim that these sheaves naturally sit in a G-equivariant commutative diagram

D
∆ "" D ×S♦ D

IsomU (x1, x2) ×U♦ P♦
1

a

&&

""

ω

!!

IsomGTor(U)(P1, P2) ×U♦ P♦
1

b

&&

!!
IsomU (x1, x2) "" IsomGTor(U)(P1, P2)

of sheaves on Perfproet
/S♦ where both squares are pullback squares. For the lower square this is

true by construction. For the upper square, we need to define the morphism b. Giving a T -point of
IsomGTor(U)(P1, P2)×U♦ P♦

1 is the same as specifying a triple (f, i, s) consisting morphism f : T → U

together with a G-equivariant isomorphism i : f∗P1
∼
→ f∗P2 and a section s : T → f∗P1 of the map

f∗P1 → T . Then b sends such a triple (f, i, s) to the T point of D×S♦D given by T
(ϕ1◦s,ϕ2◦i◦s)

−→ D×D,
which factors through D ×S♦ D by the commutativity of the diagrams

P♦
i

πi

!!

ϕi "" D

!!
U♦ "" S♦

for i = 1, 2. Since i and the ϕ’s are G-equivariant, b is G-equivariant. Furthermore, one sees by
direct inspection that b(f, i, s) factors through ∆(D) if and only if ϕ1 ◦ s = ϕ2 ◦ i ◦ s as morphisms
T → D; varying s using the G-action, the G-equivariance of b shows that ϕ1 ◦ s = ϕ2 ◦ i ◦ s for one s
if and only if the same equality holds for all s : T → f∗P1, if and only if (f, i) comes from a T -point
of IsomU (x1, x2). This shows that the upper square is a pullback square.

Next, we claim that IsomGTor(U)(P1, P2) is a diamond over U♦.19 For G = lim←i G/Hi profinite,
this easily reduces to showing that

IsomGTor(U)(P1, P2) ∼= lim
←i

Isom(G/Hi)Tor(U)(P1/Hi, P2/Hi)

is an inverse limit of perfectoid spaces finite étale over U , which again reduces us to pro-étale descent
for finite étale morphisms. For G = G(Qp), it’s enough to show that IsomGTor(U)(P1, P2) ×U♦ P♦

1

is a diamond, since the natural projection onto IsomGTor(U)(P1, P2) is surjective and pro-étale. Let
Vi be the G-local system associated with Pi; then

IsomGTor(U)(P1, P2) ×U♦ P♦
1

∼= IsomGLoc(U)(V1,V2) ×U♦ T rivV1/U♦

∼= T rivV2/U♦ ×U♦ T rivV1/U♦

where the first isomorphism follows by the results of Theorem 4.13 and the second is given by
sending (i, β) to (i ◦ β, β). Since each T rivVi/U♦ is a diamond, this proves the claim.

Going back to the diagram, we now know that everything in the upper square is a diamond
except IsomU (x1, x2) ×U♦ P♦

1 . Since the upper square is a pullback square, the existence of fiber
products now shows that IsomU (x1, x2) ×U♦ P♦

1 is a diamond. But then

ω : IsomU (x1, x2) ×U♦ P♦
1 → IsomU (x1, x2)

19In fact, it is a perfectoid space, although we won’t spell this out.

36



is surjective and pro-étale, since it’s the pullback of the surjective pro-étale map P♦
1 → U♦ along

IsomU (x1, x2) → U♦, and the source of ω is a diamond, so the target is a diamond as well.

This construction gives a natural geometric home to some of the equivariant sites considered in
[Sch15a]: the equivariant étale site (Pn−1/D×)et introduced there coincides with the literal étale
site of the pro-étale analytic stack [Pn−1,♦/D×].

We also note that these stacks can be quite strange. For example, let X∞ be the infinite level
perfectoid modular curve (with some tame level Kp), and consider the stack X = [X∞/GL2(Qp)].
This is the stack of rigid analytic families of elliptic curves with Kp-level structure taken up to
p-power isogeny, roughly. One can then show, using Rapoport-Zink uniformization, that X contains
an open substack consisting of finitely many proper genus zero curves.

5 Period maps

5.1 Vector bundles and G-bundles on adic spaces

Let X be an adic space over Qp. We write VB(X) for the category of vector bundles on X , and we
define FilVB(X) as the category of pairs (V , Fil•V) where V is a vector bundle on X and Fil•V ⊂ V
is an exhaustive separated decreasing filtration of V by sub-vector bundles which are OX -direct
summands locally on X . We make FilVB(X) into a tensor category by setting

(V , Fil•V) ⊗ (V ′, Fil•V ′) =



V ⊗ V ′,
∑

i+j=•

FiliV ⊗OX FiljV ′



 ,

i.e. by giving V ⊗OX V ′ the convolution filtration.

Definition 5.1. Let X be any adic space over Qp, and let G be any reductive group over Qp. A
G-bundle on X is an exact additive tensor functor

V : Rep(G) → VB(X)

(W, ρ) %→ VW .

A filtered G-bundle on X (with underlying G-bundle V) is an exact additive tensor functor

F = (V , Fil•V) : Rep(G) → FilVB(X)

(W, ρ) %→ (VW , Fil•VW ).

Morphisms in these categories are natural isomorphisms of tensor functors (respecting the additional
structures).

Of course, the trivial G-bundle is the functor Vtriv = Vtriv
X : (W, ρ) → OX ⊗Qp W .

Proposition 5.2. Any G-bundle on any adic space X/Qp is étale-locally trivial.

Proof. Vector bundles, and hence G-bundles, glue for the analytic topology on X [KL15, Theorem
2.7.7], so we may assume X = Spa(A, A+) is affinoid. Then we have a tensor equivalence between
the category VB(X) and the category FP(A) of finitely generated projective A-modules. But an
additive exact tensor functor V : Rep(G) → FP(A) is the same thing as a G-torsor G over Spec A
[DMOS82, Theorem II.3.2], and any such G → Spec A is smooth and thus étale-locally split. Finally,
any étale cover of Spec A can be refined to an étale cover of Spa(A, A+).
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Theorem 5.3. Let X be a connected locally Noetherian adic space over Qp, and let F be a filtered
G-bundle on X with underlying vector bundle V. Then there is a unique G(Qp)-conjugacy class
of cocharacters {µF} : Gm,Qp

→ GQp
which induces the filtration on V étale-locally on X, in the

following precise sense: we can find an étale covering {fi : Ui → X}i∈I by some affinoid adic spaces
Ui which each sit in a commutative diagram

Ui
""

!!

X

!!
SpaLi

"" SpaQp

for some finite extensions Li/Qp, Li ⊂ Qp, together with cocharacters µi ∈ {µF} defined over Li

and trivializations αi : f∗
i V + Vtriv

Ui
, such that µi defines (and splits) the filtration induced on Vtriv

Ui

by αi for each i ∈ I.

The final clause here means that for any fixed i, then for all (W, ρ) and all n ∈ Z we have

αi (f∗
i FilnFVW ) = ⊕m≥nV

triv
Ui,W (m)

as sub-OUi-modules of Vtriv
Ui,W

, where

Vtriv
Ui,W (m) =

{
s ∈ Vtriv

Ui,W
∼= OUi ⊗Qp W | ρ(µi(u)) · s = ums ∀u ∈ O(Ui)

×
}

.

Proof. Arguing as in the proof of Proposition 5.2 reduces us to proving the analogous result for
filtered G-bundles over a Noetherian affine Qp-scheme Spec A. In this case the claim follows from
the results in [Lev13, §6.1].

5.2 The de Rham period map

Fix a complete discretely valued extension E/Qp with perfect residue field, and suppose X is a
smooth rigid analytic space over SpaE. Let V be a Qp-local system on X . Then we set

DdR(V) = λ∗

(
V ⊗Qp OBdR

)
,

where λ : Xproet → Xan denotes the natural projection of sites. This is canonically a vector bundle
on X , with filtration and integrable connection induced from the filtration and connection on OBdR,
and there is a natural injective OBdR-linear comparison map

αdR : λ∗DdR(V) ⊗λ∗OX OBdR → V ⊗Qp OBdR.

As in the introduction, we say V is de Rham if αdR is an isomorphism. It’s easy to check that
DdR(−) defines an exact additive tensor functor from de Rham Qp-local systems on X to filtered
vector bundles with integrable connection on X .

Suppose more generally that V is a G = G(Qp)-local system on X , for G/Qp as before. As in
the introduction, we say V is de Rham if each VW is de Rham. Then for V a de Rham G-local
system, the functor

DdR(V) : Rep(G) → FilVB(X)

(W, ρ) %→ (DdR(VW ), Fil•DdR(VW ))

defines a filtered G-bundle on X .
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Theorem 5.4. Suppose V ∈ GLoc(X) is de Rham with constant Hodge cocharacter µ. Then we
have a G-equivariant period morphism

πdR : T rivV/X → GrG,µ

of diamonds over SpdQp.

Proof. Let T = Spa(R, R+) → T rivV/X be an (R, R+) point of T rivV/X for some perfectoid
affinoid (E,OE)-algebra (R, R+). Specifying such a point amounts to specifying a pair (f, β) where
f : T → X is a T -point of X and β : Vtriv ∼

→ f∗V is a trivialization. We need to describe an
(R, R+)-point of GrG,µ.

Recall that GrG,µ is the functor on perfectoid (E,OE)-algebras sending (R, R+) to the set of
associations

Λ : (ρ, W ) ∈ Rep(G) → {ΛW ⊂ W ⊗Qp BdR(R) a B+
dR(R)−lattice}

compatible with tensor products and short exact sequences, such that ΛW is ρ◦µ-positioned relative
to the lattice W ⊗Qp B+

dR(R). For any (W, ρ) ∈ Rep(G), let M0,W ⊂ VW ⊗Qp BdR be the B+
dR-local

system given by the image of

(
λ∗DdR(VW ) ⊗λ∗OX OB+

dR

)∇=0

under the isomorphism

α∇=0
dR : (λ∗DdR(VW ) ⊗λ∗OX OBdR)∇=0 ∼

→ VW ⊗Qp BdR.

The assignment (W, ρ) %→ M0,W ⊂ VW ⊗Qp BdR is a tensor functor in the obvious sense: it describes

a “B+
dR-lattice with G-structure inside V⊗BdR”. Pulling back under f , composing with the inverse

of the isomorphism βW : W
∼
→ f∗VW induced by β, and passing to global sections on T gives us a

family of B+
dR(R)-lattices

ΛW = H0
proet

(
T, (βW ⊗ 1)−1(f∗M0,W )

)
⊂ W ⊗Qp BdR(R)

compatible with tensor products and short exact sequences. By [Sch13, Proposition 7.9], each
M0,W is ρ◦µ-positioned relative to the lattice VW ⊗Qp B+

dR. Thus we conclude that the association
(W, ρ) %→ ΛW ⊂ W ⊗Qp BdR(R) defines an (R, R+)-point of GrG,µ as desired. The G-equivariance
of the map πdR is clear from the construction.

5.3 The Hodge-Tate period map

Let X be as in the previous section. Following Hyodo [Hyo89], the relative analogue of the period
ring Cp over X is the sheaf of rings OC = gr0OBdR on Xproet. For any V ∈ QpLoc(X), we set

Di
HT(V) = λ∗

(
V ⊗Qp OC(i)

)
,

which turns out to be a vector bundle on X . We have a natural map

⊕i∈Zλ∗Di
HT(V) ⊗λ∗OX OC(−i) → V ⊗Qp OC

which is always injective; we say V is Hodge-Tate if this map is an isomorphism. These constructions
are again compatible with tensor product, direct sum and subquotient.

39



Proposition 5.5. If V ∈ QpLoc(X) is Hodge-Tate, there is a natural ascending filtration on

V ⊗Qp ÔX by ÔX-submodules Fili such that

Fili/Fili−1
∼= λ∗Di

HT(V) ⊗λ∗OX ÔX(−i).

This is the relative Hodge-Tate filtration.

Proof. Set OBHT = gr(OBdR), so OC is the zeroth graded of this ring and αHT is the zeroth graded
of the isomorphism

αHT : λ∗DHT(V) ⊗λ∗OX OBHT
∼
→ V ⊗Qp OBHT.

We have a natural long exact sequence

0 → ⊕i∈ZÔX(i) → OBHT
ϑ
→ OBHT ⊗λ∗OX λ∗Ω1

X(−1) → · · ·

compatible with the grading, which induces a linear endomorphism ϑ : DHT(V) → DHT(V)⊗OX Ω1
X

compatible with the grading if we put Ω1
X in degree one. Now consider the ascending filtration on

OBHT with FiljOBHT given as the associated graded of the submodule t−jOB+
dR ⊂ OBdR. Then

we define
Filj(V ⊗Qp ÔX) ⊂ V ⊗Qp ÔX = gr0(V ⊗Qp OBHT)ϑ=0

as the image of
gr0 (λ∗DHT(V) ⊗λ∗OX FiljOBHT)ϑ=0

under gr0(αHT).

Again we have a notion of a Hodge-Tate G-local system V, and we get a Hodge cocharacter µV

such that Di
HT(VW ) has rank equal to the dimension of the ith weight space of the cocharacter

ρ ◦ µV : Gm,Qp
→ GL(W )Qp

for any (W, ρ) ∈ Rep(G). The previous proposition then gives

V ⊗Qp ÔX the structure of a filtered G-bundle on Xproet, in the evident sense.

Theorem 5.6. Suppose V ∈ GLoc(X) is Hodge-Tate with constant Hodge cocharacter µ. Then we
have a G-equivariant period morphism

πHT : T rivV/X → F#♦
G,µ

of diamonds over SpdQp.

Proof. Let V̂ = Vtriv ⊗ ÔX be the trivial G-bundle on Xproet, i.e. the tensor functor V̂ : (W, ρ) %→

ÔX ⊗Qp W . The character µ induces an increasing filtration Filµ• on V̂ . Following [CS15, §2.3],
consider the Pstd

µ -torsor over Xproet with sections over a fixed f : U → X given by the set

P(U) =
{
i : V̂|U

∼
→ f∗V ⊗Qp ÔU | i (Filµ• ) = f∗Fil•

}
,

where of course f∗Fil• denotes the pullback of the relative Hodge-Tate filtration on V ⊗Qp ÔX .
Pushing out P along −×Pstd

µ
G gives a G-torsor G over Xproet with sections over f : U → X given

by
G(U) =

{
i : V̂|U

∼
→ f∗V ⊗Qp ÔU

}
.
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We can equally well regard G as a presheaf on P̃erf/X . By construction, we have a natural G-
equivariant map

G → F#♦
G,µ

of (pre)sheaves. On the other hand, we have a natural G-equivariant map T rivV/X → G sending a
T -point

(f : T → X, β ∈ Isom(Vtriv, f∗V))

of T rivV/X to the section
β ⊗ 1 ∈ G(T ).

We define πHT as the composite of these two maps.

Remark 5.7. This argument also shows that G is a diamond: the above construction gives a natural
surjective and pro-étale map

T rivV/X♦ ×SpdQp G♦ → G.

5.4 The Hodge-Tate period map for Shimura varieties

Let (G, X), µ and Ep be as before. Fix a tame level Kp ⊂ G(Ap
f ), so we have the rigid analytic

Shimura variety SKp = SKpKp over Spa Ep for any open compact Kp ⊂ G(Qp) = G, with associated
diamond SKp over SpdEp. For simplicity, we assume that (G, X) satisfies Milne’s axiom SV5: this
guarantees that the symmetry group of the tower {SKp}Kp is the full group G and not a quotient
thereof [Mil04, Theorem 5.28]. For the purposes of constructing πHT, one can certainly replace
(G, X) at the outset by (G, X)ad, so there’s no harm in imposing this condition.

Consider the diamond
S∞ = lim

←Kp

SKp

with its natural action of G, so S∞ is a pro-étale Kp-torsor over any SKp . Pushing out along

−×Kp G gives a G-torsor S̃Kp → SKp and thus by Theorem 4.13 a G-local system

VKp ∈ GLoc(SKp) ∼= GLoc(SKp).

By [LZ16], this local system is de Rham with Hodge cocharacter µ, so Theorem 5.6 gives a G-
equivariant Hodge-Tate period map

πHT,Kp : T rivVKp/SKp
∼= S∞ ×Kp G → F#♦

G,µ

which depends a priori on our choice of Kp.

Theorem 5.8. There is a unique G-equivariant morphism

πHT : S∞ → F#♦
G,µ

such that the diagram

S∞ ×Kp G
πHT,Kp ""

##,,
,,

,,
,,

,,
F#♦

G,µ

S∞

πHT

----------

commutes G-equivariantly for any choice of Kp.
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Proof. The best way to think about this is probably through the following statement: there is a de
Rham G-local system V0 on the stack S0 = [S∞/G] such that each VKp is obtained by pulling back
V0 under the natural map SKp → S0, and such that

S∞
∼= T rivV0/S0

.

With a little work, one can make literal sense out of this statement, and then simply define πHT by
applying Theorem 5.6 directly to the space T rivV0/S0

. However, the existence of V0 is merely a
slick repackaging of the compatibility of the VKp ’s with the symmetries of the tower {SKp}Kp : for
any K ′

p ⊂ Kp (resp. any Kp and γ ∈ G) the associated map pr : SK′
p
→ SKp (resp. γ : SγKpγ−1

∼
→

SKp) induces a canonical isomorphism pr∗VKp
∼= VK′

p
(resp. γ∗VKp

∼= VγKpγ−1).

5.5 Generic fiber Newton strata

In this section we sketch the proof of Theorem 1.10. Let f : Y → X, f : Y → X , M and V be
as in the theorem. Fix any rank one point x = Spa(K,OK) → X , and choose a geometric point
x = Spa(C,OC) lying over it, with corresponding point x : Spf OC → X. Let

k = OC/mC = OC!/mC!

be the residue field of OC , so we get a natural geometric point s : Spec k → X. Note that |s| = |x|
as points in the topological space |X|, and that the specialization map s : |X | → |X| sends |x| = |x|
to this point. Set L = W (k)[ 1p ] and A = W (OC!), so the surjection OC! " k induces a surjection
A[ 1p ] " L.

By [CS15, Lemma 4.4.1], we have Vx
∼= Hi

et(Yx,Qp), so T = Hi
et(Yx,Zp)/tors gives a canonical

Zp-lattice in Vx. On the other hand, V is de Rham, so we get B+
dR-local systems M,M0 ⊂ V⊗QpBdR

associated with V as in the introduction. Specializing the isomorphism M0⊗B
+
dR

BdR
∼= M⊗

B
+
dR

BdR

at x and noting that Mx
∼= T ⊗Zp B+

dR(C), we get a pair (T, Ξ) consisting of a finite free Zp-module
T together with a B+

dR(C)-lattice

Ξ = M0,x ⊂ T ⊗Zp BdR(C).

(When x is a classical rigid analytic point, we have Ξ = Hi
dR(Yx) ⊗K B+

dR(C), but in general this
expression doesn’t make sense.) Note that in fact Ξ ⊂ T ⊗Zp B+

dR(C). We call such pairs Fargues
pairs, in recognition of the following theorem:

Theorem 5.9 (Fargues). The following categories are naturally equivalent:
i) Pairs (T, Ξ) as above.
ii) Breuil-Kisin modules over A := W (OC!).
iii) Shtukas over Spa C' with one paw at C.

Applying this theorem to the particular Fargues pair we associated with x above, we get a
Breuil-Kisin module M over A; specializing M [ 1p ] along A[ 1p ] " L gives a ϕ-isocrystal M0 over L.

Proposition 5.10. The Newton polygon of M0 coincides with the Newton polygon of Hi
crys(Ys/W (k))[ 1p ],

and thus determines the Newton stratum of |X| containing |s|.
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Proof. In fact, much more is true. Bhatt-Morrow-Scholze have recently defined [BMS16] a remark-
able cohomology functor Hi

A
(−) on smooth proper formal schemes over Spf OC taking values in

Breuil-Kisin modules over A; combining their work with Fargues’s theorem, we get an identifica-
tion M [ 1p ] ∼= Hi

A
(Yx)[ 1p ]. Since Bhatt-Morrow-Scholze’s work also gives a canonical identification

Hi
A
(Yx) ⊗A L ∼= Hi

crys(Ys/W (k))[ 1p ] compatible with Frobenius, we deduce that the ϕ-isocrystal
M0 coincides ϕ-equivariantly with the ith rational crystalline cohomology of Ys, and this certainly
implies the claim.

To finish the proof, we make use of the following compatibility. Note that we freely use some
notation and terminology from [Sch14, §12-14] in what follows. In particular, we make use of
the space Y(0,∞) = Spa W (OC!) $ {x | |p [(] |x = 0} and the Fargues-Fontaine curve X = XC! =
Y(0,∞)/ϕZ. Let π : Y(0,∞) → X denote the natural map of adic spaces.

Proposition 5.11. Notation and assumptions as above, let E be the vector bundle on the Fargues-
Fontaine curve X obtained by modifying the trivial bundle T ⊗Zp OX at the point ∞ in such a way
that the sequence

0 → E → T ⊗Zp OX → i∞∗

(
(T ⊗Zp B+

dR(C))/Ξ
)
→ 0

of coherent sheaves is exact. Let Ẽ be the extension of the associated ϕ-equivariant vector bundle
π∗E on Y(0,∞) to a ϕ-equivariant vector bundle on Y(0,∞]. Then:

i. The specialization ẼxL is ϕ-equivariantly isomorphic to M0.
ii. After choosing a splitting k ↪→ OC! , we get a ϕ-equivariant isomorphism

ẼxL ⊗
W (k)[

1
p ]

OY(0,∞)
∼= π∗E .

Proof of Theorem 1.10. Unwinding the definition of Caraiani-Scholze shows that the stratum of
GrGLn,µ containing πdR(x) simply records the Harder-Narasimhan polygon of the vector bundle E .
By Proposition 5.11.ii, the Harder-Narasimhan polygon of E coincides with the Newton polygon of
ẼxL . By Proposition 5.11.i, the latter polygon coincides with the Newton polygon of M0, but we’ve
already seen that

M0
∼= Hi

crys(Ys/W (k))[ 1p ],

so we’re done.
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