Pairings on modules of analytic distributions

David Hansen

June 5, 2012

This is an attempt to understand some very mysterious (and rather muddled) assertions in Section 3.5 of Walter Kim's Berkeley Ph.D. thesis.

The naive pairings

Let

$$
\Sigma_{0}(p)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in M_{2}\left(\mathbf{Z}_{p}\right), a \in \mathbf{Z}_{p}^{\times}, c \in p \mathbf{Z}_{p}, a d-b c \neq 0\right\}
$$

denote the usual monoid. For an integer $k \geq 0$ and a ring R we write $V_{k}(R)=R[Z]^{\operatorname{deg} \leq k}$, with $V_{k}=V_{k}\left(\mathbf{Q}_{p}\right)$. Give V_{k} the right action $(p \cdot g)(Z)=(d+c Z)^{k} p\left(\frac{b+a Z}{d+c Z}\right)$. Let \mathbf{D}_{k} denote the \mathbf{Q}_{p}-Banach dual of the Tate algebra $\mathbf{A}=\mathbf{Q}_{p}\langle z\rangle$, and equip \mathbf{D}_{k} with the right action

$$
(\mu \mid g)(f)=\mu\left((a+c z)^{k} f\left(\frac{b+d z}{a+c z}\right)\right), g \in \Sigma_{0}(p) .
$$

The map $\rho_{k}: \mathbf{D}_{k} \rightarrow V_{k}$ defined by

$$
\rho_{k}: \mu \mapsto \int(Z+z)^{k} \mu(z)
$$

is $\Sigma_{0}(p)$-equivariant.
We define a bilinear pairing $(,)_{k}: \mathbf{D}_{k} \times \mathbf{D}_{k} \rightarrow \mathbf{Q}_{p}$ by the formula

$$
\begin{aligned}
\left(\mu_{1}, \mu_{2}\right)_{k} & \mapsto \int\left(z_{1}-z_{2}\right)^{k} \mu_{1}\left(z_{1}\right) \mu_{2}\left(z_{2}\right) \\
& =\sum_{i=0}^{k}(-1)^{i}\binom{k}{i} \mu_{1}\left(z_{1}^{k-i}\right) \mu_{2}\left(z_{2}^{i}\right) .
\end{aligned}
$$

Here we regard $\left(z_{1}-z_{2}\right)^{k}$ as an element of $\mathbf{A} \otimes \mathbf{A}$ in the obvious way. Note that $(,)_{k}$ is symmetric or skew-symmetric according to whether k is even or odd.

Proposition 1. The pairing $(,)_{k}$ satisfies the equivariance property

$$
\left(\mu_{1}\left|g, \mu_{2}\right| g\right)_{k}=(\operatorname{det} g)^{k}\left(\mu_{1}, \mu_{2}\right)_{k}
$$

for all $\mu_{1}, \mu_{2} \in \mathbf{D}_{k}$ and all $g \in \Sigma_{0}(p)$.
Proof. A simple calculation verifies the identity

$$
\left(b+d z_{1}\right)\left(a+c z_{2}\right)-\left(b+d z_{2}\right)\left(a+c z_{1}\right)=(\operatorname{det} g)\left(z_{1}-z_{2}\right)
$$

With this in mind, we simply unwind the actions:

$$
\begin{aligned}
\left(\mu_{1}\left|g, \mu_{2}\right| g\right)_{k} & =\int\left(\frac{b+d z_{1}}{a+c z_{1}}-\frac{b+d z_{2}}{a+c z_{2}}\right)^{k}\left(a+c z_{1}\right)^{k}\left(a+c z_{2}\right)^{k} \mu_{1}\left(z_{1}\right) \mu_{2}\left(z_{2}\right) \\
& =\int\left(\left(b+d z_{1}\right)\left(a+c z_{2}\right)-\left(b+d z_{2}\right)\left(a+c z_{1}\right)\right)^{k} \mu_{1}\left(z_{1}\right) \mu_{2}\left(z_{2}\right) \\
& =\int\left((\operatorname{det} g)\left(z_{1}-z_{2}\right)\right)^{k} \mu_{1}\left(z_{1}\right) \mu_{2}\left(z_{2}\right) \\
& =(\operatorname{det} g)^{k}\left(\mu_{1}, \mu_{2}\right)_{k}
\end{aligned}
$$

as desired.
Now, the module V_{k} admits a well-known bilinear pairing $\langle,\rangle_{k}: V_{k} \times V_{k} \rightarrow \mathbf{Q}_{p}$ satisfying the same equivariance property and unique up to scaling, defined on the obvious monomial basis of $V_{k} \otimes V_{k}$ by

$$
Z_{1}^{i} \otimes Z_{2}^{j} \mapsto \begin{cases}(-1)^{i}\binom{k}{i}^{-1} & \text { if } i+j=k \\ 0 & \text { if } i+j \neq k\end{cases}
$$

Proposition 2. The diagram

commutes.
Proof. We calculate

$$
\begin{aligned}
\left\langle\rho_{k}\left(\mu_{1}\right), \rho_{k}\left(\mu_{2}\right)\right\rangle_{k} & =\left\langle\sum_{i=0}^{k}\binom{k}{i} Z_{1}^{i} \mu_{1}\left(z_{1}^{k-i}\right), \sum_{j=0}^{k}\binom{k}{i} Z_{2}^{j} \mu_{2}\left(z_{1}^{k-j}\right)\right\rangle_{k} \\
& =\sum_{i=0}^{k}(-1)^{i}\binom{k}{i} \mu_{1}\left(z_{1}^{k-i}\right) \mu_{2}\left(z_{2}^{i}\right) \\
& =\left(\mu_{1}, \mu_{2}\right)_{k}
\end{aligned}
$$

The enlightened pairings

Set $\mathcal{W}=\operatorname{Hom}_{\text {cts }}\left(\mathbf{Z}_{p}^{\times}, \mathbf{G}_{m}\right)^{\text {an }}$, the \mathbf{Q}_{p}-rigid analytic space of weights over \mathbf{Q}_{p}. Given an admissible affinoid open $\Omega \subset \mathcal{W}$, there is a universal character $\chi_{\Omega}: \mathbf{Z}_{p}^{\times} \rightarrow A(\Omega)^{\times}$and a minimal integer $s[\Omega]$ such that $\chi_{\Omega}\left(1+p^{s+1} z\right): \mathbf{Z}_{p} \rightarrow A(\Omega)$ is analytic, i.e. is given by an element of the relative Tate algebra $A(\Omega)\langle z\rangle$. Let \mathbf{A}^{s} denote the module of \mathbf{Q}_{p}-valued continuous functions on \mathbf{Z}_{p} which are analytic on each coset of $p^{s} \mathbf{Z}_{p}$. For any $s \geq s[\Omega]$, set

$$
\mathbf{A}_{\Omega}^{s}=\mathbf{A}^{s} \widehat{\otimes}_{\mathbf{Q}_{p}} A(\Omega),
$$

equipped with the left action $(g \cdot f)(z)=\chi_{\Omega}(a+c z) f\left(\frac{b+d z}{a+c z}\right)$. Set

$$
\begin{aligned}
\mathbf{D}_{\Omega}^{s} & =\operatorname{Hom}_{A(\Omega)}^{\mathrm{cts}}\left(\mathbf{A}_{\Omega}^{s}, A(\Omega)\right) \\
& \simeq \operatorname{Hom}_{\mathbf{Q}_{p}}^{\mathrm{cts}}\left(\mathbf{A}^{s}, A(\Omega)\right)
\end{aligned}
$$

Suppose Ω contains a character of the form $x \mapsto x^{k}$ for some integer k; we write w_{k} for the corresponding point of Ω. By the basic properties of affinoid opens, we will have $w_{k^{\prime}} \in \Omega$ for an infinitude of integers k^{\prime}, in fact for all integers with $(p-1) p^{e} \mid\left(k^{\prime}-k\right)$ and e sufficiently large. Evaluation of an element of $A(\Omega)$ at a point $w_{k} \in \Omega$ is well-defined, and induces a well-defined $\Sigma_{0}(p)$-equivariant specialization map $\mathbf{D}_{\Omega}^{s} \rightarrow \mathbf{D}_{k}^{s}$ and therefore a map

$$
\sigma_{k}: \mathbf{D}_{\Omega}^{s} \rightarrow V_{k}
$$

obtained by composing with the natural morphisms $\mathbf{D}_{k}^{s} \rightarrow \mathbf{D}_{k}$ and $\rho_{k}: \mathbf{D}_{k} \rightarrow V_{k}$.
We define the enlightened pairings as follows. Set $W_{p}=\left(\begin{array}{ll} & -1 \\ p & \end{array}\right)$. The enlightened pairing on V_{k} is $\left\langle p_{1}, p_{2}\right\rangle_{k}^{\circ}=\left\langle p_{1}, p_{2} \cdot W_{p}\right\rangle$. The enlightened pairing on \mathbf{D}_{k} is

$$
\left(\mu_{1}, \mu_{2}\right)_{k}^{\circ}=\int_{\mathbf{Z}_{p}^{2}}\left(1+p z_{1} z_{2}\right)^{k} \mu_{1}\left(z_{1}\right) \mu_{2}\left(z_{2}\right) .
$$

Finally, we define an $A(\Omega)$-bilinear pairing

$$
\left(\mu_{1}, \mu_{2}\right)_{\Omega}^{\circ}: \mathbf{D}_{\Omega}^{s} \times \mathbf{D}_{\Omega}^{s} \rightarrow A(\Omega)
$$

by

$$
\left(\mu_{1}, \mu_{2}\right)_{\Omega}^{\circ}=\int \chi_{\Omega}\left(1+p z_{1} z_{2}\right) \mu_{1}\left(z_{1}\right) \mu_{2}\left(z_{2}\right) .
$$

Proposition 3. Each of the enlightened pairings satisfies the equivariance property $\left\{\phi_{1} \cdot g, \phi_{2}\right\}=\left\{\phi_{1}, \phi_{2} \cdot W_{p} g^{\iota} W_{p}^{-1}\right\}$, and the diagram

commutes for all $w_{k} \in \Omega$.
Here ι is Shimura's main involution; note that

$$
W_{p}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{\iota} W_{p}^{-1}=\left(\begin{array}{cc}
a & p^{-1} c \\
p b & d
\end{array}\right),
$$

so $x \mapsto W_{p} x^{\iota} W_{p}^{-1}$ is an involution of $\Sigma_{0}(p)$. Presumably, $(,)_{\Omega}^{\circ}$ is the unique $A(\Omega)$-bilinear pairing on $\mathbf{D}_{\Omega}^{s} \times \mathbf{D}_{\Omega}^{s}$ satisfying the claim of Proposition 3, and presumably this is an easy consequence of the Zariski-density of the points $w_{k} \in \Omega$ and the uniqueness of the pairings $\langle,\rangle_{k}^{\circ}$, but I have made no attempt to verify this.

