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This is an attempt to understand some very mysterious (and rather muddled) assertions
in Section 3.5 of Walter Kim’s Berkeley Ph.D. thesis.

The naive pairings

Let

Σ0(p) =

{(
a b
c d

)
∈ M2(Zp), a ∈ Z×

p , c ∈ pZp, ad − bc #= 0

}

denote the usual monoid. For an integer k ≥ 0 and a ring R we write Vk(R) = R[Z]deg≤k,

with Vk = Vk(Qp). Give Vk the right action (p · g)(Z) = (d + cZ)kp
(

b+aZ
d+cZ

)
. Let Dk denote

the Qp-Banach dual of the Tate algebra A = Qp 〈z〉, and equip Dk with the right action

(µ|g)(f) = µ

(
(a + cz)kf

(
b + dz

a + cz

))
, g ∈ Σ0(p).

The map ρk : Dk → Vk defined by

ρk : µ (→

∫
(Z + z)kµ(z)

is Σ0(p)-equivariant.
We define a bilinear pairing ( , )k : Dk ×Dk → Qp by the formula

(µ1, µ2)k (→

∫
(z1 − z2)

kµ1(z1)µ2(z2)

=
k∑

i=0

(−1)i
(

k
i

)
µ1(z

k−i
1 )µ2(z

i
2).

Here we regard (z1 − z2)k as an element of A ⊗ A in the obvious way. Note that ( , )k is
symmetric or skew-symmetric according to whether k is even or odd.
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Proposition 1. The pairing ( , )k satisfies the equivariance property

(µ1|g, µ2|g)k = (det g)k (µ1, µ2)k

for all µ1, µ2 ∈ Dk and all g ∈ Σ0(p).
Proof. A simple calculation verifies the identity

(b + dz1)(a + cz2) − (b + dz2)(a + cz1) = (det g)(z1 − z2).

With this in mind, we simply unwind the actions:

(µ1|g, µ2|g)k =

∫ (
b + dz1

a + cz1
−

b + dz2

a + cz2

)k

(a + cz1)
k(a + cz2)

kµ1(z1)µ2(z2)

=

∫
((b + dz1)(a + cz2) − (b + dz2)(a + cz1))

k µ1(z1)µ2(z2)

=

∫
((det g)(z1 − z2))

k µ1(z1)µ2(z2)

= (det g)k (µ1, µ2)k ,

as desired. !

Now, the module Vk admits a well-known bilinear pairing 〈 , 〉k : Vk×Vk → Qp satisfying
the same equivariance property and unique up to scaling, defined on the obvious monomial
basis of Vk ⊗ Vk by

Zi
1 ⊗ Zj

2 (→






(−1)i

(
k

i

)−1

if i + j = k

0 if i + j #= k.

Proposition 2. The diagram

Dk × Dk
ρk⊗ρk

!!

( , )k ""!

!

!

!

!

!

!

!

!

!

!

Vk × Vk

〈 , 〉k
##

Qp

commutes.

Proof. We calculate

〈ρk(µ1), ρk(µ2)〉k =

〈
k∑

i=0

(
k
i

)
Zi

1µ1(z
k−i
1 ),

k∑

j=0

(
k
i

)
Zj

2µ2(z
k−j
1 )

〉

k

=
k∑

i=0

(−1)i
(

k
i

)
µ1(z

k−i
1 )µ2(z

i
2)

= (µ1, µ2)k .
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The enlightened pairings

Set W = Homcts(Z×
p ,Gm)an, the Qp-rigid analytic space of weights over Qp. Given an

admissible affinoid open Ω ⊂ W, there is a universal character χΩ : Z×
p → A(Ω)× and a

minimal integer s[Ω] such that χΩ(1 + ps+1z) : Zp → A(Ω) is analytic, i.e. is given by
an element of the relative Tate algebra A(Ω) 〈z〉. Let As denote the module of Qp-valued
continuous functions on Zp which are analytic on each coset of psZp. For any s ≥ s[Ω], set

As
Ω = As⊗̂QpA(Ω),

equipped with the left action (g · f)(z) = χΩ(a + cz)f
(

b+dz
a+cz

)
. Set

Ds
Ω = Homcts

A(Ω)(A
s
Ω, A(Ω))

, Homcts
Qp

(As, A(Ω)).

Suppose Ω contains a character of the form x (→ xk for some integer k; we write wk for the
corresponding point of Ω. By the basic properties of affinoid opens, we will have wk′ ∈ Ω for
an infinitude of integers k′, in fact for all integers with (p − 1)pe|(k′ − k) and e sufficiently
large. Evaluation of an element of A(Ω) at a point wk ∈ Ω is well-defined, and induces a
well-defined Σ0(p)-equivariant specialization map Ds

Ω → Ds
k and therefore a map

σk : Ds
Ω → Vk

obtained by composing with the natural morphisms Ds
k → Dk and ρk : Dk → Vk.

We define the enlightened pairings as follows. Set Wp =

(
−1

p

)
. The enlightened

pairing on Vk is 〈p1, p2〉
◦
k = 〈p1, p2 · Wp〉. The enlightened pairing on Dk is

(µ1, µ2)
◦
k =

∫

Z2
p

(1 + pz1z2)
k µ1(z1)µ2(z2).

Finally, we define an A(Ω)-bilinear pairing

(µ1, µ2)
◦
Ω : Ds

Ω × Ds
Ω → A(Ω)

by

(µ1, µ2)
◦
Ω =

∫
χΩ(1 + pz1z2)µ1(z1)µ2(z2).

Proposition 3. Each of the enlightened pairings satisfies the equivariance property

{φ1 · g,φ2} =
{
φ1,φ2 · Wpg

ιW−1
p

}
, and the diagram

Ds
Ω × Ds

Ω

σk⊗σk

##

( , )◦
Ω !! A(Ω)

f )→f(wk)
##

Vk × Vk
〈 , 〉◦k

!! Qp
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commutes for all wk ∈ Ω.

Here ι is Shimura’s main involution; note that

Wp

(
a b
c d

)ι

W−1
p =

(
a p−1c
pb d

)
,

so x (→ Wpx
ιW−1

p is an involution of Σ0(p). Presumably, ( , )◦Ω is the unique A(Ω)-bilinear
pairing on Ds

Ω × Ds
Ω satisfying the claim of Proposition 3, and presumably this is an easy

consequence of the Zariski-density of the points wk ∈ Ω and the uniqueness of the pairings
〈 , 〉◦k, but I have made no attempt to verify this.
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