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Abstract

We prove a modularity lifting theorem for minimally ramified deformations of two-dimensional
odd Galois representations, over an arbitrary number field. The main ingredient is a general-
ization of the Taylor-Wiles method in which we patch complexes rather than modules.

1 Introduction
Fix a number field F/Q. The Taylor-Wiles method [TW95] is a technique for proving that a surjec-
tion Rρ � Tm from a Galois deformation ring to a Hecke algebra at minimal level is an isomorphism.
Essentially all incarnations of the Taylor-Wiles method have been limited to situations where F is
totally real or CM, Rρ parametrizes deformations satisfying strong regularity and self-duality as-
sumptions, and Tm arises from the the middle-dimensional cohomology of a Shimura variety. In
a recent and very striking breakthrough, Calegari and Geraghty [CG12] found a novel generaliza-
tion of the Taylor-Wiles method which eliminates some of these restrictions. More precisely, their
method applies when Tm acts on the cohomology of a locally symmetric space X such that Hi(X)m

is nonvanishing in only two consecutive degrees. In this paper we develop a further generalization of
the Taylor-Wiles method; in principle, our method requires no restriction whatsoever on the range
of degrees for which H∗(X)m is nonzero.

As a sample application, we prove the following theorem, restricting ourselves to the simplest
possible situation in which our technique yields a new result. Let F be an arbitrary number field;
set d = [F : Q], and let r be the number of nonreal infinite places of F . Fix a finite field k of
characteristic p ≥ 3 with p unramified in F , and set O = W (k). Fix an absolutely irreducible Galois
representation ρ : GF → GL2(k) unramified at all but finitely many primes, with no “vexing” primes
of ramification. Suppose ρ has the following properties:

• ρ|Dv is ordinary or finite flat for all v|p,

• det ρ(cσ) = −1 for all real infinite places σ and complex conjugations cσ,

• ρ|GF (ζp) is absolutely irreducible.
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Let D denote the functor which assigns to an Artinian O-algebra A the set of equivalence classes of
deformations ρ̃ : GF → GL2(A) of ρ which are minimally ramified at all places v - p and ordinary
or finite flat at all places v|p. This functor is represented by a complete local Noetherian O-algebra
Rmin
ρ together with a natural universal lifting ρmin : GF → GL2(Rmin

ρ ). Let T be the Hecke algebra
defined in §3; this is defined as a subalgebra of the ring of endomorphisms of H∗(Y,O) for Y a certain
locally symmetric quotient of GL2(F∞). We suppose there is a maximal ideal m ⊂ T with residue
field k together with a surjection φm : Rmin

ρ � Tm such that ρm = φm ◦ ρmin : GF → GL2(Tm)
has characteristic polynomial X2− TvX + Nv 〈v〉 ∈ Tm[X] on almost all Frobenius elements Frobv.
In order to apply our generalization of the Taylor-Wiles method we also need this in non-minimal
situations, and we need to know something about the vanishing of cohomology after localizing at a
“non-Eisenstein” prime; for a precise statement, see Conjecture 3.1.

Theorem 1.1. Suppose Conjecture 3.1 is true. Then φm : Rmin
ρ → Tm is an isomorphism and

Hd(Y,O)m is free over Tm.
When r = 1 this theorem follows from the method of [CG12]. Note that Tm often contains O-

torsion elements when r ≥ 1, whereas the classical Taylor-Wiles method (as streamlined by Diamond
[Dia97] and Fujiwara [Fuj06]) requires an a priori assumption that Tm be O-flat.

Let us briefly explain the proof of Theorem 1.1. Set q = dimkH
1
∅ (F, ad0ρ(1)), and write R∞ =

O[[x1, . . . , xq−r]] and S∞ = O[[T1, . . . , Tq]]. Let us abbreviate H = Hd(Y,O)m and R = Rmin
ρ ;

we regard H as an R-module via φm. By a patching technique (Theorem 2.2.1), we construct an
algebra homomorphism i∞ : S∞ → R∞ and a finite R∞-module H∞, together with a surjection
φ∞ : R∞ � R and an ideal a ⊂ S∞ with (φ∞◦i∞)(a) = 0 such that H ' H∞/aH∞ as R∞-modules,
where R∞ acts on H through φ∞. Suppose we could show the S∞-depth of H∞ was at least 1+q−r.
Then via i∞ the R∞-depth would be at least 1 + q− r = dimR∞, so H∞ would be free over R∞ by
the Auslander-Buchsbaum formula. We would then easily conclude that H is free over R∞/i∞(a),
whence the surjection R∞/i∞(a) � R would be an isomorphism and H would be free over R.

In order to carry this out, we appeal crucially to the construction of H∞: it is the top degree
cohomology of a complex F •∞ of free finite rank S∞-modules concentrated in a range of degrees
of length ≤ r. By a general theorem in commutative algebra (Theorem 2.1.1), this forces every
irreducible component of the S∞-support of H∗(F •∞) to have dimension ≥ 1 + q − r. However, the
patching construction yields an R∞-module structure on H∗∞ which implies the opposite inequality,
from whence we deduce (by Theorem 2.1.1 again) that Hi(F •∞) vanishes for all degrees i except the
top degree. As such, F •∞ yields a free resolution of H∞ of length r, so projdimS∞(H∞) = r. But
then depthS∞(H∞) = 1 + q − r by another application of Auslander-Buchsbaum.

The numerical coincidence driving this argument persists far beyond GL2. Roughly speaking,
when considering a Galois representation ρ : Gal(F/F ) → Ĝ(k) for G some (F -split) reductive
algebraic group, we require the equality

[F : Q](dimG− dimB) + l(G) =
∑
v|∞

H0(Fv, ad0ρ)

where l(G) denotes the length of the range of degrees for which deformations of ρ contribute to the
Betti cohomology of locally symmetric quotients of G(F∞); the reader may wish to compare this
with the numerical condition given in [CHT08]. At the very least, our method generalizes to the case
when ρ : GF → GLn(k) is odd (i.e. |trρ(cσ)| ≤ 1 for all real places σ and complex conjugations cσ)
and absolutely irreducible with big image, and D parametrizes minimally ramified regular crystalline
deformations in the Fontaine-Laffaille range. Note the absence of any restrictions on F or any self-
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duality hypothesis on ρ. This, again, is contingent on assuming the existence of various surjections
Rρ � Tm.
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2 Commutative algebra

2.1 The height-amplitude theorem
Let R be a local Noetherian ring with maximal ideal m and residue field k, and let D−fg(R) denote
the derived category of bounded-above R-module complexes with finitely generated cohomology in
each degree. Given C• ∈ D−fg(R), we set

τ i(C•) = dimkH
i(C• ⊗L

R k);

the hypertor spectral sequence shows that Hi(C• ⊗L
R k), as a k-vector space, is isomorphic to

a direct sum of subquotients of TorRj (Hi+j(C•), k), from which the finiteness of the τ i’s follows
easily. Any complex C• ∈ D−fg(R) has a unique minimal resolution: a bounded-above complex
F • of free R-modules quasi-isomorphic to C• and such that imdiF• ⊆ mF i+1 for all i. For the
existence of minimal resolutions, see [Rob80]. A simple calculation shows that rankRF i = τ i(C•).
By Nakayama’s lemma, the greatest integer i such that τ i(C•) 6= 0 coincides with the greatest
integer j such that Hj(C•) 6= 0; we denote their common value by d+(C•) or simply by d+ if C• is
clear.

Given C• ∈ D−fg(R), we define the amplitude of C• as the difference

am(C•) = sup
{
i|τ i(C•) 6= 0

}
− inf

{
i|τ i(C•) 6= 0

}
.

In general the amplitude need not be finite: if M is a finite R-module, viewed as a complex concen-
trated in degree zero, then am(M) = projdim(M). Note that the amplitude is finite if and only if
the minimal resolution of C• is a bounded complex.

The first two parts of the following theorem and their proofs are implicit in James Newton’s
appendix to [Han12].

Theorem 2.1.1. Suppose R is Cohen-Macaulay and C• ∈ D−fg(R) is a complex of finite ampli-
tude.

i. Any minimal prime p in the R-support of H∗(C•) satisfies

ht p ≤ am(C•).
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ii. If p is a minimal prime in the R-support of H∗(C•) with ht p = am(C•), then Hj(C•)p = 0 for
j 6= d+.

iii. If ht p = am(C•) for every minimal prime in the R-support of H∗(C•), then Hj(C•) = 0 for
j 6= d+, and Hd+(C•) is a perfect R-module.

Proof of i. and ii. Replacing C• by its minimal resolution, we may assume C• is a bounded complex
of free R-modules of finite rank (and as such, we may write derived tensor products of C• as ordinary
tensor products). Let d− be the least integer i for which τ i(C•) 6= 0. Let p be a minimal element
of SuppH∗(C•), and let r be the least degree with p ∈ SuppHr(C•). Let h = ht p, and choose
a system of parameters x1, . . . , xh ∈ p for Rp. Set Jn = (x1, . . . , xn). We will show inductively
that Hr−n(C• ⊗ R/Jn) 6= 0 for 1 ≤ n ≤ h. Granted this inductive step, the theorem follows from
the following observation: letting Č• = HomR(C•, R) denote the dual complex, there is a natural
spectral sequence

Ei,j2 = ExtiR(Hj(Č•), R/I)⇒ Hi+j(C• ⊗R/I).

Since Hr−h(C• ⊗ R/Jh) 6= 0, the least j with Hj(Č•) 6= 0, say jmin, satisfies jmin ≤ r − h. Taking
I = m, the entry E0,jmin

2 is stable and nonzero, so d− = jmin ≤ r − h. Putting things together gives

d− + h ≤ r ≤ d+,

so h ≤ d+ − d− = am(C•), as desired. If equality holds then r ≥ d− + am(C•) = d+, but r ≤ d+

was the least degree with p ∈ SuppHr(C•).
It remains to carry out the inductive step. Let pn denote the image of p under Rp → Rp/Jn.

For 0 ≤ n ≤ h − 1, suppose Hr−n(C• ⊗ R/Jn)pn is nonzero with pn an associated prime, and
Hi(C• ⊗ R/Jn)pn = 0 for i < r − n. Then Hr−n−1(C• ⊗ R/Jn+1)pn+1 is nonzero with pn+1 an
associated prime, and Hi(C• ⊗ R)pn+1 = 0 for i < r − n − 1. The supposition is true for n = 0 by
our assumptions and the fact that minimal primes are associated primes. To prove the induction,
we proceed as follows. For each 0 ≤ n ≤ h− 1 we have a spectral sequence

Ei,j2 = TorR/Jn

−i (Hj(C• ⊗R/Jn), R/Jn+1)⇒ Hi+j(C• ⊗R/Jn+1)

of R/Jn-modules. Localize this spectral sequence at p. Since Rp is Cohen-Macaulay, any system of
parameters is a regular sequence on Rp. As such, caculating TorRp/Jn(−, Rp/Jn+1) via the resolution

0→ Rp/Jn
·xn+1→ Rp/Jn → Rp/Jn+1 → 0

implies that the entries of the spectral sequence vanish for i 6= 0, 1, with E−1,j
2 ' Hj(C• ⊗

R/Jn)pn
[xn+1]. The vanishing claim follows easily, and we get an isomorphism

Hr−n−1(C• ⊗R/Jn+1)pn+1 ' Hr−n(C• ⊗R/Jn)pn
[xn+1],

of Rp/Jn+1-modules; by our inductive hypothesis the right-hand side is easily seen to be nonzero
with pn+1 an associated prime. This completes the proof of i. and ii.

Proof of iii. Let
F • : 0→ F 0 → F 1 → · · · → F d → 0

be a complex of free finite rank R-modules such that every minimal prime in the R-support of
H∗(F •) has height exactly d. By parts i. and ii., every minimal prime in the support of Hi(F •)
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for 0 ≤ i ≤ d − 1 has height ≥ d + 1. Consider the dual complex F̌ • = HomR(F−•, R). A priori
the cohomology of F̌ • is concentrated in degrees −d through 0, and we have a convergent spectral
sequence

Ei,j2 = ExtiR(H−j(F •), R)⇒ Hi+j(F̌ •).

Since R is Cohen-Macaulay, we have gradeM + dimM = dimR for any R-module M , and thus the
entries Ei,j2 vanish for j < −d, for j = −d with i < d, and for j > −d with i < d + 1. Thus
the spectral sequence yields isomorphisms Hi(F̌ •) = 0 for i 6= 0 and H0(F̌ •) ' ExtdR(Hd(F •), R).
Applying the adjunction isomorphism

RHomR(RHomR(F •, R), R) ∼= F •

yields a dual spectral sequence

Ei,j2 = ExtiR(H−j(F̌ •), R)⇒ Hi+j(F •),

which correspondingly degenerates to an isomorphism Hi(F •) ' ExtiR(H0(F̌ •), R) for any i. Since
AnnH0(F̌ •) ⊇ AnnHd(F •), we have gradeH0(F̌ •) ≥ gradeHd(F •) = d, so Hi(F •) vanishes for
i < d. Thus F • yields a free resolution of Hd(F •), so projdimHd(F •) ≤ d. Quite generally we have
gradeM ≤ projdimM , so perfection follows. �

2.2 A patching theorem for complexes
Fix a complete discrete valuation ring O. Set R∞ = O[[x1, . . . , xq−r]] and S∞ = O[[T1, . . . , Tq]].
Write Sn for the quotient S∞/

(
(1 + T1)p

n − 1, . . . , (1 + Tq)p
n − 1

)
, with Sn = Sn/$

n. We write a
for the ideal (T1, . . . , Tq) in S∞ and in Sn, and we abusively write k for the common residue field of
all these local rings.

Theorem 2.2.1. Let R be a complete local Noetherian O-algebra, and let H be an R-module
which is O-module finite. Suppose for each integer n ≥ 1 we have a surjection φn : R∞ → R and a
complex C•n ∈ D−fg(Sn) of Sn-modules with the following properties:

i. τ i(C•n) is independent of n for i ∈ [d, d − r] and zero for i /∈ [d, d − r], where d is some fixed
integer.

ii. There is a degree-preseving R∞-module structure on H∗n = H∗(C•n) such that the image of Sn in
EndO(H∗n) arises from an algebra homomorphism in : S∞ → R∞ with (φn ◦ in)(a) = 0.

iii. Writing Hn = Hd(C•n), there is an isomorphism Hn/aHn ' H of R∞-modules where R∞ acts
on H via φn.

Then H is free over R.
Proof. Let F •n be the minimal resolution of C•n, and set F

•
n,m = F •n ⊗Sn

Sm for m ≤ n. By our

assumptions dimSm
F
i

n,m = τ i(C•n) = τ i is independent of n and m. Choosing bases we can and do
represent the differentials din,m of F

•
n,m by matrices δin,m ∈Mτ i×τ i+1(Sm). By the usual pigeonhole

argument we may find integers jn, n ≥ 1 such that δijn,n is the reduction of δijn+1,n+1. Let δi∞ be the
limit of the sequence δijn,n as n → ∞, and let F •∞ be the bounded complex of free finite rank S∞-
modules whose differentials are given by the δi∞’s. Set H∗∞ = H∗(F •∞) and H∞ = Hd(F •∞). Passing
to a further subsequence if necessary, the maps in and φn converge to algebra homomorphisms i∞
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and φ∞, and the R∞-module structures on H∗jn patch together into an R∞-module structure on H∗∞
such that S∞ acts through i∞. Since H∗∞ is finite over S∞, it is finite over R∞, so in particular

dimS∞H
∗
∞ = dimR∞H

∗
∞ ≤ dimR∞ = 1 + q − r.

On the other hand, the first part of the height-amplitude theorem implies the opposite inequality,
so every minimal prime in the S∞-support of H∗∞ has height exactly r. Therefore, H∞ ' H∗∞ by
the third part of the height-amplitude theorem, and F •∞ is a free resolution of H∞ of length r.
This shows that projdimS∞(H∞) = r, so depthS∞(H∞) = 1 + q − r by the Auslander-Buchsbaum
formula. But then depthR∞(H∞) = 1 + q − r = dimR∞ via i∞, so H∞ is a free module over
R∞ by a second application of Auslander-Buchsbaum. Therefore H∞/aH∞ is a free module over
R∞/i∞(a). But H∞/aH∞ ' H as R∞/i∞(a)-modules, where R∞/i∞(a) acts on H through the
surjection R∞/i∞(a) � R induced by φ∞. �

3 Modularity lifting
We return to the notation of the introduction. Let S(ρ) be the ramification set of ρ, let Q be any
finite set of primes disjoint from S(ρ) ∪ {v|p}, and let SQ denote the set of places Q ∪ S(ρ) ∪ {v|p}.
For any such Q, let RQ denote the deformation ring defined in §4.1 of [CG12]; this is a complete
local Noetherian O-algebra. Let H1

Q(F, ad0ρ) be the Selmer group defined as the kernel of the map

H1(F, ad0ρ)→
∏
v

H1(Fv, ad0ρ)/Lv

where Lv = H1
ur(Fv, ad0ρ) if v /∈ Q ∪ {v|p}, Lv = H1(Fv, ad0ρ) if v ∈ Q, and Lv = H1

f (Fv, ad0ρ)
if v|p (here H1

f is as in §2.4 of [DDT94]). Modifying the proof of Corollary 2.43 of [DDT94] via
Corollary 2.4.3 of [CHT08], we find that the reduced tangent space of RQ has dimension at most

dimkH
1
Q(F, ad0ρ(1))− r +

∑
v∈Q

dimkH
0(Fv, ad0ρ(1)).

We define LQ and KQ be the open compact subgroups as in [CG12]. We denote by Y0(Q) the
arithmetic quotient GL2(F )\GL2(AF )/LQK◦∞Z∞, and by Y1(Q) the quotient GL2(F )\GL2(AF )/KQK

◦
∞Z∞.

For Q = ∅ we simply write Y . Let

Tv = LQ

(
$v

1

)
LQ

and
〈v〉 = LQ

(
$v

$v

)
LQ

denote the usual Hecke operators; when v ∈ Q we write Uv for Tv as is customary. Let T an
Q denote

the abstract polynomial algebra over O in the operators Tv and 〈v〉 for all places v /∈ SQ, and let TQ

denote the algebra generated by these operators together with the operators Uv for v ∈ Q. Write
Tan
Q and TQ for the images of T an

Q and TQ in EndO (H∗(Y1(Q),O)). When Q = ∅ we write T = T∅.
By assumption ρ is associated with a maximal ideal of T which we denote by m∅.
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Let m be any maximal ideal of TQ containing the preimage of m∅ under the natural map Tan
Q → T.

We make the following conjecture:
Conjecture 3.1 (Existence Conjecture): For any Q there is a surjection φQ : RQ � TQ,m

such that the associated Galois representation ρQ : GF → GL2(TQ,m) has the following properties:

i. For any v /∈ SQ,
det (X − ρQ(Frobv)) = X2 − TvX + Nv · 〈v〉 ∈ TQ,m[X].

ii. For any v ∈ Q, ρQ|Dv ' η1 ⊕ η2 with η1 unramified and η1(Frobv) = Uv.

Furthermore, Hi(Y1(Q),O)⊗TQ
TQ,m vanishes for i /∈ [d− r, d], where d = [F : Q].

Suppose now for each n ≥ 1 that Qn is a set of Taylor-Wiles primes of cardinality q =
dimkH

1
∅ (F, ad0ρ(1)), such that each v ∈ Qn has Nv ≡ 1 mod pn. The reduced tangent space of

RQn
has dimension at most q − r. Let mn denote the maximal ideal of TQn

generated by the
preimage of m under the map Tan

Qn
→ T and by Uv − αv for all v ∈ Qn, where αv is a fixed choice

of one of the eigenvalues of ρ(Frobv).
Proposition 3.2. There is an isomorphism

H∗(Y0(Qn),O)mn
' H∗(Y,O)m.

This is proved exactly as in Lemmas 3.4 and 4.6 of [CG12], working one degree at a time.
By design there is a natural surjection∏

v∈Qn

(OFv
/$v)× � (Z/pn)q.

Composing this with the natural reduction map LQn
→
∏
v∈Qn

(OFv
/$v)× gives Sn = O[(Z/pn)q]

the structure of a local system over Y0(Qn). Let XA be the quotient GL2(F )\GL2(AF )/K◦∞Z∞,
and let C•(XA) be the complex of singular chains on XA with Z-coefficients. Set C•(Qn) =
HomZ(C•(XA), Sn)LQn , so there is a canonical isomorphism H∗(C•(Qn)) ' H∗(Y0(Qn), Sn). The
canonical action of GL2(Af

F ) on C•(XA) induces a canonical action of the algebra TQn
on the com-

plex C•(Qn) lifting the Hecke action on cohomology: precisely, given φ ∈ HomZ(C•(XA), Sn)LQn

regarded as a function on chains, Tg = [LQn
gLQn

] ∈ TQn
acts on φ by

(Tg · φ)(σ) =
∑

gi∈LQngLQn/LQn

gi · φ(σgi).

(For a more thorough discussion of this idea, which the author learned from Glenn Stevens, see
[Han12].)

Let Mn be the preimage of mn under the structure map TQn
� TQn

, and set

C•n = C•(Qn)⊗TQn
TQn,Mn .

Since TQn,Mn
is flat over TQn

, the functor −⊗TQn
TQn,Mn

commutes with taking cohomology, so
we have canonical isomorphisms

H∗(C•n) ' H∗(C•(Qn))⊗TQn
TQn,Mn

' H∗(Y0(Qn), Sn)⊗TQn
TQn

⊗TQn
TQn,Mn

' H∗(Y0(Qn), Sn)mn
.
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If a denotes the augmentation ideal of Sn then

Hi(C•n ⊗L
Sn
Sn/aSn) ' Hi (Y0(Qn),O)mn

' Hi(Y,O)m

by Proposition 3.2. This shows that the complexes C•n satisfy assumption i. of Theorem 2.2.1.
We are ready to verify the rest of the assumptions of Theorem 2.2.1. For each n, fix a choice
of a surjection σn : R∞ � RQn . The composite φQn ◦ σn where φQn is the map provided by
the existence conjecture gives H∗(C•n) a degree-preserving R∞-module structure. Define φn as the
composite of our chosen surjection R∞ � RQn

with the natural surjection RQn
� Rmin. As in

§2.8 of [DDT94], RQn
is naturally an Sn-algebra, with RQn

/aRQn
' Rmin, and the map φQn

is
equivariant for the Sn-actions on its source and target. Let in : S∞ → R∞ be any fixed lift of
the composite S∞ → Sn → RQn compatible with σn, so (φn ◦ in)(a) = 0 by construction. We’ve
now verified assumption ii. Assumption iii. is immediate from Hochschild-Serre, so Theorem 2.2.1
applies and modularity lifting at minimal level follows.
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