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Abstract. We prove, under a mild condition, that the supercuspidal cohomology of basic local Shimura
varieties is concentrated in the middle degree. The proof uses a mixture of local and global techniques, and
relies crucially on the recent work of Fargues-Scholze. As a byproduct of our methods, we prove the cuspidal
case of Fargues’s geometrization conjecture for general linear groups, and deduce the strongest form of the
Kottwitz conjecture for all basical local shtuka spaces associated with inner forms of GLn.
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1. Introduction

1.1. Background and main result. Fix a reductive group G/Qp and a conjugacy class of minuscule
cocharacters µ : Gm,Qp

→ GQp
. Let b be an element of the Kottwitz set B(G,µ), and let Gb the associated

σ-centralizer group. Given such a datum (G,µ, b), Scholze constructed a tower of local Shimura varieties

{Sh(G,µ, b)K}K⊂G(Qp),

confirming conjectures of Rapoport-Viehmann [RV14, SW20]. This is a tower of smooth partially proper rigid
spaces of dimension d = 〈2ρ, µ〉 over Cp, generalizing the Rapoport-Zink spaces constructed in [RZ96]. The
compactly supported ℓ-adic étale cohomology groups of this tower carry natural smooth commuting actions
of G(Qp) and Gb(Qp), and also an action of the Weil group WF where F/Qp is the field of definition of µ.

It is a fundamental problem in the Langlands program to understand how these cohomology groups
decompose representation-theoretically under the G(Qp)×Gb(Qp)×WF -action. There are precise conjectures
of Kottwitz and Harris-Viehmann which completely describe the alternating sum of the cohomologies in
terms of putative local Langlands and local Jacquet-Langlands correspondences [RV14, §7-8]. However, even
conjecturally, the individual cohomology groups are poorly understood.

In this paper, we make some progress towards understanding the individual cohomology groups of local
Shimura varieties in arguably the most interesting case, namely when b is basic. To state our main result,
we introduce some notation. Fix a prime ℓ 6= p and a finite extension E/Qℓ with ring of integers O. For any
open compact subgroup K ⊂ G(Qp), the ℓ-adic cohomology RΓc(Sh(G,µ, b)K , E) (which requires some care

1



ON THE SUPERCUSPIDAL COHOMOLOGY OF BASIC LOCAL SHIMURA VARIETIES 2

to define correctly, cf. Definition 2.15) is a bounded complex of smooth Gb(Qp)-representations. Let ρ be
any admissible smooth Gb(Qp)-representation on an E-vector space. Then we define

RΓc(G,µ, b)[ρ] = colim
K→{1}

RΓc(Sh(G,µ, b)K , E)⊗L
H(Gb(Qp))

ρ

and

Hi
c(G,µ, b)[ρ] = Hi (RΓc(G,µ, b)[ρ]) .

Here H(Gb(Qp)) = C∞c (Gb(Qp), E) is the usual smooth Hecke algebra. By the finiteness results proved in
[FS21, §IX.3], Hi

c(G,µ, b)[ρ] is an admissible smooth G(Qp)-representation, which moreover has finite length
if ρ has finite length, and Hi

c(G,µ, b)[ρ] = 0 unless 0 ≤ i ≤ 2d. Note that there is a natural edge map

α : H∗c (Sh(G,µ, b), E)⊗H(Gb(Qp)) ρ→ H∗c (G,µ, b)[ρ],

which is often (but not always) an isomorphism. In particular, one can check that α is an isomorphism if ρ
is supercuspidal, so in this case H∗c (G,µ, b)[ρ] coincides with the “naive” ρ-part of H∗c (Sh(G,µ, b), E).

It seems to be a folklore expectation that the most interesting part of RΓc(Sh(G,µ, b)K , E) should be
concentrated in the middle degree, see for instance [Ito13, p.115] and [RV14, Remark 7.4.(ii)]. This is of
course in natural analogy with Arthur and Kottwitz’s conjectures on the cohomology of global Shimura
varieties [Art89, Kot90]. Our main result confirms a precise form of this expectation.

To state our main theorem, recall that given a reductive group G/Qp with quasisplit inner form G∗, an
L-parameter

ϕ :WQp →
LG(Qℓ) = Ĝ(Qℓ)⋊WQp

∼= Ĝ∗(Qℓ)⋊WQp

is supercuspidal if it is semisimple and does not factor through a conjugate of LP (Qℓ) = P̂ (Qℓ) ⋊WQp for
any proper parabolic subgroup P ⊂ G∗. Such parameters are called discrete in [RV14], but this is arguably
misleading.

Theorem 1.1. Let (G,µ, b) be a basic local Shimura datum, and let ρ be a supercuspidal representation of
Gb(Qp). Suppose the following conditions hold.

1. The spaces Sh(G,µ, b)K occur in the basic uniformization at p of a global Shimura variety, in the sense
of Definition 3.2.

2. The L-parameter ϕρ :WQp →
LG(Qℓ) associated with ρ by Fargues-Scholze [FS21, §1.9] is supercuspidal.

Then Hi
c(G,µ, b)[ρ] = 0 for all i 6= d = dimSh(G,µ, b)K .

To the best of our knowledge, this is the first general vanishing theorem for the cohomology of local
Shimura varieties.

Let us comment on the conditions in this theorem. Condition 1. is absolutely essential for our proof,
although we believe the theorem holds without this assumption. Nevertheless, it is plausible that condition
1. holds for every basic local Shimura datum. With current technology, condition 1. can be verified for many
(but not all) basic local Shimura data, including most cases of classical interest, cf. §3.1.

Condition 2. may appear strange at first sight, but in reality it is natural. In fact, this condition is
already necessary in the case of the Lubin-Tate tower. Recall that in this situation, G = GLn/Qp

and

Gb(Qp) = D× where D/Qp is the division algebra of invariant 1/n. Then Gb(Qp) is compact modulo
center, and any irreducible ρ is supercuspidal (in a somewhat vacuous sense). However, for any such ρ
whose Jacquet-Langlands transfer to GLn is not supercuspidal, Boyer proved that the groups Hi(G,µ, b)[ρ]
are not concentrated in the middle degree [Boy09]. This shows that some condition on ρ beyond mere
supercuspidality is necessary for the conclusion of Theorem 1.1 to hold. However, for inner forms of GLn, the
Fargues-Scholze construction of L-parameters agrees with the usual local Langlands correspondence by [FS21,
Theorem IX.7.4] and [HKW22, Theorem 1.0.3], and these bad ρ’s are exactly the Gb(Qp)-representations
which violate condition 2.

For a more subtle example, consider the basic local Shimura datum (G,µ, b) where G is the unique nonsplit
inner form of GSp4/Qp and µ is the Siegel cocharacter. Note that in this case Gb(Qp) ≃ GSp4(Qp) is a split
group. Then for certain supercuspidal ρ, Ito-Mieda have shown that the cohomology Hi

c(G,µ, b)[ρ] is not
concentrated in the middle degree [Mie21]. However, the ρ’s examined by Ito-Mieda lie in a non-tempered
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A-packet, and condition 2. is again known to fail for these particular choices of ρ.1 More generally, if
one believes that the Fargues-Scholze construction realizes the “true” local Langlands correspondence, then
condition 2. morally amounts to the requirement that for any pure inner form H of G and any L-packet Π
for H containing some generalized Jacquet-Langlands transfer of ρ, the packet Π is supercuspidal.

We now give a detailed sketch of the proof of Theorem 1.1. In most of the following discussion, we will
ignore two major technical complications, which we will highlight at the very end.

Condition 1. implies, more or less by definition, that we can choose a global Shimura datum (G, X)
such that the basic Newton strata in the associated Shimura varieties are uniformized by the local Shimura
varieties Sh(G,µ, b)K . Moreover, for such a datum, G admits a canonical inner form such that G′Qp

≃ Gb,

G′Af,p ≃ GAf,p , and G′(R) is compact modulo center (Proposition 3.1). By a standard argument with
the simple trace formula, we can choose a compact open subgroup Kp ⊂ G′(Af,p) and an algebraic G′-
representation Lξ of some regular highest weight such that possibly after replacing ρ by an unramified twist,
ρ occurs as a direct summand of a suitable space Π = A(G′(Q)\G′(Af )/Kp,Lξ,E) of algebraic automorphic
forms with infinite level at p.

From the geometry of the uniformization isomorphism, we easily obtain a G(Qp)-equivariant map

RΓc(Sh(G,µ, b), E)⊗L
H(Gb(Qp))

Π
Θ
→ RΓ(Sh(G, X)Kp ,Lξ,E).

The idea that uniformization of the basic locus induces a map like this is certainly not new, and goes back in
various guises to work of Carayol, Harris-Taylor, Fargues and Mantovan [Car90, Far04, HT01, Man04]. The
key new idea in our proof is to show that for any supercuspidal ρ occurring as a direct summand of Π which
moreover satisfies condition 2. in Theorem 1.1, the induced map

RΓc(G,µ, b)[ρ]
Θρ
→ RΓ(Sh(G, X)Kp ,Lξ,E)

realizes the left-hand side as a G(Qp)-stable direct summand of the right-hand side. If the global Shimura
varieties are compact, Theorem 1.1 now follows immediately, since RΓ(Sh(G, X)Kp ,Lξ,E) is concentrated
in the middle degree by Matsushima’s theorem together with standard vanishing properties of (g,K∞)-
cohomology in regular weights. In the general case, we use an extra duality argument (Theorem 2.23) and a
more general vanishing theorem due to Li-Schwermer [LS04].

Perhaps surprisingly, our argument that Θρ is a split inclusion doesn’t require any particular knowledge
about the globalization of ρ to an automorphic form on G′. We also don’t need any information about
non-basic Newton strata in the global Shimura variety, not even their existence. The key idea instead is to
split Θρ by splitting a suitable map of sheaves on a flag variety which induces the map Θρ on global sections.
Here we make crucial use of condition 2., the geometry of the Hodge-Tate period map, and the relationship
between representation theory and sheaves on the stack BunG of G-bundles on the Fargues-Fontaine curve.

Very roughly, the idea is to look at the Hodge-Tate period map πHT : Sh(G, X)Kp → FℓG,µ. As in [CS17],
this flag variety admits a Newton stratification, and the stratum associated with the basic element b ∈ B(G,µ)

defines an open G(Qp)-stable subset FℓbG,µ
j
→ FℓG,µ which moreover admits a G(Qp)-equivariant map to the

classifying stack BGb(Qp). In particular, given any ρ, one can produce an equivariant sheaf j!Fρ on FℓG,µ
such that RΓc(G,µ, b)[ρ] ∼= RΓ(FℓG,µ, j!Fρ). On the other hand, the map Θ arises as the global sections of
a map

j!FΠ
∼= j!j

∗RπHT∗Lξ,E → RπHT∗Lξ,E ,

where the identification FΠ
∼= j∗RπHT∗Lξ,E is a direct consequence of the uniformization isomorphism. Our

chosen globalization of ρ gives rise to a map j!Fρ → j!FΠ such that Θρ arises as the global sections of the
composite map

θρ : j!Fρ → j!FΠ → RπHT∗Lξ,E ,

so it now suffices to split the map θρ.

1More precisely, the Langlands parameter associated with ρ by the GSp4 local Langlands correspondence of Gan-Takeda
[GT11] is not supercuspidal, and Hamann has recently proved [Ham21] that Fargues-Scholze parameters for GSp4/Qp coincide
with Gan-Takeda parameters (at least if p > 2).
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To split this map, the essential new ingredient is the following notion (which we state in a slightly incorrect
way in this introduction, cf. Definition 2.21 for the true definition).

Definition 1.2. Let b ∈ B(G)bas be any basic element, and let h : BGb(Qp) ∼= BunbG → BunG be the

associated open immersion. An irreducible smooth Gb(Qp)-representation ρ is inert if some twist of ρ

contains an invariant O-lattice, and the associated ℓ-adic sheaf Fρ on BGb(Qp) satisfies h!Fρ
∼
→ Rh∗Fρ.

By some straightforward arguments, the subcategory of RepE(Gb(Qp)) spanned by inert representations
is stable under twisting and contragredients. However, the following result lies significantly deeper.

Theorem 1.3. Let ρ ∈ IrrE(Gb(Qp)) be any irreducible smooth representation. If the associated L-parameter
ϕρ is supercuspidal, then ρ is supercuspidal and inert.

This theorem ultimately follows from the compatibility between the Fargues-Scholze construction of Lang-
lands parameters and parabolic induction, and relies on the full power of the machinery developed in [FS21].
Theorem 1.3 is a powerful result, and it is the key technical input into our argument. With this result in
hand, we split θρ by a surprising argument with the six functor formalism (Lemma 3.8), using crucially that
j!Fρ arises via pullback from a sheaf on BunG.

It is instructive to consider the statement and proof of Theorem 1.1 in the most classical and well-
understood situations, namely for the Lubin-Tate and Drinfeld local Shimura data (GLn, (z, 1, ..., 1), b) and
(D×, (z−1, 1, ..., 1), b−1). Recall that for these data we have Gb = D× and GLn, respectively. Then condition
1. holds (up to a harmless Gm factor) with (G, X) a Harris-Taylor Shimura datum. In the Drinfeld case,
condition 2. always holds, and in the Lubin-Tate case it reduces (as discussed above) to the assumption that ρ
is the Jacquet-Langlands transfer of a supercuspidal representation of GLn. In the Drinfeld situation, Harris
proved Theorem 1.1 by a global argument [Har97]. Faltings then proved the Lubin-Tate case of Theorem
1.1, also by a global argument, and Mieda later gave a purely local proof [Fal02, Mie10]. However, these
situations are extremely special: in the Drinfeld case, the map Θ is an isomorphism, while in the Lubin-Tate
case a soft argument (“Boyer’s trick”) shows that it becomes an isomorphism after passing to supercuspidal
parts for the G(Qp)-action. In general, the map Θ is certainly not an isomorphism on supercuspidal parts,
and our argument for the splitting of θρ goes far beyond Boyer’s trick.

In this sketch above, we have ignored two key technical issues. The first issue is that we have pretended
to use a six functor formalism for étale cohomology of diamonds with E-coefficients with many good prop-
erties: excision, smooth and proper base change, comparison with Db

c(X,E) for schemes, comparison with
Dlis(BunG, E), etc. Unfortunately, such a formalism does not exist. This forces us to work with O-integral
objects everywhere in the proof, so that we can use the six functor formalism developed in [Sch17, §26].
Since representation theory with O-coefficients is more subtle than with E-coefficients, this leads to some
real complications in the representation-theoretic portions of the proof. On the other hand, we are allowed
to systematically ignore (bounded) O-torsion throughout the arguments, since we will invert ℓ at the end;
we develop some simple language and techniques to facilitate this in §2.1.

The second issue is that in order to apply the critical Lemma 3.8, a certain map towards BunG must
be ℓ-cohomologically smooth. This forces us to take quotients by an open compact subgroup Kp ⊂ G(Qp)
everywhere in the argument above, and then shrink Kp at the very last step. The essential point here is that
the Beauville-Laszlo map FℓG,µ → BunG is not ℓ-cohomologically smooth, but it is the inverse limit of the
system of maps [FℓG,µ/Kp]→ BunG, each of which is ℓ-cohomologically smooth (Proposition 2.10).

Finally, we note that our argument shows that Theorem 1.1 holds with condition 2. replaced by the
apparently more general condition that ρ is supercuspidal and inert. However, Scholze has conjectured that
the converse of Theorem 1.3 is true, so this extra generality is probably illusory.

1.2. Corollaries. Our main theorem has a number of consequences.
First of all, combining Theorem 1.1 with [HKW22, Theorem 1.0.2] leads to the following result.

Theorem 1.4. Choose any (G,µ, b) and ρ satisfying the conditions of Theorem 1.1, with d = dimSh(G,µ, b)K
as before. Suppose moreover that the refined local Langlands correspondence [Kal16, Conjecture G] holds for
G and its extended pure inner forms. Let φ be the L-parameter associated with ρ as in [Kal16, Conjecture
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G], and assume that every member of the L-packet Πφ(G) is supercuspidal. Then as G(Qp)-representations,
we have

Hi
c(G,µ, b)[ρ] ≃

{
⊕π∈Πφ(G) dimHomSφ

(δπ,ρ, rµ) · π if i = d

0 if i 6= d.

Here rµ is the natural representation of Ĝ⋊WF extending the highest weight representation rµ of Ĝ, and the
remaining notation follows [HKW22] and [Kal16].

In other words, conditionally and ignoring the WF -action, we confirm a strong form of the Kottwitz
conjecture, without passing to the Grothendieck group. Note that here we commit the usual venal sin of
referring to the local Langlands correspondence, despite the fact that a uniquely determined local Langlands
correspondence with all expected properties is not yet known for general groups, nor is there even a known
list of conditions which would uniquely determine such a correspondence (but see [BMY20] for some recent
progress towards this). Of course, it is completely natural to expect that any such correspondence will be
compatible with the construction of Fargues-Scholze. In particular, it is natural to expect (in the notation
of the previous theorem) that φ = ϕρ, but amusingly we don’t need to impose any compatibility between φ
and ϕρ.

Next we specialize our results to the case of local Shimura data of unramified EL type. These data can be
described very concretely. Precisely, we take G = ResL/Qp

GLn for some finite unramified extension L/Qp.

Writing Σ = Hom(L,Qp), we then choose any

µ =
∏

σ∈Σ

µσ : Gm,Qp
→ GQp

∼=
∏

σ∈Σ

GLn,Qp

where µσ(z) = (z, ..., z︸ ︷︷ ︸
dσ

, 1, ..., 1︸ ︷︷ ︸
n−dσ

) for some arbitrary integers 0 ≤ dσ ≤ n. When Σ contains an element τ such

that

dσ ∈

{
{1, n− 1} if σ = τ

{0, n} if σ 6= τ,

the tower Sh(G,µ, b)K recovers the classical Lubin-Tate tower for GLn/L. However, for any other choice of
µ, the geometry of the spaces Sh(G,µ, b)K is still very mysterious. Note that in general, dimSh(G,µ, b)K =∑
σ dσ(n− dσ).
Now, by [FS21, Theorem IX.7.4] and [HKW22, Theorem 1.0.3], for any inner form of ResL/Qp

GLn
the Fargues-Scholze construction provably recovers the usual semisimplified local Langlands correspondence
[HT01]. In particular, ρ ∈ IrrE(Gb(Qp)) satisfies condition 2. in Theorem 1.1 if and only if the Jacquet-
Langlands transfer of ρ to GLn(L) is supercuspidal. Combining these observations and Theorem 1.1 with
previous works of Fargues and Shin on Kottwitz’s conjecture in the unramified EL case, cf. [Far04, Shi12b],
we deduce the following result.

Theorem 1.5. Let (G,µ, b) be a basic local Shimura datum of unramified EL type, with d = dimSh(G,µ, b)K .
Let π ∈ IrrE(G(Qp)) be any supercuspidal representation, with Jacquet-Langlands transfer JL(π) ∈ IrrE(Gb(Qp)).
Then as G(Qp)×WF -representations, we have

Hi
c(G,µ, b)[JL(π)] ≃

{
π ⊠ (rµ ◦ ϕπ|WF ⊗ | · |

−d/2) if i = d

0 if i 6= d.

Here ϕπ : WQp →
LG(Qℓ) = Ĝ(Qℓ)⋊WQp is the L-parameter of π, and rµ is the natural representation of

Ĝ⋊WF extending the highest weight representation rµ of Ĝ.

This confirms the strongest possible form of the Kottwitz conjecture for local Shimura varieties of unrami-
fied EL type. To the best of the author’s knowledge, prior to this paper, the Lubin-Tate and Drinfeld towers
were (up to trivialities) the only basic local Shimura towers for which this optimal result was known.

We also get the following unconditional cases of Theorem 1.4.



ON THE SUPERCUSPIDAL COHOMOLOGY OF BASIC LOCAL SHIMURA VARIETIES 6

Theorem 1.6. Let (G,µ, b) be any basic local Shimura datum such that G is an inner form of ResL/Qp
GLn

for some finite extension L/Qp. Let ρ ∈ IrrE(Gb(Qp)) be any irreducible representation whose Jacquet-
Langlands transfer to GLn(L) is supercuspidal. Then

Hi
c(G,µ, b)[ρ] ≃

{
dim rµ · JL(ρ) if i = d

0 if i 6= d.

Here JL(ρ) is the generalized Jacquet-Langlands transfer of ρ to G(Qp) [DKV84, Rog83].

This notably requires some cases of basic uniformization for Shimura varieties with bad reduction at p, cf.
Theorem 3.5.

To explain our next theorem, letDlis(BunG,Qℓ) be the triangulated category constructed in [FS21, §VII.7].
If ϕ : WQp →

LG(Qℓ) is any Langlands parameter, the machinery in [FS21, §IX.7] defines a full triangu-

lated subcategory Cϕ ⊂ Dlis(BunG,Qℓ), which is roughly the subcategory of “ϕ-isotypic objects” for the

action of the algebra of excursion operators. In general, Cϕ is stable under the Hecke action of Rep(Ĝ) on

Dlis(BunG,Qℓ). If ϕ is supercuspidal, one can also show that any object of Cϕ is !-extended from the open
substack BunssG; in other words, Cϕ is naturally contained in the full subcategory

Dlis(Bun
ss
G,Qℓ) =

∏

b∈B(G)bas

D(Gb(Qp),Qℓ),

where D(G,Qℓ) denotes the derived category of smooth Qℓ-representations of G. In particular, when ϕ is
supercuspidal, the category Cϕ carries a natural t-structure, by restriction from the standard t-structures on

the categories D(Gb(Qp),Qℓ). Moreover, the heart of this t-structure is a full subcategory of
∏

b∈B(G)bas

RepQℓ
(Gb(Qp)),

so this heart is a very concrete category of representation-theoretic nature.
In his 2017 IHES lectures, Scholze proposed the following.

Conjecture 1.7 (Scholze). If ϕ : WQp →
LG(Qℓ) is any supercuspidal L-parameter, the Hecke action of

Rep(Ĝ) on Cϕ is t-exact for the natural t-structure. In particular, it restricts to a natural Hecke action on
C♥ϕ .

Our next theorem confirms Scholze’s t-exactness conjecture, as well as the supercuspidal case of Fargues’s
geometrization conjecture [Far16b] for general linear groups.

Theorem 1.8. Let G be a restriction of scalars of GLn, and let ϕ : WQp →
LG(Qℓ) be any supercuspidal

L-parameter. Then Conjecture 1.7 is true. Moreover, C♥ϕ admits a canonical generator Fϕ.
The sheaf Fϕ is an irreducible Hecke eigensheaf with eigenvalue ϕ, and its stalk at BGd(Qp) is isomorphic

to Fπϕ,d
for all d ∈ Z ∼= B(G)bas.

Here we change notation slightly, and write Gd = Gbd for the inner form associated with the isoclinic
isocrystal of slope d/n. Then πϕ,d is the unique irreducible representation of Gd(Qp) with L-parameter ϕ,
and Fπϕ,d

is the associated sheaf on BGd(Qp).

The proof of Theorem 1.8 combines Theorem 1.6 with some recent work of Anschütz and Le Bras [ALB21].
More precisely, in the situation of Theorem 1.8, their work exhibits a canonical Hecke eigensheaf Gϕ ∈ Cϕ

with eigenvalue ϕ, whose stalk at BG1(Qp) can be identified with Fπϕ,1 . However, the stalks of their sheaf at

the other points in BunssG are somewhat mysterious. We proceed from the opposite direction, writing down
the obvious candidate sheaf Fϕ by hand. Forgetting the Weil group action, Theorem 1.6 easily implies that
TStdFϕ ≃ TStd∨Fϕ ≃ F⊕nϕ . Moreover, the stalk of Fϕ at BG1(Qp) identifies with Fπϕ,1 by construction,

so in particular

Gϕ|BG1(Qp) ≃ Fϕ|BG1(Qp).
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Taken together, this turns out to be just enough information to conclude that Fϕ ≃ Gϕ. Since Gϕ is a Hecke
eigensheaf, this implies the theorem.

Finally, unwinding the meaning of the Hecke eigensheaf property in Theorem 1.8, we get a considerable
generalization of Theorems 1.5 and 1.6. In the following, IHi

c denotes intersection cohomology with compact
support; for the precise definition, we refer the reader to the proof of the subsequent theorem.

Theorem 1.9. Let (G,µ, b) be any basic local shtuka datum such that G is an inner form of ResL/Qp
GLn for

some finite extension L/Qp. Let ρ ∈ IrrE(Gb(Qp)) be any irreducible representation whose Jacquet-Langlands
transfer to GLn(L) is supercuspidal. Then as G(Qp)×WF -representations, we have

IHi
c(G,µ, b)[ρ] ≃

{
JL(ρ)⊠ rµ ◦ ϕρ|WF if i = 0,

0 if i 6= 0.

Here JL(ρ) is the generalized Jacquet-Langlands transfer of ρ to G(Qp).

Note that the definition of the intersection cohomology IHi
c(G,µ, b)[ρ] includes a shift and Tate twist, and

in particular IHi
c(G,µ, b)[ρ]

∼= Hi+d
c (G,µ, b)[ρ](d2 ) when µ is minuscule, so this is indeed a generalization of

Theorems 1.5 and 1.6.
We emphasize that the cohomology groups in Theorem 1.9 are completely inaccessible by global methods:

for any local shtuka datum (G,µ, b) with µ non-minuscule, the associated local shtuka spaces are entirely
unrelated to Shimura varieties! It is therefore rather surprising that Theorem 1.9 can be proved uncondi-
tionally. The essential idea here, of bootstrapping from a small amount of globally obtained information
using the spectral action constructed in [FS21] combined with the results in [HKW22], seems to be extremely
powerful. Indeed, after the first draft of this paper was posted, this technique was subsequently adapted to
GSp4 by Hamann [Ham21] and then to odd unramified unitary groups by Bertoloni–Meli-Hamann-Nguyen
[BMHN22]. In both instances, the authors obtain an eigensheaf with all the properties predicted by Fargues,
and deduce the strongest possible form of the Kottwitz conjecture for all µ, using Theorem 1.1 as a key input.

1.3. Perspectives and conjectures. The global condition in Theorem 1.1 should be irrelevant, but we
have not been able to remove it. The following conjecture, formulated in conversations with Scholze, would
allow us to circumvent this assumption.

Conjecture 1.10. For any local Shimura datum (G,µ, b) and any open compact subgroup K ⊂ G(Qp), the
local Shimura variety Sh(G,µ, b)K is a Stein space.

In the setting of Theorem 1.1, the Stein property implies that RΓc(G,µ, b)[ρ] is concentrated in degrees
[d, 2d] by the Artin vanishing results in [Han20], and then a duality argument (which requires condition 2.,
cf. Theorem 2.23) finishes the proof. Conjecture 1.10 is known for the Lubin-Tate and Drinfeld cases, for
any µ-ordinary local Shimura datum, and for some other cases which can be related to these cases, e.g. in
some HN-reducible situations.2 However, it is entirely open for general local Shimura varieties of unramified
EL type. Already the case of G = GL5/Qp

, µ = diag(z, z, 1, 1, 1), and b basic seems very hard.
The following less elegant conjecture would actually have much wider implications.

Conjecture 1.11. Let B = SpaC
〈
T

1/p∞

1 , . . . , T
1/p∞

n

〉
be an affinoid perfectoid ball over some complete alge-

braically closed field C/Fp, and let Z ⊂ B be a Zariski-closed affinoid perfectoid subset. Then Hi
ét(Z,Fℓ) = 0

for all i > Krull.dim |Z| and all ℓ 6= p.

Among other things, this would imply the truth of Conjecture 1.7 for all classical groups. This conjecture
is widely open, even if Z is cut out by a single equation in a two-dimensional ball.

Conventions. Throughout this paper, we fix a prime p. We write E for a finite extension of Qℓ for
some prime ℓ 6= p, and O for the ring of integers in E. We will assume that E is sufficiently large, where

2In particular, the methods in this paper give a new and purely local proof of Theorem 1.1 in the Lubin-Tate and Drinfeld
cases, distinct from the arguments in [Har97] and [Mie10]. A variant of this argument was also given by Fargues [Far16a,
Theoreme 4.6].
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the meaning of “sufficiently large” may change from one line to another; in particular, we do not distinguish
between irreducible and absolutely irreducible smooth E-representations of a p-adic reductive group.

Beginning in §2.3, we need to use the étale cohomology of diamonds and v-stacks rather heavily. Here we
freely use the formalism developed in [Sch17], in particular the adic formalism defined in [Sch17, §26]. In
the notation of loc. cit, we will only apply the adic formalism to the coefficient ring Λ = O. We note that
the adic formalism of [Sch17, §26] is a “full” six functor formalism, cf. the final paragraph of [Sch17, §26]: in
particular, all the usual excision triangles associated with an open-closed decomposition still hold.
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2. Background

2.1. Isogeny direct summands. The following notion plays a key technical role in this paper.

Definition 2.1. Let X and Y be objects in an additive category A. We say X is an isogeny direct summand
of Y if there are maps i : X → Y and s : Y → X and a nonzero integer N such that s ◦ i = N ∈ EndA(X).
We say a map i : X → Y is an isogeny inclusion if there exists a map s such that i and s exhibit X as an
isogeny direct summand of Y .

In practice, our additive categories will be Zℓ-linear, so only N |ℓ∞ will be relevant. This notion has several
favorable properties.

Proposition 2.2. 1. If X is an isogeny direct summand of Y and Y is an isogeny direct summand of Z,
then X is an isogeny direct summand of Z.

2. If X is an isogeny direct summand of Y and F : A → B is any additive functor of additive categories,
then F (X) is an isogeny direct summand of F (Y ). If i : X → Y is an isogeny inclusion, then F (i) is an
isogeny inclusion.

3. Let X
f
→ Y

g
→ Z

h
→ X [1] be a distinguished triangle in a triangulated category T . Suppose that Nh = 0

for some nonzero integer N . Then X is an isogeny direct summand of Y and f is an isogeny inclusion. More
precisely, there exists a map ϕ : Y → X ⊕ Z such that Cone(ϕ) is killed by N , and we can choose ϕ so that
prZ ◦ ϕ = g and prX ◦ ϕ ◦ f = N ∈ EndT (X).

Conversely, if f is an isogeny inclusion, then Nh = 0 for some nonzero integer N .

Proof. 1. and 2. are clear from the definition. For the first part of 3., the axioms of a triangulated category
imply that the diagram

Z[−1]
−h[−1]

//

id

��

X
f

//

N

��

Y
g

// Z

Z[−1]
−Nh[−1]

// X
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can be extended to a diagram

Z[−1]
−h[−1]

//

id

��

X
f

//

N

��

Y
g

//

ϕ

��

Z[−1]
−Nh[−1]

//

��

X

��

// C //

��

0

��

// Cone(X
·N
→ X)

��

// Cone(X
·N
→ X)

��

//

where all the rows and columns are distinguished triangles and all squares commute. Since Nh = 0 by
assumption, we can choose an isomorphism C ≃ X ⊕ Z such that the maps X → C → Z are the obvious
inclusion and projection, cf. [Sta20, Tag 05QT]. The remaining verifications are now easy and are left to the
reader.

For the last half of 3., choose some s : Y → X with s ◦ f = N . The axioms of a triangulated category
imply that the diagram

X
f

//

id

��

Y

s

��

g
// Z

h
// X [1]

X
·N

// X

extends to a commutative diagram

X
f

//

id

��

Y
g

//

s

��

Z
h

//

t

��

X [1]

id

��

X
·N

// X // D
h′

// X [1]

where the rows are exact triangles. Then D is killed by N , so Nh′ = 0 and then also Nh = Nh′ ◦ t = 0, as
desired. �

2.2. Some representation theory. In this subsection, we enhance all derived categories to derived ∞-
categories.

Let G be a locally pro-p group admitting a countable basis of open compact pro-p subgroups, and fix
a prime ℓ 6= p. Let E/Qℓ be some finite extension with ring of integers O and uniformizer ̟ ∈ O, so
we get the usual Grothendieck abelian categories RepE(G) (resp. RepO(G), resp. RepO/̟n(G)) of smooth

G-representations on E-vector spaces (resp. on O-modules, resp. on O/̟n-modules). Note that these have
natural symmetric monoidal structures. As usual, there are abelian Serre subcategories RepA(G)adm for
A ∈ {E,O,O/̟n} consisting of smooth A[G]-modules M such that for all open compact subgroups K ⊂ G,
MK is a finitely generated A-module. If ω : ZG → A× is a fixed smooth character of the center of G, we
write RepA(G)ω for the full subcategory of objects with central character ω.

We also need to work with ̟-adically complete representations. Let Repcomp
O (G) denote the category of

̟-adically complete O[G]-modules such that M/̟nM is a smooth O/̟n[G]-module for all n ≥ 1, and let
Repcomp

O (G)adm denote the full subcategory for which the M/̟nM ’s are admissible smooth.

Proposition 2.3. The functor RepO(G)→ Repcomp
O (G) of naive ̟-adic completion induces an equivalence

of categories

RepO(G)adm
∼
→ Repcomp

O (G)adm,
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with essential inverse given by the functor M 7→ colimH⊂G openM
H of smooth vectors. In particular,

Repcomp
O (G)adm is an abelian category.

Proof. Easy and left to the reader. The key point is that for any M ∈ Repcomp
O (G)adm and any open compact

pro-p subgroup H ⊂ G, the natural map MH → R limnRΓcts(H,M/̟nM) is an isomorphism. For this,
observe that Hi

cts(H,M/̟nM) = 0 for all i > 0 since p is invertible in O, and then R1 limn(M/̟nM)H = 0
since (M/̟nM)H is a finite abelian group by admissibility. �

We will also need some information about derived categories of representations. For A ∈ {E,O,O/̟n},
let D(G,A) denote the derived category of RepA(G), and let D(G,A)adm denote the full subcategory spanned
by objects with admissible cohomology modules. On the other hand, fixing a complete algebraically closed
field C/Fp and applying [Sch17, Definitions 14.13 and 26.1] to the classifying stack BG = [SpdC/G], we
get completely natural symmetric monoidal triangulated categories Dét(BG,O/̟

n) and Dét(BG,O), which
(morally) consist of complexes of étale sheaves of O/̟n-modules (resp. derived ̟-complete complexes of
étale sheaves of O-modules) on BG. By Proposition 2.4 below and [Sch17, Proposition 26.2], these categories
are independent of the choice of C.

It will be extremely important for us to have some comparison between the geometrically natural cate-
gories Dét(BG,O/̟

n) and the more down-to-earth categories D(G,O/̟n) for n ≤ ∞. When n < ∞ this
comparison is as clean as possible.

Proposition 2.4. There is a natural equivalence of presentably symmetric monoidal stable ∞-categories

D(G,O/̟n) ∼= Dét(BG,O/̟
n)

A 7→ FA

functorial in G and the coefficient ring.

Proof. This is proved in [FS21, Theorem V.1.1]. �

To discuss the case of O-coefficients, we need a “completed” version D̂(G,O) of D(G,O). It seems some-

what subtle to define a well-behaved category D̂(G,O) as the actual derived category of some abelian category.
Instead, we make the following definition.

Definition 2.5. For any G and O as above, we set D̂(G,O) = lim
n
D(G,O/̟n), where the limit is computed

in the ∞-categorical sense.

Morally (but not literally) this is the subcategory ofD(ModO[G]) spanned by derived̟-complete complexes
whose derived mod-̟n reductions are complexes of smooth O[G]-modules.

Proposition 2.6. 1. There is a natural equivalence D̂(G,O) ∼= Dét(BG,O) functorially in G and O, via a
functor denoted A 7→ FA.

2. There is a natural exact symmetric monoidal functor

γ : D(G,O)→ D̂(G,O).

A 7→ (A⊗L
O O/̟

n)n≥1.

The functor γ commutes with all colimits and therefore admits a right adjoint δ : D̂(G,O)→ D(G,O).
3. For any A ∈ D(G,O)adm, the unit of the adjunction A → δγA is an isomorphism. In particular, the

functor D(G,O)adm → D̂(G,O) is fully faithful.
4. On O-flat representations, the composite functor

F− ◦ γ : RepO(G)→ Dét(BG,O)

factors uniquely over the completion functor RepO(G)→ Repcomp
O (G) via a natural functor

F− : Repcomp
O (G)→ Dét(BG,O).

The reader should remember that intuitively, γ is completion and δ is decompletion.
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Proof. 1. is immediate from the equivalences

Dét(BG,O) ∼= lim
n
Dét(BG,O/̟

n) ∼= lim
n
D(G,O/̟n)

where the first isomorphism follows from [Sch17, Proposition 26.2] and the second isomorphism is immediate
from the previous proposition.

For 2., the fact that γ is symmetric monoidal follows as in [Sch17, Remark 26.3]. It is clear from the
definition that γ commutes with all direct sums, or equivalently [Lur16, Proposition 1.4.4.1(2)] with all
colimits, so the existence of the right adjoint follows from Lurie’s ∞-categorical adjoint functor theorem
[Lur09, Corollary 5.5.2.9(1)].

The desired functor

Repcomp
O (G)→ Dét(BG,O) ∼= lim

n
Dét(BG,O/̟

n)

in 4. sends N to (FN⊗L
OO/̟

n)n≥1. If M ∈ RepO(G) is O-flat, the claimed commutativity now follows from

the fact that

M̂ ⊗L
O O/̟

n ∼=M/̟nM ∼=M ⊗L
O O/̟

n

by O-flatness and [Sta20, Tag 00M9].
For 3., we first note that δ has an explicit description. Precisely, for any open subgroup H ⊂ G and any

n ≤ ∞, there is a natural functor

RΓ(H,−) : D(G,O/̟n)→ D(O/̟n)

A 7→ RHom(indGHO/̟
n, A)

of (derived) H-invariants, as well as a completed version

RΓ̂(H,−) : D̂(G,O)→ D̟−comp(O) ∼= lim
n
D(O/̟nO)→ D(O)

(An)n≥1 7→ R lim
n
RHomD(G,O/̟n)(ind

G
HO/̟

n, An).

When H is compact, RΓ(H,−) actually coincides with the usual functor of continuous group cohomology

on discrete H-modues, hence the notation. Note that colimHRΓ̂(H,B) is naturally a complex of smooth

O[G]-modules, with G acting by “transport of structure”. Then for any B ∈ D̂(G,O), δ(B) is naturally

identified with colimHRΓ̂(H,B). For this, observe that δB ≃ colimHRΓ(H, δB) (this holds with δB replaced

by any object of D(G,O)). Then observe that RΓ(H, δB) = RΓ̂(H,B) for any B; this follows by a direct
computation from the formula for γ.

Granted this, we compute that

δ(γ(A)) ≃ colimHRΓ̂(H, γ(A))

≃ colimH lim
n
RΓ(H,A⊗L

O O/̟
n)

≃ colimH lim
n
RΓ(H,A)⊗L

O O/̟
n

≃ colimHRΓ(H,A)

≃ A

for any A ∈ D(G,O)adm. Here the key isomorphism RΓ(H,A) ≃ limnRΓ(H,A) ⊗
L
O O/̟

n follows from the
fact that the cohomology groups of RΓ(H,A) are all finitely generated O-modules, which follows from the
fact that all Hi(A)’s are admissible by assumption. �

Corollary 2.7. For any M ∈ D(G,O) and N ∈ D(G,O)adm, the natural map RHomD(G,O)(M,N) →
RHomD̂(G,O)(γM, γN) is an isomorphism.

Proof. By part 3. of the previous proposition, we have RHomD(G,O)(M,N) ∼= RHomD(G,O)(M, δγN), so the
result follows by adjunction. �
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Lemma 2.8. Let M be an admissible smooth ℓ-torsion-free O[G]-module. Let π ∈ RepE(G) be a finite-
length admissible smooth representation of G. Suppose moreover that π is a direct summand of M [ 1ℓ ]. Then
π admits a G-stable O-lattice π◦, and any such lattice is an isogeny direct summand of M .

In what follows, when we say “O-lattice”, we mean “G-stable O-lattice”.

Proof. Since π is of finite length, it is finitely generated, so some results of Vignéras [Vig04] imply that
any O-lattice in π is finitely generated as an O[G]-module, and any two O-lattices in π are commensurable.
Moreover, an O[G]-submodule of π is an O-lattice if and only if it is a free O-module and it contains an
E-basis of π. These results easily imply that if some O-lattice π◦ ⊂ π is an isogeny direct summand of M ,
then all O-lattices are isogeny direct summands of M . Thus, we only need to exhibit a single such π◦.

By assumption, we can choose morphisms i : π →M [ 1ℓ ] and s : M [ 1ℓ ]→ π with s ◦ i = id. We claim that
π◦ = s(M) is an O-lattice in π. Clearly π◦ contains an E-basis of π, so it suffices to check that π◦ is a free
O-module. Choose a countable cofinal set of open pro-p subgroups

· · · ⊳ Kn ⊳ · · · ⊳ K3 ⊳ K2 ⊳ K1 ⊂ G.

Then each s(MKn) = s(M)Kn is a finite free O-module, and the inclusions s(M)Kn → s(M)Kn+1 are split
as O-modules by the obvious averaging maps, using that [Kn+1 : Kn] ∈ O

×. Therefore π◦ = colimns(M)Kn

is a free O-module.
Since π◦ is a finitely generated O[G]-submodule, we can choose some large n such that ℓni(π◦) ⊆ M .

Setting i′ = ℓni, we now have a pair of maps i′ : π◦ → M and s : M → π◦ with s ◦ i = ℓn, so these maps
exhibit π◦ as an isogeny direct summand of M . �

As a consequence, we can globalize lattices in square-integrable representations. For simplicity we only
discuss the supercuspidal case.

Proposition 2.9. Let H/Q be a connected reductive group such that H(R) is compact modulo center. Fix
an isomorphism ι : E → C, and let π ∈ RepE(H(Qp)) be any irreducible supercuspidal representation. Then
some unramified twist of π admits a H(Qp)-stable O-lattice, and this lattice occurs as an isogeny direct
summand in a space of algebraic automorphic forms for H.

More precisely, we can choose the data of
• An open compact subgroup Kp ⊂ H(Af,p),
• An irreducible algebraic H-representation Lξ of some regular highest weight ξ,
• A Kp-stable O-lattice Lξ,O in the E-linear realization Lξ,E of Lξ (where Kp acts via the composition

Kp → H(Af )→ H(Qℓ)), and
• A H(Qp)-stable O-lattice τ◦ in an unramified twist τ = π ⊗ η of π,

such that τ◦ is an isogeny direct summand of

AH(Kp,Lξ,O)
def
= colim

Kp→{1}
A(H(Q)\H(Af )/KpKp,Lξ,O)

in the category of admissible smooth O[H(Qp)]-modules.

Proof. By construction, AH(Kp,Lξ,O)⊗O,ι C is a space of algebraic automorphic forms for H with infinite
level at p. Since ιπ is essentially square-integrable, a standard argument with the simple trace formula
shows that we may choose ξ and Kp such that some unramified twist ιπ ⊗ η′ occurs as a direct summand
of AH(Kp,Lξ,O)⊗O,ιC (cf. [Shi12a, Proposition 5.3 and Example 5.6] for a very general result along these
lines). Replacing E by a sufficiently large finite extension, we can assume that η = ι−1η′ is valued in E,
so then τ = π ⊗ η occurs as a direct summand of AH(Kp,Lξ,O)[

1
ℓ ]. Since AH(Kp,Lξ,O) is an admissible

smooth ℓ-torsion-free O[H(Qp)]-module, we now conclude by Lemma 2.8. �

2.3. Some p-adic geometry. In this subsection, we give some recollections on p-adic geometry. Fix a
complete algebraically closed extension C/Qp. All rigid spaces will live over SpaC, and all diamonds, small
v-stacks, etc. will live over SpdC. If G is a locally profinite group, we write BG = [SpdC/G].
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Fix a reductive group G/Qp, and let BunG be the stack of G-bundles on the Fargues-Fontaine curve. In
our convention, this is a category fibered in groupoids over Perf/SpdC ∼= Perfd/SpaC . Recall that BunG is a
small v-stack, and by a theorem of Fargues [Far15] there is a natural continuous bijection

|BunG|
∼
→ B(G)

xb ←[ b

where B(G) is topologized by the partial order topology on Newton points. Moreover, for any basic b there
is a natural open immersion j : BGb(Qp)→ BunG.

Now fix a geometric conjugacy class of minuscule cocharacters µ : Gm,Qp
→ GQp

, and let FℓG,µ be

the associated rigid analytic flag variety. By [CS17, §3.4-3.5], we can also identify FℓG,µ with the functor
Perfd/SpaC → Sets sending any S to the set of isomorphism classes of µ-bounded meromorphic modifications

(E , i : E1|X
S♭rS

∼
→ E|X

S♭rS)

of G-bundles on the relative Fargues-Fontaine curve XS♭ . In particular, there is a canonical map q̃ : FℓG,µ →
BunG sending the data of such a modification to the class of the bundle E .

Proposition 2.10. 1. The map q̃ factors as FℓG,µ → [FℓG,µ/G(Qp)]
q
→ BunG, and the map q is ℓ-

cohomologically smooth for all ℓ 6= p.
2. For any open compact subgroup K ⊂ G(Qp), the map

qK : [FℓG,µ/K]→ [FℓG,µ/G(Qp)]
q
→ BunG

is ℓ-cohomologically smooth for all ℓ 6= p.

Proof. For 1., recall that the G(Qp)-action on FℓG,µ changes a modification (E , i) by precomposing i with
the action of G(Qp) ∼= Aut(E1). Since the map q̃ discards the data of i, the claimed factorization is clear.
For the smoothness claim, one checks that for any perfectoid space S/C with a map S → BunG, the fiber
product

[FℓG,µ/G(Qp)]×BunG S

is étale-locally on S isomorphic to an open subspace of FℓG,µ−1 ×SpdC S, which is then ℓ-cohomologically
smooth over S. Part 2. is now clear, since [FℓG,µ/K] → [FℓG,µ/G(Qp)] is étale, hence ℓ-cohomologically

smooth, and compositions of cohomologically smooth maps are cohomologically smooth. �

Recall from [CS17] that FℓG,µ admits a G(Qp)-invariant Newton stratification into locally spatial locally
closed subdiamonds FℓbG,µ ⊂ FℓG,µ indexed by b ∈ B(G,µ). By definition, these are the subdiamonds

corresponding to the subspaces |q̃|−1(xb) ⊂ |FℓG,µ| for any individual b ∈ B(G) = |BunG|.
The following observation settles a question left open in [CS17], although we won’t need it in this paper.

Proposition 2.11. The stratification |FℓG,µ| =
∐
b∈B(G,µ) |Fℓ

b
G,µ| is a true stratification, in the sense that

the closure of any stratum is a union of strata. Moreover, if G = GLn then |FℓbG,µ| =
∐
b′≥b |Fℓ

b′

G,µ|.

Proof. As above, the map q̃ factors as a G(Qp)-torsor followed by a cohomologically smooth map, so |q̃| is

an open map. The first claim now follows from the fact that f−1(S) = f−1(S) for any open continuous map
of topological spaces, together with the fact that the decomposition |BunG| =

∐
b∈B(G){xb} is obviously a

true stratification. The second claim then follows from [Han17]. �

We now turn to local Shimura varieties. Choose some element b ∈ B(G,µ), so (G,µ, b) is a local Shimura
datum.

Definition 2.12. The local Shimura variety Sh(G,µ, b)∞ is the functor on perfectoid spaces over SpaC
sending any S to the set of µ-bounded meromorphic modifications

E1|X
S♭rS

∼
→ Eb|X

S♭rS .

For K ⊂ G(Qp) an open compact subgroup, Sh(G,µ, b)K is the unique rigid analytic space such that

Sh(G,µ, b)♦K = Sh(G,µ, b)∞/K.
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It turns out that for any given representation ρ◦ ∈ RepO(Gb(Qp))adm, there are several natural ways to
define “the ρ◦-part of the cohomology of the tower {Sh(G,µ, b)K}K”. Fortunately these recipes all agree, up to
the essentially harmless difference between complete admissible representations and smooth admissible rep-
resentations. Before explaining this, we need to define the cohomology of the individual spaces Sh(G,µ, b)K .
Here there are already two natural candidate definitions.

Definition 2.13. LetX be any compactifiable locally spatial diamond of finite dim.trg over C, with structure
morphism f : X → SpdC. Then for any n ≤ ∞, we define RΓc(X,O/̟

n) = Rf!(O/̟
n), where Rf! is defined

as in [Sch17, §22 and §26]. The assignment X 7→ RΓc(X,O) is covariant for open immersions, so we can also
define

RΓc,sm(X,O) = colimU⊂XRΓc(U,O)

where the colimit runs over all quasicompact open subspaces U ⊂ X .3

Note that we could obviously also define RΓc,sm(X,O/̟
n) for finite n, but this coincides with RΓc(X,O/̟

n).

Proposition 2.14. 1. In the notation of the previous definition, there is a natural map

RΓc,sm(X,O)→ RΓc(X,O)

identifying the target with the derived ℓ-completion of the source.
2. If X is ℓ-cohomologically smooth and equipped with a G-action for some locally pro-p group G, then

RΓc,sm(X,O) is naturally a complex of smooth O[G]-modules, and RΓc(X,O) = γRΓc,sm(X,O) where γ is
the completion functor defined in Proposition 2.6.3.

Note that in the setup of part 2., one gets a map RΓc,sm(X,O) → δRΓc(X,O) by adjunction. It is
plausible that this map is often an isomorphism, but we didn’t try to check this.

Proof. 1. is immediate form the observation that

RΓc,sm(X,O)⊗
L
O O/̟

n → RΓc(X,O)⊗
L
O O/̟

n ∼= RΓc(X,O/̟
n)

is an isomorphism. For the first half of 2., note that any qc open U ⊂ X is stable under an open pro-p
subgroup K ⊂ G. Then f : [U/K] → BK is qcqs and ℓ-cohomologically smooth, so Rf! preserves compact
objects as its right adjoint Rf ! commutes with all direct sums. Thus Rf!O = RΓc(U,O) ∈ Dét(BK,O) is
a compact object, and in particular it is a bounded complex of finitely generated smooth O[K]-modules.
Passing to the colimit, we deduce that RΓc,sm(X,O) is naturally a complex of smooth O[G]-modules. The
second half of 2. is immediate from the definition of γ. �

Definition 2.15. For (G,µ, b) a local Shimura datum and K ⊂ G(Qp) an open compact subgroup, we define

RΓc(Sh(G,µ, b)K , E) := RΓc,sm(Sh(G,µ, b)K ,O)⊗O E

and
RΓc(Sh(G,µ, b), E) = colim

K→{1}
RΓc(Sh(G,µ, b)K , E).

By the previous proposition, RΓc(Sh(G,µ, b)K , E) is a complex of smooth Gb(Qp)-representations, and
RΓc(Sh(G,µ, b), E) is a complex of smooth G(Qp)×Gb(Qp)-representations.

We now restrict our attention to the case where b ∈ B(G,µ) is the unique basic element.

Proposition 2.16. Let b ∈ B(G,µ) be the unique basic element. For any open compact subgroup K ⊂ G(Qp)
there is a natural Cartesian diagram

Sh(G,µ, b)K //

��

[FℓbG,µ/K]

qbK

��

SpdC // BGb(Qp)

3The colimit here is computed in the derived ∞-category D(O).
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compatibly with varying K. Here the right-hand vertical map is the pullback of qK : [FℓG,µ/K] → BunG
along the open immersion BGb(Qp) ⊂ BunG.

Proof. Clear from the definitions. �

Now, fix an admissible representation ρ◦ ∈ RepO(Gb(Qp))adm.

Proposition 2.17. Notation as above, consider the following complexes of O[G(Qp)]-modules.
1. M1 = colimKRΓc,sm(Sh(G,µ, b)K ,O)⊗

L
HO(Gb(Qp))

ρ◦.

2. M2 = RΓc(Fℓ
b
G,µ, q̃

b∗Fρ̂◦), where q̃b : FℓbG,µ → BGb(Qp) is the obvious pullback of q̃.

3. M3 = colimKRΓ([FℓG,µ/K], j̃!q
b∗
KFρ̂◦), where j̃ : [FℓbG,µ/K] → [FℓG,µ/K] is the natural open immer-

sion.
Then M1 and M3 are bounded complexes of smooth O[G(Qp)]-modules with admissible cohomology, and M2

is a bounded derived ℓ-complete complex with complete admissible cohomology. Moreover, there are natural
maps M1 →M2 ←M3 which become isomorphisms after derived ℓ-completion.

Applying Proposition 2.6.3 twice, we deduce that there is a natural quasi-isomorphism M1
∼= M3 in

D(G(Qp),O). Note that M1[
1
ℓ ] coincides with RΓc(G,µ, b)[ρ] as defined in the introduction. On the other

hand, M3[
1
ℓ ] is the object which will emerge naturally in our proof of Theorem 1.1.

Proof. We first construct the maps. To build the map M1 →M2, note that there is an obvious map

colimKRΓc,sm(Sh(G,µ, b)K ,O)⊗
L
HO(Gb(Qp))

ρ◦ → RΓc(Sh(G,µ, b)∞,O)⊗̂
L

ĤO(Gb(Qp))ρ̂
◦ def
= N.

Indeed, the right-hand side is the derived ℓ-completion of the left-hand side. On the other hand, the local
Hodge-Tate period map Sh(G,µ, b)∞ → FℓbG,µ is a pro-étale Gb(Qp)-torsor, so by Lemma 2.18 below there
is a natural isomorphism N ∼=M2.

To build the map M3 →M2, note that by general nonsense, the natural map

colimKRΓ([FℓG,µ/K], j̃!q
b∗
KFρ̂◦)→ RΓ(FℓG,µ, j̃!q̃

b∗Fρ̂◦)

identifies the target with the derived ℓ-completion of the source.4 On the other hand,

RΓc(Fℓ
b
G,µ, q

b∗Fρ̂◦)
∼= RΓ(FℓG,µ, j̃!q

b∗Fρ̂◦)

since FℓG,µ is proper.
We’ve already shown that the maps become isomorphisms after derived ℓ-completion. Thus, by two

applications of Proposition 2.6.3, it remains to see that M3 is admissible, i.e. that for any given K

RΓ([FℓG,µ/K], j̃!q
b∗
KFρ̂◦)

is a perfect complex of O-modules. This follows from the admissibility of ρ◦ and the fundamental finiteness
theorems proved in [FS21, §IX.3]. �

In the previous proof, we used the following lemma.

Lemma 2.18. Let X/C be a compactifiable locally spatial diamond of finite dim.trg, and let X̃ → X be a

G-torsor for some locally pro-p-group G with p 6= ℓ, corresponding to a map q : X → BG. Let A ∈ D̂(G,O)
be any object, with FA ∈ Dét(BG,O) the associated sheaf. Then there is a natural isomorphism

RΓc(X, q
∗FA) ∼= RΓc(X̃,O)⊗̂

L

ĤO(G)A.

Proof. This follows from an easy ℓ-complete variant of the analysis in [Man04, §5] and [HK19, Appendix
B]. �

Finally, we need to discuss inert representations.

4Let Xi be a cofiltered system of qcqs small v-stacks with 0-truncated qcqs transition maps indexed by a category I with
an initial object 0. Let X = limXi be the limiting small v-stack. Let F0 ∈ Dét(X0,O) be some object, with pullbacks
Fi ∈ Dét(Xi,O) and F ∈ Dét(X,O). Then there is a natural map colimiRΓ(Xi,Fi) → RΓ(X,F) identifying the target with
the derived ℓ-completion of the source.
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Definition 2.19. Let b ∈ B(G)bas be any basic element, with j : BGb(Qp) → BunG the associated open

immersion. A smooth admissible representation π◦ ∈ RepO(Gb(Qp))adm is inert if for every quasicompact
open substack W ⊂ BunG,

Cone(j!Fπ̂◦ → Rj∗Fπ̂◦)|W ∈ Dét(W,O)

is killed by ℓn for some n≫W 0.

Proposition 2.20. Suppose that π ∈ RepE(Jb(Qp))adm is finitely generated and admissible. If some O-lattice
π◦ ⊂ π is inert, then every O-lattice in π is inert.

Proof. This follows easily from the commensurability of any two O-lattices in π [Vig04]. �

Definition 2.21. Let π ∈ IrrE(Gb(Qp)) be any irreducible representation. We say π is inert if some
unramified twist of π contains an inert O-lattice.

We will need the following crucial result.

Theorem 2.22. Suppose that ρ ∈ IrrE(Gb(Qp)) is an irreducible representation admitting an O-lattice, and
that the L-parameter

ϕρ :WQp →
LGb(Qℓ) ∼=

LG(Qℓ)

associated with ρ by [FS21] is supercuspidal. Then ρ is supercuspidal, and every O-lattice ρ◦ ⊂ ρ is inert.

The proof of this theorem relies on the full power of the machinery developed in [FS21]. In the following
argument, we will freely use various notation and results from [FS21, Ch. VIII-IX].

Proof. Supercuspidality of ρ follows from [FS21, Corollary IX.7.3]. It remains to prove inertness. Via the
isomorphism BunG ∼= BunGb

, we can assume that b = 1 and Gb = G. Fix an O-lattice ρ◦ ⊂ ρ, and let Fρ̂◦
be the associated sheaf on BG(Qp). It suffices to prove that for every non-basic b with associated stratum

ib : Bun
b
G → BunG, the object i∗bRj∗Fρ̂◦ ∈ D̂(Gb(Qp),O) is killed by ℓn for some n. In fact, the following

argument will show that n can be chosen independently of b.

For Λ any O-algebra, let Zspec(G)Λ := O(Z1(WQp , Ĝ)Λ)
Ĝ be the spectral Bernstein center with coefficients

in Λ. As in [FS21, Definition IX.7.1], there is a canonical map from Zspec(G)O to the Bernstein center

Z(D(G(Qp),O)), which induces a composite map to the Bernstein center of D̂(G(Qp),O). Moreover, by
[FS21, Theorem IX.7.2], the induced diagram

Zspec(G)O
ΨG

//

r

��

End(Fρ̂◦)
∼= End(ρ◦)

s

��

Zspec(Jb)O
ΨGb

// End(i∗bRj∗Fρ̂◦)

commutes. Here r is induced by the natural map Ĝb → Ĝ realizing Ĝb as a Levi subgroup of Ĝ.

Now, let eρ ∈ Z
spec(G)E be the idempotent cutting out the connected component Cρ of Z1(WQp , Ĝ)E

containing the parameter ϕρ. Let X be the connected component of Z1(WQp , Ĝ)O containing the image of
Cρ, so O(X) resp. O(X)[1/ℓ] is naturally a summand of Zspec(G)O resp. Zspec(G)E , and eρ ∈ O(X)[1/ℓ].
Quite generally, if X is a reduced finite type O-scheme and C ⊂ XE is a connected component with associated
idempotent e ∈ O(X)[1/ℓ], there is some integer n such that ℓne ∈ O(X). Applying this in the situation at
hand, we can choose some n such that ℓneρ ∈ Z

spec(G)O. Then ΨG(ℓ
neρ) = ℓn as endomorphisms of ρ◦:

this can be checked after inverting ℓ, where it reduces to the fact that eρ acts as the identity on ρ under
the natural map Zspec(G)E → Z(D(G(Qp), E)). On the other hand, r(ℓneρ) = 0, since the component of

Z1(WQp , Ĝ)E//Ĝ containing the closed point corresponding to ϕρ is disjoint from the image of

Z1(WQp , M̂)E//M̂ → Z1(WQp , Ĝ)E//Ĝ



ON THE SUPERCUSPIDAL COHOMOLOGY OF BASIC LOCAL SHIMURA VARIETIES 17

for any proper Levi M̂ ⊂ Ĝ. Going around the diagram, we then compute that

ℓn = s(ℓn)

= (s ◦ΨG)(ℓ
neρ)

= (ΨJb
◦ r)(ℓneρ)

= 0

in End(i∗bRj∗Fρ̂◦), as desired. �

When ρ is inert, RΓc(G,µ, b)[ρ] satisfies a clean duality principle.

Theorem 2.23. Fix a basic local Shimura datum (G,µ, b), and let ρ be an inert representation of Gb(Qp).
Writing (−)∗ for the contragredient, there is a natural isomorphism

RΓc(G,µ, b)[ρ]
∗ ∼= (RΓc(G,µ, b)[ρ

∗]) [2d](d)

of WF -equivariant objects in D(G(Qp), E). In particular, there is a natural WF -equivariant isomorphism

Hi
c(G,µ, b)[ρ]

∗ ∼= H2d−i
c (G,µ, b)[ρ∗](d)

of smooth G(Qp)-representations.

Proof. Replacing ρ by a twist, we can assume that ρ contains an inert O-lattice ρ◦. By Proposition 2.17, it’s
enough to produce a natural map

RΓ([FℓG,µ/K], j̃!q
b∗
KFρ̂◦∗)[2d](d)→ RHom(RΓ([FℓG,µ/K], j̃!q

b∗
KFρ̂◦),O)

functorially in open pro-p subgroups K ⊂ G(Qp) whose cone is killed by ℓn for some n ≫ 0 independent of
K. For this, look at the diagram

[FℓG,µ/K]

qK

%%▲
▲▲

▲▲
▲▲

▲▲
▲

pK

yyss
ss
ss
ss
s

BK BunG

where qK is smooth and pK is proper and smooth. An exercise with the six functors shows that

RHom(RΓ(BK,RpK∗q
∗
KG),O)

∼= RΓ(BK, (RpK∗q
∗
KDG)[2d](d))

for any G ∈ Dét(BunG,O), where DG = RHom(G,O) denotes the Verdier dual.5 Applying this with
G = j!Fρ̂◦ , in which case DG = Rj∗Fρ̂◦∗ we deduce that

RHom(RΓ([FℓG,µ/K], j̃!q
b∗
KFρ̂◦),O)

∼= RΓ([FℓG,µ/K], q∗KRj∗Fρ̂◦∗)[2d](d).

But inert representations are preserved under duality, and the image of qK is quasicompact and independent
of K, so the cone of the natural map

j̃!q
b∗
KFρ̂◦∗

∼= q∗Kj!Fρ̂◦∗ → q∗KRj∗Fρ̂◦∗

is killed by some ℓn with n independent of K. Applying RΓ([FℓG,µ/K],−) gives the desired map. �

Corollary 2.24. If ρ ∈ RepE(Gb(Qp)) is an inert supercuspidal representation, there is a natural isomor-
phism

RΓc(G,µ, b)[ρ] ∼= colim
K

RHomD(Gb(Qp),E) (RΓc(Sh(G,µ, b)K , E)[2d](d), ρ) .

In particular, when ρ is inert, RΓc(G,µ, b)[ρ] as defined in this paper coincides with RΓ(G,µ, b)[ρ][−d](−d2 ),
where RΓ(G,µ, b)[ρ] is defined as in [HKW22].

5Strictly speaking, we are also using the duality RΓ(BK,−)∨ ∼= RΓ(BK, (−)∨), which is an easy exercise using the (canonical)
O-valued Haar measure on K in this situation.
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Proof. It is clear from the definitions that

RΓc(G,µ, b)[ρ]
∗ ∼= colimKRHomD(Gb(Qp),E)(RΓc(Sh(G,µ, b)K , E), ρ∗)

for any ρ. When ρ is inert, the left-hand side is identified with (RΓc(G,µ, b)[ρ
∗]) [2d](d) by the previous

theorem, so the result follows by moving the shifts and twists appropriately. �

3. Proofs

3.1. Basic uniformization. Let (G, X) be a Shimura datum, with conjugacy class of inverse Hodge cochar-
acters µ : Gm,C → GC. Fix a prime p, and set G = G⊗Q Qp. Via our fixed isomorphisms C ≃ Qp, we can
and do regard µ as a conjugacy class of cocharacters µ : Gm,Qp

→ GQp
. In particular, we may speak of the

Kottwitz set B(G,µ).

Proposition 3.1. Let (G, X) be a Shimura datum, and let p be any prime. Then with notation as above, G
admits a canonical Q-inner form G′ such that

i. G′
A{∞p} ≃ GA{∞p} as algebraic groups over A{p∞},

ii. G′Qp
≃ Gb, where Gb/Qp is the inner form of G associated with the unique basic element b ∈ B(G,µ),

and
iii. G′(R) is compact modulo center.

We emphasize that G′ depends on the pair (G, X) and not just on G. When (G, X) is a Hodge type
Shimura datum with good reduction at p, this was proved by Xiao-Zhu [XZ17, Corollary 7.2.15]. The following
general argument was suggested by Zhiyu Zhang.

Proof. By the Hasse principle for adjoint groups [PR94, Theorem 6.22] and the analysis in [Kot86, §1-2],
there is a natural exact sequence

1→ H1(Q,Gad)→ ⊕v≤∞H
1(Qv,G

ad)
α
−→ π0(Z(Ĝad)ΓQ)D

of pointed sets, where (−)D denotes the Pontryagin dual. Here the map α is obtained as the direct sum of
the canonical maps

αGad,v : H
1(Qv,G

ad)→ π0(Z(Ĝad)ΓQv )D

defined by Kottwitz, composed with the map

⊕vπ0(Z(Ĝad)ΓQv )D
∑
ιv
−→ π0(Z(Ĝad)ΓQ)D,

where ιv : π0(Z(Ĝad)ΓQv )D → π0(Z(Ĝad)ΓQ)D is the evident morphism.
Choosing any h ∈ X , the 1-cocycle

ΓR = {1, c} → Gad(C)

sending c to adh(i) determines a class [h] ∈ H1(R,Gad) which is well-defined independently of h, and the
associated inner form of GR is compact modulo center, cf. [XZ17, §2.1.3]. Moreover, the image of [h] under

αGad,∞ coincides with µhad ∈ π0(Z(Ĝad)ΓR)D, where µh is the Hodge cocharacter associated with h, by
[XZ17, §Lemma 2.1.4].

On the other hand, there is a natural commutative diagram of isomorphisms

H1(Qp, G
ad) //

α
Gad,p

��

B(Gad)bas

κ
��

π0(Z(Ĝad)ΓQp )D // X∗(Z(Ĝad)ΓQp )

by [Kot85, Proposition 5.6 and Remark 5.7]. Let b ∈ B(G,µ−1h ) be the unique basic element, and bad its
image in B(Gad)bas. Then the inner form Gb defines a class [Gb] ∈ H

1(Qp, G
ad) mapping to bad along the

upper horizontal arrow. Moreover, since bad ∈ B(Gad, µ−1h,ad), the definition of the latter set implies that

κ(bad) = µh
−1
ad . Going around the diagram, we conclude that αGad,p([Gb]) = µh

−1
ad .
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Now, let
γ = (γv) ∈ ⊕v≤∞H

1(Qv,G
ad)

be the class defined by setting γv = 0 for all v /∈ {p,∞}, γp = [Gb], and γ∞ = [h]. The analysis in the
previous two paragraphs shows that

α(γ) = µhad + µh
−1
ad = 0,

so there is a unique class [G′] ∈ H1(Q,Gad) mapping to γ. It is clear by construction that the inner form
G′ has the desired properties. �

For any open compact subgroup K ⊂ G(Af ), let S(G, X)K be the associated rigid analytic Shimura
variety over Cp with level K. If Kp ⊂ G(Af,p) is an open compact subgroup, set

S(G, X)Kp = lim
←−

Kp→{1}

S(G, X)KpKp .

If (G, X) is of pre-abelian type, this is representable by a perfectoid space; in general it is just a diamond.
By the results of [Han16], there is a canonical G(Qp)-equivariant Hodge-Tate period map

πHT : S(G, X)Kp → FℓG,µ

of diamonds over SpdCp, compatible with varying Kp, which recovers the construction of [CS17] for Hodge
type Shimura varieties. By G(Qp)-equivariance, πHT descends to a map

πHT,Kp : S(G, X)KpKp → [FℓG,µ/Kp]

for any open compact subgroup Kp ⊂ G(Qp).
Next, let b ∈ B(G,µ) be the unique basic element, and let FℓbG,µ be the basic Newton stratum in the

flag variety as defined in §2.2. This is an open G(Qp)-stable subspace of FℓG,µ. By pullback along πHT,
this defines an open subspace S(G, X)bKp ⊂ S(G, X)Kp , which by G(Qp)-invariance descends to an open
subspace S(G, X)bK ⊂ S(G, X)K for any K ⊂G(Af ).

Definition 3.2. Notation as above, we say a global Shimura datum (G, X) satisfies basic uniformization at
p if there is a G(Af )-equivariant isomorphism

lim
←
Kp

S(G, X)bKp

ψ
≃ (G′(Q)\G′(Af )×SpdCp Sh(G,µ, b)∞)/Gb(Qp) (†)

of diamonds over SpdCp such that under the identification FℓbG,µ
∼= Sh(G,µ, b)∞/Gb(Qp), the Hodge-Tate

period map
πHT : lim

←
Kp

S(G, X)bKp → FℓbG,µ

identifies with the projection

(G′(Q)\G′(Af )×SpdCp Sh(G,µ, b)∞)/Gb(Qp)→ Sh(G,µ, b)∞/Gb(Qp)

onto the second factor. Moreover, we require that G(Af ) ≃ G′(Af,p) × G(Qp) acts on the right-hand side
of (†) via the natural actions G′(Af,p) � G′(Q)\G′(Af ) and G(Qp) � Sh(G,µ, b)∞.

Let us make some remarks on this definition.

• This definition implicitly depends on the particular choices of isomorphisms C ≃ Qp, G′
A{∞p} ≃

GA{∞p} , and G′Qp
≃ Gb, as well as on a choice of an actual element b ∈ G(Q̆p) representing the

basic class in B(G,µ). In all cases where a Shimura datum is known to satisfy basic uniformization
at p, the existence of an isomorphism ψ with the required properties is not sensitive to these choices
(more precisely, the actual proofs that ψ exists are equivariant with respect to these choices).
• The quotient G′(Q)\G′(Af ) is naturally a profinite set, via the isomorphism

G′(Q)\G′(Af ) ∼= lim
K⊂G′(Af )

G′(Q)\G′(Af )/K

and the finiteness of the individual quotients G′(Q)\G′(Af )/K.
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• The name “uniformization” is indeed appropriate: for any open compact subgroup KpKp ⊂ G(Af ),
passing to the quotients by KpKp on both sides of (†) induces an isomorphism

S(G, X)bKpKp
≃

∐
Sh(G,µ, b)Kp/Γi

for some finite set of discrete subgroups Γi ⊂ Gb(Qp).

Of course, we are not proposing this definition in a vacuum.

Theorem 3.3. If (G, X) is a Shimura datum of abelian type and p > 2 is a prime such that GQp is
unramified, then (G, X) satisfies basic uniformization at p.

Proof. In the Hodge type setting, Proposition 3.1 was proved by Xiao-Zhu [XZ17, Corollary 7.2.15], and the
basic uniformization isomorphism then follows from work of Kim and Howard-Pappas [HP17, Kim18]. These
results were then extended to the abelian type setting by Shen [She19]. �

One can also treat some cases of bad reduction; this already goes back to Rapoport-Zink’s book.

Theorem 3.4. Let (G, X) be a PEL Shimura datum arising from a rational PEL datum (F,B, ∗, V, 〈, 〉 , h)
in Kottwitz’s sense. Let p be a prime such that B contains a Z(p)-order OB with OB ⊗ Zp maximal and
∗-stable in B ⊗Qp. Then (G, X) satisfies basic uniformization at p.

Proof. This follows from the analysis in [RZ96, Chapter 6]. Note that Rapoport-Zink in fact require the
existence of a Z-order in B with the specified properties, but this more restrictive condition is irrelevant and
is actually not used anywhere in their arguments. �

Theorem 3.5. Let (G,µ, b) be a basic local Shimura datum of the following type: assume that G = ResL/Qp
H

where H ≃ GLm(A) is an inner form of GLn/L for some finite extension L/Qp, and that

µ : Gm,Qp
→ GQp

=
∏

Hom(L,Qp)

GLn,Qp

is as in the discussion preceding Theorem 1.5. Then we can find an isomorphism ι : C → Qp and a PEL
Shimura datum (G, X) satisfying the conditions of Theorem 3.4 such that:

1. GQp ≃ G×Gm, and
2. ιµh × id = µ where µh is the (inverse) Hodge cocharacter associated with the given Shimura datum.

In particular, the local Shimura varieties Sh(G,µ, b)K occur (up to a Gm-factor) in the basic uniformization
at p of the Shimura varieties associated with the datum (G, X).

Proof. We loosely follow the analysis in [HT01, pp. 51-57]. Choose a totally real field F+/Q such that
F+⊗Qp = L and an imaginary quadratic field E in which p is split. Let v be the unique place of F+ above
p. Set F = F+E, and let w and wc be the places of F above p, so L ≃ F+

v ≃ Fw. Let B/F be a central
division algebra of degree n2 such that B ⊗E,c E ≃ Bopp, Bx splits for any place of F which is not split
over F+, and B ⊗F Fw ≃ Mm(A). Choose a positive involution ∗ of the second kind on B, and set V = B
regarded as a B ⊗F B

op-module in the natural way.
Any alternating ∗-Hermitian pairing V ×V → Q is of the form (x, y)β = trB/Q(xβy∗) for some β ∈ B∗=−1.

Any such pairing induces a perfect duality between V ⊗F Fw and V ⊗F Fwc . Fix a maximal order O ⊂ Bw,
and set

Λw = O ⊂ Bw = V ⊗F Fw =Mm(A)

Let Λwc ⊂ V ⊗F Fwc be the Zp-dual of Λw under the pairing (, )β : V ⊗ Qp × V ⊗ Qp → Qp. Then
Λ = Λw ⊕Λwc ⊂ V ⊗Qp is a Zp-lattice and the induced pairing (, )β : Λ×Λ→ Zp is perfect. Now there is a
unique maximal ∗-stable Z(p)-order OB ⊂ B such that OB,w = O, which by definition is the set of elements
in B carrying Λ into itself under the natural B-action on V ⊗Qp.

For any β as in the discussion above, let Gβ be the associated unitary similitude group over Q as defined
in [HT01], and let Gβ,1 be the kernel of the similitude character. Note that the structure maps of these
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groups factor naturally over SpecF+. Then Gβ,Qp ≃ G×Gm for any such β, so it remains to check that for
any tuple

{(pτ , qτ ) ∈ (Z2
≥0)

Hom(F+,R), pτ + qτ = n},

the element β can be chosen such that Gβ,1 ×SpecF+,τ SpecR ≃ U(pτ , qτ ) for all τ ∈ Hom(F+,R). Since
we don’t impose any conditions on Gβ,Qq at any finite prime q 6= p, the existence of such a β follows from a
much easier variant of the analysis in [HT01, pp. 52-55]. �

Remark 3.6. The Gm factor appearing in the previous theorem is indeed harmless. To explain this, let
(G,µ, b) be any local Shimura datum. Consider a product local Shimura datum (G×T, µ×µT , b× bT ) where
(T, µT , bT ) is any toral local Shimura datum. Let Tb be the inner form of T associated with bT . Let ρ be any
irreducible smooth Gb(Qp)-representation, and let χ be any smooth character of Tb(Qp). Then a Künneth
formula argument shows that

RΓc(G× T, µ× µT , b× bT )[ρ⊠ χ] ∼= RΓc(G,µ, b)[ρ]⊗RΓc(T, µT , bT )[χ].

Moreover RΓc(T, µT , bT )[χ] is nonzero and concentrated in degree zero. Together with the compatibility of
the construction ρ ϕρ with products, this shows that Theorem 1.1 holds for the datum (G,µ, b) and all ρ
satisfying condition 2. iff it holds for the datum (G × T, µ × µT , b × bT ) and all ρ ⊠ χ satisfying condition
2. In particular, when proving Theorem 1.1, it is permissible to replace the datum (G,µ, b) by any product
with a toral local Shimura datum.

It would be interesting to prove basic uniformization at p under the hypotheses of [KP18, Theorem 0.1].
This is probably within reach.

Corollary 3.7. Let (G, X) be a Shimura datum satisfying basic uniformization at p as in Definition 3.2,
and let G′ be the associated inner form of G. Fix some open compact subgroup KpKp ⊂ G(Af ). Let
Lξ,O be a Kp-stable O-lattice in the E-linear realization of some irreducible algebraic representation of G

of highest weight ξ, so (with the obvious abuse of notation) there is an associated ℓ-adic étale sheaf Lξ,O on
S(G, X)KpKp.

Then there is a natural isomorphism

RπHT,Kp∗Lξ,O|[FℓbG,µ/Kp]
∼= qb∗Kp

FΠ

in Dét([Fℓ
b
G,µ/Kp],O) compatibly with varying Kp. Here

qbKp
: [FℓbG,µ/Kp]→ BGb(Qp)

is the map defined in Proposition 2.16, and Π = AG′(Kp,Lξ,O)
∧ is the ℓ-adic completion of the space of

algebraic automorphic forms defined in Proposition 2.9.

Note that since G ⊗Q Qℓ ≃ G′ ⊗Q Qℓ, we can also naturally regard Lξ,O as a lattice in the E-linear
realization of an algebraic representation of G′, so the appeal to Proposition 2.9 makes sense.

Proof. Quotienting the basic uniformization isomorphism by KpKp, we get a Cartesian diagram

S(G, X)bKpKp

g

��

πb
HT,Kp

// [FℓbG,µ/Kp]

qbKp

��

[G′(Q)\G′(Af )/Kp/Gb(Qp)]
f

// BGb(Qp)

where the horizontal maps are proper and the vertical maps are ℓ-cohomologically smooth. Moreover, the
equivariance properties of the basic uniformization isomorphism directly imply that the restriction of Lξ,O to
S(G, X)bKpKp

is the pullback along g of the correct local system (which we also denote by Lξ,O) on the v-stack

[G′(Q)\G′(Af )/Kp/Gb(Qp)]. The key point here is that Lξ,O in both instances is obtained by descending

along the Kp-action on a suitable cover (whereKp acts on Lξ,E via the evident map Kp → G(Qℓ) ∼= G′(Qℓ)),
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and the Kp-action on the right-hand side of the uniformization isomorphism (†) is concentrated entirely on
the first factor.

With this in hand, we see that

RπHT,Kp∗Lξ,O|[FℓbG,µ/Kp]
∼= RπbHT,Kp∗g

∗Lξ,O,

again with the obvious abuse of notation concerning the local systems. Moreover,

Rf∗Lξ,O ∈ Dét(BGb(Qp),O) ∼= D̂(Gb(Qp),O)

is admissible and concentrated in degree zero, and is given concretely as (the sheaf FΠ associated with) the
claimed representation Π = AG′(Kp,Lξ,O)

∧. Since the vertical maps are smooth, the result now follows from
the smooth base change isomorphism qb∗Kp

Rf∗ ∼= RπbHT,Kp∗
g∗. �

3.2. Proof of Theorem 1.1. In this section, we state and prove the key technical lemma, and conclude the
proof of Theorem 1.1.

Lemma 3.8. Let X be a quasicompact small v-stack with an ℓ-cohomologically smooth map f : X → BunG.
Let j : BGb(Qp) → BunG be the inclusion of a basic stratum which meets the image of f , so we get a

cartesian diagram

U

fb

��

j̃
// X

f

��

BGb(Qp)
j

// BunG

where j̃ is an open immersion.
Let F be a complex in Dét(X,O). Assume that F|U = f b∗Gb for some complex Gb ∈ Dét(BGb(Qp),O).

Let ρ◦ ∈ RepO(Gb(Qp))adm be an inert representation of Gb(Qp), and let Fρ̂◦ ∈ Dét(BGb(Qp),O) be the

associated ℓ-adic sheaf.
If Fρ̂◦ occurs as an isogeny direct summand of Gb, then f∗j!Fρ̂◦

∼= j̃!f
b∗Fρ̂◦ occurs as an isogeny direct

summand of F in Dét(X,O).

The essential strength of this lemma is that we don’t need to know anything about the complementary
restriction F|XrU .

Proof. Let i : BunG r BGb(Qp) → BunG be the inclusion of the closed complement, and let ĩ : Z → X be

the pullback of i.
By assumption, we can pick an isogeny inclusion Fρ̂◦ → Gb, which pulls back to an isogeny inclusion

f∗j!Fρ̂◦ → f∗j!Gb = j̃!j̃
∗F . These can be embedded in a larger diagram

f∗j!Fρ̂◦

""❊
❊❊

❊❊
❊❊

❊❊

��

j̃!j̃
∗F

��

// F //

""❉
❉
❉
❉
❉
❉
❉
❉
❉

ĩ∗ĩ
∗F //

K

��

L

##❋
❋
❋
❋
❋
❋
❋
❋
❋

where by definition the small triangle commutes and each of the three sets of collinear arrows forms a
distinguished triangle. By Proposition 2.2.3, it suffices to show that the map h : L→ f∗j!Fρ̂◦ [1] is killed by

power of ℓ.
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By the octahedral axiom, L sits in a distinguished triangleK → L→ ĩ∗ĩ
∗F →. Applying Hom(−, f∗j!Fρ̂◦ [1])

to this triangle gives an exact sequence

Hom(̃i∗ ĩ
∗F , f∗j!Fρ̂◦ [1])

α
→ Hom(L, f∗j!Fρ̂◦ [1])

β
→ Hom(K, f∗j!Fρ̂◦ [1]).

The image of h under the map β is the connecting map K → f∗j!Fρ̂◦ [1] associated with the vertical triangle,

which is killed by a power of ℓ since the map f∗j!Fρ̂◦ → j̃!j̃
∗F is an isogeny inclusion (using Proposition

2.2.3 again). Therefore ℓnh ∈ imα for some n, so it suffices to show that Hom(̃i∗ĩ
∗F , f∗j!Fρ̂◦ [1]) is killed by

a power of ℓ.
In fact, we claim that RHom(̃i∗ĩ

∗F , f∗j!Fρ̂◦) is killed by a power of ℓ. For this, note that f∗(−) =

L⊗Rf !(−) for some shifted rank one local system L, since f is ℓ-cohomologically smooth. Then

RHom(̃i∗ĩ
∗F , f∗j!Fρ̂◦)

∼= RHom(̃i∗ĩ
∗F ,L⊗Rf !j!Fρ̂◦)

∼= RHom(Rf!(̃i∗ĩ
∗F ⊗ L−1), j!Fρ̂◦)

∼= RHom(i∗i
∗Rf!(F ⊗ L

−1), j!Fρ̂◦)

∼= RHom(i∗Rf!(F ⊗ L
−1), Ri!j!Fρ̂◦)

where the second and fourth lines follow from adjointness and the third line follows from two applications of
proper base change. Quite generally we have Ri!j!(−) = i∗Rj∗(−)[−1], so Ri!j!Fρ̂◦

∼= i∗Rj∗Fρ̂◦ [−1]. Since

ρ◦ is inert by assumption, the cone C of the natural map j!Fρ̂◦ → Rj∗Fρ̂◦ is killed by a power of ℓ after

restriction to any quasicompact open substack W ⊂ BunG. Applying i∗ to this map and noting that i∗j! = 0,
we deduce that Ri!j!Fρ̂◦

∼= i∗Rj∗Fρ̂◦ [−1]
∼= i∗C[−1] is killed by a power of ℓ after restriction to any such W .

Choosing W large enough to contain the image of f , the natural map

RHom(i∗Rf!(F ⊗ L
−1), Ri!j!Fρ̂◦)→ RHom(i∗Rf!(F ⊗ L

−1)|W , Ri
!j!Fρ̂◦ |W )

is an isomorphism. Since Ri!j!Fρ̂◦ |W is killed by a power of ℓ, this concludes the proof. �

We can now prove our main result.

Proof of Theorem 1.1. Fix (G,µ, b) as in the statement of the theorem, and let ρ be an inert supercuspidal
representation ρ of Gb(Qp). Set d = dimSh(G,µ, b)K . Fix a global Shimura datum (G, X) such that
Sh(G,µ, b)K occurs in the associated basic uniformization at p. Note that the Shimura varieties associated
with this Shimura datum also have dimension d. Let G′ be the inner form of G occurring in the basic
uniformization. After replacing ρ by an unramified twist if necessary, Proposition 2.9 and Theorem 2.22
imply that we may choose an inert O-lattice ρ◦ ⊂ ρ, together with some Kp and Lξ,O as in the statement of
Proposition 2.9 such that ρ◦ occurs as an isogeny direct summand ofAG′(Kp,Lξ,O). Let Π = AG′(Kp,Lξ,O)

∧

be the ℓ-adic completion, so ρ̂◦ is an isogeny direct summand of Π.
We are going to apply Lemma 3.8 to X = [FℓG,µ/Kp] and the map f = qKp : [FℓG,µ/Kp]→ BunG, with

F = RπHT,Kp∗Lξ,O and with b ∈ B(G,µ) the unique basic element. Then U = [FℓbG,µ/Kp], and Corollary

3.7 implies that F|U ∼= qb∗Kp
Gb upon setting Gb = FΠ. Moreover, ρ̂◦ is an isogeny direct summand of Π by

design, so Fρ̂◦ is an isogeny direct summand of FΠ = Gb.

This verifies the hypotheses of Lemma 3.8. Applying that lemma, we deduce that there is an isogeny
inclusion

j̃!q
b∗
Kp
Fρ̂◦ → RπHT,Kp∗Lξ,O

functorially in Kp, where

j̃ : [FℓbG,µ/Kp]→ [FℓG,µ/Kp]

is the natural open immersion. Applying RΓ([FℓG,µ/Kp],−), we deduce that there is an isogeny inclusion

RΓ([FℓG,µ/Kp], j̃!q
b∗
Kp
Fρ̂◦)→ RΓ(S(G, X)KpKp ,Lξ,O)
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functorially in Kp. In particular, inverting ℓ and applying Proposition 2.17, we conclude that

RΓc(Sh(G,µ, b)Kp , E)⊗L
H(Gb(Qp))

ρ ∼= RΓ([FℓG,µ/Kp], j̃!q
b∗
Kp
Fρ̂◦)[1/ℓ]

is a direct summand ofRΓ(S(G, X)KpKp ,Lξ,E). On the other hand, ξ is regular, soHi(S(G, X)KpKp ,Lξ,E) =
0 for all i < dimS(G, X)K = d by Proposition 3.9 below. Since

Hi
c(G,µ, b)[ρ] = colimKpH

i(RΓc(Sh(G,µ, b)Kp , E)⊗L
H(Gb(Qp))

ρ),

we conclude that Hi
c(G,µ, b)[ρ] = 0 for all i < d. Rerunning the entire argument with ρ replaced by ρ∗ and

applying Theorem 2.23, we deduce also that

Hi
c(G,µ, b)[ρ]

∗ ∼= H2d−i
c (G,µ, b)[ρ∗](d) = 0

for all i > d. This completes the proof. �

The key source of vanishing in this argument is the following result, which is essentially due to Li-
Schwermer.

Proposition 3.9. Let (G, X) be any Shimura datum, and let Lξ,E be the E-linear realization of an irre-
ducible algebraic representation of G of regular highest weight. Then Hi(S(G, X)KpKp ,Lξ,E) = 0 for all
i < dimS(G, X)K .

Proof. Writing Sh(G, X)KpKp for the usual complex Shimura variety, the analogous vanishingHi(Sh(G, X)KpKp ,Lξ,C) =
0 for all i < dimSh(G, X)K follows from the main theorems of [LS04]. Combining this with the Artin com-
parison theorem, the invariance of étale cohomology under chage of algebraically closed base field, and the
comparison theorems in [Hub96, Chapter 3], we get the desired result. �

3.3. Remaining proofs. In this section we prove the remaining results stated in the introduction.

Proof of Theorems 1.4 and 1.6. We first prove Theorem 1.4. Combining Theorem 1.1 and [HKW22, Theorem
1.0.2], we deduce that Hi

c(G,µ, b)[ρ] = 0 for all i 6= d, and hence the equality
[
Hd
c (G,µ, b)[ρ]

]
=

∑

π∈Πφ(G)

dimHomSφ
(δπ,ρ, rµ)[π]

in Groth(G(Qp)), which we can reinterpret as an isomorphism

Hd
c (G,µ, b)[ρ] ≃

ss ⊕π∈Πφ(G) dimHomSφ
(δπ,ρ, rµ) · π

where ≃ss denotes an isomorphism of semisimplified G(Qp)-representations. Let ω be the central character of
ρ. A simple computation shows that Hd

c (G,µ, b)[ρ], and hence any subquotient, also has central character ω
under the canonical identification Z = ZG(Qp) ∼= ZJb

(Qp); the key point here is that under this identification
of centers, the diagonal action of Z ⊂ Z × Z ⊂ G(Qp)×Gb(Qp) on Sh(G,µ, b)∞ is trivial. This shows that
Hd
c (G,µ, b)[ρ] is an iterated extension of the elements π ∈ Πφ(G) (with multiplicities as given above) in the

category RepE(G(Qp))ω . Since all elements π ∈ Πφ(G) are supercuspidal and any supercuspidal represen-
tation with central character ω is both projective and injective as an object of the category RepE(G(Qp))ω
[AR04], all the relevant extension classes are zero. Therefore Hd

c (G,µ, b)[ρ] is semisimple, so

Hd
c (G,µ, b)[ρ] = ⊕π∈Πφ(G) dimHomSφ

(δπ,ρ, rµ) · π

as desired.
Theorem 1.6 now follows, since the Fargues-Scholze construction agrees with the known local Langlands

correspondence for inner forms of restrictions of scalars of GLn [HKW22, Theorem 1.0.3]. This translates
condition 2. of Theorem 1.3 into the stated condition on ρ. Condition 1. is a consequence of Theorem 3.5
and Remark 3.6. �

Proof of Theorem 1.5. Combine Theorem 1.1 with [Far04, Théorème 8.1.4] or [Shi12b, Corollary 1.3]. Again,
Condition 1. follows from Theorem 3.5 and Remark 3.6. �
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Before proving Theorem 1.8, let us define Cϕ in general. For this, fix a reductive group G/Qp and a

semisimple L-parameter ϕ : WQp →
LG(Qℓ). Recall from [FS21, Theorem IX.4.2] that there is a natural

map ψ : Zspec(G)Qℓ
→ Z(Dlis(BunG,Qℓ)). On the other hand, ϕ defines a closed point in the coarse moduli

space of L-parameters, and hence a maximal ideal mϕ ⊂ Z
spec(G)Qℓ

.

Definition 3.10. Notation as above, we write Cϕ ⊂ Dlis(BunG,Qℓ) for the full subcategory spanned by
objects A such that the induced map ψA : Zspec(G)Qℓ

→ End(A) factors over the mϕ-adic completion of

Zspec(G)Qℓ
.

One can check that Cϕ ⊂ Dlis is a triangulated category stable under direct sums and Hecke operators,
and that Hom(Cϕ,Cϕ′) = 0 for any ϕ′ 6= ϕ.

Proof of Theorem 1.8. Fix a finite extension L/Qp and an embedding L→ Qp. Set Σ = Homalg(L,Qp). Let

G = ResL/Qp
GLn be as in the theorem, and fix a supercuspidal L-parameter ϕ :WQp →

LG(Qℓ). Note that
by Proposition 8.4 in [Bor79], isomorphism classes of such ϕ’s are in bijection (in an obvious abuse of notation)

with isomorphism classes of continuous irreducible ϕ : WL → GLn(Qℓ). Note also that Ĝ ∼= GLΣ
n,Qℓ

.

First, we note that Cϕ can be described extremely explicitly in this situation. To give this description,
recall that under the canonical identification B(GLn, L) = B(G)bas ∼= Z given by sending an isocrystal to its
degree, the composite map

Z ∼= B(G)bas → H1(Qp, G
ad)

sends d to the inner form Gd = ResL/Qp
GLm(D), where m = gcd(d, n) and D is the central division algebra

over L with Hasse invariant = d
n mod 1. In this notation, we have a canonical identification

Dlis(Bun
ss
G,Qℓ) ∼=

∏

d∈Z

Dlis(BGd(Qp),Qℓ) =
∏

d∈Z

D(Gd(Qp),Qℓ).

For each d, let πϕ,d be the unique irreducible supercuspidal representation of Gd(Qp) with L-parameter ϕ,
and let Fπϕ,d

be the associated sheaf on BGd(Qp) as before. Then an arbitrary object

F=
∏
Fd ∈ Dlis(Bun

ss
G,Qℓ)

lies in Cϕ if and only if Hi(Fd) is an iterated self-extension of copies of Fπϕ,d
for all d and all i.

Next we check that TW is t-exact on Cϕ for any irreducible minuscule W ∈ Rep(Ĝ). For any irreducible

representation, (Qℓ
×
)Σ ∼= ZĜ(Qℓ) acts on W via scaling by a character (xσ)σ∈Σ 7→

∏
xdσσ . Set d(W ) =

∑
dσ.

Assuming W is minuscule and replacing W by a central twist, we can assume that the cocharacter µW
corresponding to the highest weight character is as in the discussion before Theorem 1.5. Then unwinding
all definitions and appealing to Theorem 1.6, we deduce that

TWFπϕ,d
= F⊕dimWπϕ,d+d(W )

as elements of Cϕ. By the discussion in the previous paragraph, this proves the t-exactness of any such
TW . Since any representation is a summand of a tensor product of minuscule representations, we now
conclude t-exactness of general Hecke operators by geometric Satake. Now, set Fϕ =

∏
d∈ZFπϕ,d

. Then

TWFϕ ≃ F⊕dimWϕ for any minuscule W .
We give the remainder of the proof in the case where L = Qp; the general case is entirely analogous. Let

Gϕ be the Hecke eigensheaf constructed by Anschütz-Le Bras [ALB21]. Writing Gϕ,d = Gϕ|BGd(Qp), we

need to prove that Gϕ,d ≃ Fπϕ,d
for all d. By the analysis in [ALB21], we know that Gϕ,1 ≃ Fπϕ,1 . Applying

TStd to this isomorphism and forgetting the Weil group action, the arguments in the previous paragraph show
that

TStdGϕ,1 ≃ TStdFπϕ,1 ≃ F
⊕n
πϕ,2

.

On the other hand, TStdGϕ,1 ≃ Gϕ,2⊠ϕ by the Hecke eigensheaf property. Taken together, these observations
show that Gϕ,2⊠ϕ ≃ Fπϕ,2⊠ϕ

′ for some n-dimensionalWQp -representation ϕ′. Using the irreducibility of πϕ,2
and ϕ, this forces isomorphisms Gϕ,2 ≃ Fπϕ,2 and ϕ ≃ ϕ′. Applying TStd to the isomorphism Gϕ,2 ≃ Fπϕ,2
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and repeating this argument, we conclude by induction that Gϕ,j ≃ Fπϕ,j for all j ≥ 1. For j < 1, we instead
apply TStd∨ to the isomorphism Gϕ,1 ≃ Fπϕ,1 and argue by downwards induction. �

Remark 3.11. By combining the arguments in [ALB21] with [HKW22, Theorem 1.0.2], it is not difficult to
see that Gϕ,j ≃ Fπϕ,j [nj ] for all j ∈ Z, but with some unspecified shifts nj. When ϕ is self-dual, a simple
duality argument shows that nj = 0. However, for a general ϕ, it doesn’t seem possible to show that nj = 0
for all j ∈ Z by some purely formal argument. One really needs something like Theorem 1.1.

Proof of Theorem 1.9. The only thing which requires explanation here is the definition of the “intersection
cohomology” IHi

c(G,µ, b)[ρ]. For this, one simply repeats the definition of Hi
c(G,µ, b)[ρ] from the minuscule

case, but with the constant sheaf O/̟n on a qc open subspace U ⊂ Sh(G,µ, b)K replaced by the pullback
along the Grothendieck-Messing period map of the sheaf SVµ,O/̟n ∈ D(GrG,≤µ,O/̟

n) associated with the

Weyl module Vµ by geometric Satake (cf. [HKW22, §2.4]). Note that in the minuscule case, IHi
c(G,µ, b)[ρ] =

Hi+d
c (G,µ, b)[ρ](d2 ).
The result now follows from unwinding all definitions. In particular, one checks that

RΓc(G,µ, b, ICVµ)⊗
L
H(Gb(Qp))

ρ ∼= (TV ∨
µ
j!Fρ)|BG(Qp).

�
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