Sketch of the main geometric argument in HKW

David Hansen

MPIM Bonn

October 14, 2021

On a previous episode

Recall the setup: F / \mathbf{Q}_{p} a finite extension, G / F a connected reductive group, μ a conjugacy class of geometric cocharacters, $b \in B(G, \mu)$ basic, G_{b} the associated inner form.
Recall from Lecture 2: have an explicit Jacquet-Langlands transfer operator $T_{b, \mu}^{G_{b} \rightarrow G}: C\left(G_{b}(F)_{\mathrm{sr}} / / G_{b}(F)\right) \rightarrow C\left(G(F)_{\mathrm{sr}} / / G(F)\right)$ given by

$$
\left[T_{b, \mu}^{G_{b} \rightarrow G} f\right](g)=(-1)^{\langle 2 \rho, \mu\rangle} \sum_{\left(g, g^{\prime}, \lambda\right) \in \operatorname{Rel}_{b}} \operatorname{dim} r_{\mu}[\lambda] f\left(g^{\prime}\right)
$$

Theorem (Lecture 2)

Assume the refined LLC + etc. Let ϕ be a discrete L-parameter. Then for any $\rho \in \Pi_{\phi}\left(G_{b}\right)$, have an equality

$$
\left[T_{b, \mu}^{G_{b} \rightarrow G} \Theta_{\rho}\right](g)=\sum_{\pi \in \Pi_{\phi}(G)}\left[\operatorname{dim} \operatorname{Hom}_{S_{\phi}}\left(\delta_{\pi, \rho}, r_{\mu}\right)\right] \Theta_{\pi}(g)
$$

This is half of the puzzle...

Today's episode

Recall from Lecture 1 the complex $R \Gamma(G, b, \mu)[\rho]$ appearing in the Kottwitz conjecture. This is a bounded complex whose cohomologies are finite-length admissible representations of $G(F) . \rightsquigarrow$ Can form the finite-length virtual representation $\operatorname{Mant}_{G, b, \mu}(\rho)=\sum_{i}(-1)^{i} H^{i}(R \Gamma(G, b, \mu)[\rho])$, which then has a Harish-Chandra character $\Theta_{\text {Mant }_{G, b, \mu}(\rho)}$.

Theorem (Today's main theorem)

We have an equality

$$
\Theta_{\text {Mant }_{G, b, \mu}(\rho)}(g)=\left[T_{b, \mu}^{G_{b} \rightarrow G} \Theta_{\rho}\right](g)
$$

for any elliptic $g \in G(F)$.
This theorem holds for any finite-length ρ, independent of any knowledge of LLC. Today: Detailed sketch of the argument.

Key steps in the proof:
(1) Switch to distributions.
(2) Reduction to ℓ-torsion coefficients.
(3) Invocation of the Lefschetz-Verdier trace formula.
(9) Decoupling the contributions of ρ and \mathcal{S}_{μ}.
(0) Explicit calculation of local terms associated with \mathcal{S}_{μ}.

Steps 1. and 2. are preliminary reductions. Steps 3. and 4. are the heart of the argument. Step 5. can be taken as a black box.

Step 1: Switch to distributions

Recall from Lecture 3: For Λ any $\mathbf{Z}[1 / p]$-algebra, can form

$$
\operatorname{Dist}(G(F), \Lambda)^{G(F)}=\operatorname{Hom}_{G(F)}\left(C_{c}(G(F), \Lambda) \otimes \operatorname{Haar}(G, \Lambda), \Lambda\right)
$$

Can also define an elliptic variant

$$
\operatorname{Dist}\left(G(F)_{\mathrm{ell}}, \Lambda\right)^{G(F)}=\operatorname{Hom}_{G(F)}\left(C_{c}\left(G(F)_{\mathrm{ell}}, \Lambda\right) \otimes \operatorname{Haar}(G, \Lambda), \Lambda\right),
$$

so have a restriction map $\operatorname{Dist}(G(F), \Lambda)^{G(F)} \rightarrow \operatorname{Dist}\left(G(F)_{\mathrm{ell}}, \Lambda\right)^{G(F)}$.
Any admissible $A \in D(G(F), \Lambda)$ has a trace distribution
$\operatorname{tr} . \operatorname{dist}(A) \in \operatorname{Dist}(G(F), \Lambda)^{G(F)}$. Write tr.dist ${ }_{\text {ell }}(A)$ for its image in $\operatorname{Dist}\left(G(F)_{\text {ell }}, \Lambda\right)^{G(F)}$.
Want to reinterpret $T_{b, \mu}^{G_{b} \rightarrow G}$ in terms of distributions.

Step 1: Switch to distributions cont'd

Using the geometry of shtuka spaces, we will define a linear map

$$
\mathfrak{T}_{b, \mu}^{G_{b} \rightarrow G}: \operatorname{Dist}\left(G_{b}(F)_{\mathrm{ell}}, \Lambda\right)^{G_{b}(F)} \rightarrow \operatorname{Dist}\left(G(F)_{\mathrm{ell}}, \Lambda\right)^{G(F)}
$$

such that, if $\Lambda=\overline{\mathbf{Q}_{\ell}}$, the diagram

$$
\begin{aligned}
& C\left(G_{b}(F)_{\mathrm{sr}} / / G_{b}(F)\right) \longrightarrow \operatorname{Dist}\left(G_{b}(F)_{\mathrm{ell}}, \Lambda\right) \\
& \downarrow^{T_{b, \mu}^{G_{b} \rightarrow G}} \quad \downarrow^{\mathcal{T}_{b, \mu}^{G_{b} \rightarrow G}} \\
& C\left(G(F)_{\mathrm{sr}} / / G(F)\right) \longrightarrow \operatorname{Dist}\left(G(F)_{\mathrm{ell}}, \Lambda\right)
\end{aligned}
$$

commutes. \rightsquigarrow We are reduced (by easy formal arguments) to proving that for all $\rho \in \operatorname{Irr}_{\overline{\mathbf{Q}_{\ell}}}\left(G_{b}(F)\right)$, there is an equality

$$
\mathcal{T}_{b, \mu}^{G_{b} \rightarrow G}\left(\text { tr.dist }_{\mathrm{ell}} \rho\right)={\operatorname{tr} . \operatorname{dist}_{\mathrm{ell}} R \Gamma(G, b, \mu)[\rho]}
$$

in $\operatorname{Dist}\left(G(F)_{\mathrm{ell}}, \overline{\mathbf{Q}_{\ell}}\right)^{G(F)}$.

Step 2: Reduction to ℓ-torsion coefficients

Need to show: For all $\rho \in \operatorname{Irr}_{\bar{Q}_{\ell}}\left(G_{b}(F)\right)$, there is an equality

$$
\mathcal{T}_{b, \mu}^{G_{b} \rightarrow G}\left({\left.\operatorname{tr} . \operatorname{dist}_{\mathrm{ell}} \rho\right)}^{G^{2}}{\operatorname{tr} . \operatorname{dist}_{\mathrm{ell}} R \Gamma(G, b, \mu)[\rho]}\right.
$$

in $\operatorname{Dist}\left(G(F)_{\mathrm{ell}}, \overline{\mathbf{Q}_{\ell}}\right)^{G(F)}$.
Key claim. If the equality (\dagger) holds for all $\rho \in \operatorname{Irr}_{\mathbf{Q}_{\ell}}\left(G_{b}(F)\right)$ which admit an invariant \mathbf{Z}_{ℓ}-lattice, then it holds in general.
Sketch. Evaluate both sides of (\dagger) on some $\phi d g \in C_{c}\left(G(F)_{\text {ell }}, \Lambda\right) \otimes \operatorname{Haar}(G)$, regarding ρ as variable. LHS can be written as $\rho \mapsto \operatorname{tr}\left(\phi^{\prime} d g^{\prime} \mid \rho\right)$ for some $\phi^{\prime} d g^{\prime} \in C_{c}\left(G_{b}(F)_{\text {ell }}, \Lambda\right) \otimes \operatorname{Haar}\left(G_{b}\right) .\left(\sim\right.$ obvious from the definition of $\left.\mathcal{T}_{b, \mu}^{G_{b} \rightarrow G}.\right)$ RHS can also be written in the form $\rho \mapsto \operatorname{tr}\left(\phi^{\prime \prime} d g^{\prime} \mid \rho\right)$ for some $\phi^{\prime \prime} d g^{\prime} \in C_{c}\left(G_{b}(F), \Lambda\right) \otimes \operatorname{Haar}\left(G_{b}\right)!$ Not obvious; conjectured by Taylor, proved in HKW.
\rightsquigarrow RHS-LHS: $\rho \mapsto \operatorname{tr}\left(\phi^{\prime \prime \prime} d g^{\prime} \mid \rho\right)$ for some $\phi^{\prime \prime \prime}$, and $=0$ by assumption when ρ admits a lattice. \rightsquigarrow RHS-LHS $=0$ for all ρ. Since ϕ was arbitrary, this gives what we want.

Step 2: Reduction to ℓ-torsion coefficients cont'd

By previous slide, reduced to showing: For all $\rho \in \operatorname{Irr}_{\mathbf{Q}_{\ell}}\left(G_{b}(F)\right)$ admitting an invariant lattice, there is an equality

$$
\mathcal{T}_{b, \mu}^{G_{b} \rightarrow G}\left(\text { tr.dist }_{\text {ell }} \rho\right)={\operatorname{tr} . \operatorname{dist}_{\mathrm{ell}} R \Gamma(G, b, \mu)[\rho]}
$$

in $\operatorname{Dist}\left(G(F)_{\mathrm{ell}}, \overline{\mathbf{Q}_{\ell}}\right)^{G(F)}$.
Now exploit the fact that $R \Gamma(G, b, \mu)[-], \mathcal{T}_{b, \mu}^{G_{b} \rightarrow G}(-)$, tr.dist, etc. can be defined with coefficients in any \mathbf{Z}_{ℓ}-algebra Λ, compatibly with extension of scalars. This reduces our goal to:
For $\Lambda=\overline{\mathbf{Z}_{\ell}} / \ell^{n}$ and any admissible $\rho \in D\left(G_{b}(F), \Lambda\right)$, we have an equality

$$
\mathcal{T}_{b, \mu}^{G_{b} \rightarrow G}\left({\left.\operatorname{tr} . \operatorname{dist}_{\mathrm{ell}} \rho\right)}={\operatorname{tr} . \operatorname{dist}_{\mathrm{ell}} R \Gamma(G, b, \mu)[\rho]}\right.
$$

in $\operatorname{Dist}\left(G(F)_{\text {ell }}, \Lambda\right)^{G(F)}$.
Now we are ready to use the trace formula.

Interlude: Definition of the distributional transfer

To keep going, we need some p-adic geometry. Recall the usual diagram of diamonds over \mathbf{C}_{p} :

From this we get some locally profinite sets:
$X_{b}=\left\{\left(x, g^{\prime}\right) \in \operatorname{Gr}_{G, \leq \mu}\left(\mathbf{C}_{p}\right) \times G_{b}(F)_{\text {ell }} \mid x g^{\prime}=x\right\} \circlearrowleft G_{b}(F)$,
$X_{1}=\left\{(x, g) \in \operatorname{Gr}_{G, \leq-\mu}\left(\mathrm{C}_{p}\right) \times G(F)_{\text {ell }} \mid x g=x\right\} \circlearrowleft G(F)$,
$\tilde{X}=\left\{\left(x, g^{\prime}, g\right) \in \operatorname{Sht}_{G, \mu, b}\left(\mathbf{C}_{p}\right) \times G_{b}(F)_{\mathrm{ell}} \times G(F)_{\mathrm{ell}} \mid x \cdot\left(g^{\prime}, g\right)=x\right\} \circlearrowleft G_{b}(F) \times G(F)$.
These sit in a diagram

where q_{1} and q_{2} are finite étale, p_{1} is a $G(F)$-torsor, and p_{2} is a $G_{b}(F)$-torsor.

Interlude cont'd

On \tilde{X} we have the (locally constant $G_{b} \times G$-invariant \mathbf{Z}-valued) function K_{μ} sending $\left(x, g, g^{\prime}\right)$ to $(-1)^{\langle 2 \rho, \mu\rangle} \operatorname{dim} r_{\mu}\left[\lambda_{x}\right]$, where λ_{x} measures the relative position of the modification parametrized by x.
Definition. $\mathcal{T}_{b, \mu}^{G_{b} \rightarrow G}$ is defined as the composition

$$
\begin{aligned}
\operatorname{Dist}\left(G_{b}(F)_{\mathrm{ell}}, \Lambda\right)^{G_{b}(F)} & \cong H^{0}\left(\left[G_{b}(F)_{\mathrm{ell}} / G_{b}(F)\right], K_{\left[G_{b}(F)_{\mathrm{ell}} / G_{b}(F)\right]}\right) \\
& \left(q_{1} / G_{b}(F)\right)^{*} H^{0}\left(\left[X_{b} / G_{b}(F)\right], K_{\left[X_{b} / G_{b}(F)\right]}\right) \\
& \cong H^{0}\left(\left[\tilde{X} / G_{b}(F) \times G(F)\right], K_{\left[\tilde{X} / G_{b}(F) \times G(F)\right]}\right) \\
& \xrightarrow{K_{\mu}} H^{0}\left(\left[\tilde{X} / G_{b}(F) \times G(F)\right], K_{\left[\tilde{X} / G_{b}(F) \times G(F)\right]}\right) \\
& \cong H^{0}\left(\left[X_{1} / G(F)\right], K_{\left[X_{1} / G(F)\right]}\right) \\
& \left(q_{2} / G(F)\right)_{*} H^{0}\left(\left[G(F)_{\mathrm{ell}} / G(F)\right], K_{\left[G(F)_{\mathrm{ell}} / G(F)\right]}\right) \\
& \cong \operatorname{Dist}\left(G(F)_{\mathrm{ell}}, \Lambda\right)^{G(F)} .
\end{aligned}
$$

Commutation of the square on slide no. 6 follows from this definition by a direct calculation. One key point: adjointness of $T_{b, \mu}^{G_{b} \rightarrow G}$ and $\left.T_{b, \mu}^{G \rightarrow G_{b}}\right) \mathrm{w} / \mathrm{r} / \mathrm{t}$ stable Weyl integration pairing, as in Lecture 2).

Step 3: Invocation of the trace formula

 any admissible $\rho \in D\left(G_{b}(F), \overline{\mathbf{Z}_{\ell}} / \ell^{n}\right)$. Let's contemplate the diagram

of small v-stacks over $*=\operatorname{Spd} \mathbf{C}_{p}$. Here $L_{n}^{+} G=G\left(\mathbb{B}_{\mathrm{dR}}^{+} / \operatorname{Fil}^{n}\right)$ for some large n, the two squares are Cartesian, h_{1}, h_{2} and h_{2}^{\prime} are proper, and i_{b}, i_{1} and j are open immersions.
First key fact: Can write $R \Gamma(G, b, \mu)[\rho]=h_{2 *}^{\prime} j^{*}\left(\epsilon^{*} S_{\mu} \otimes h_{1}^{*} i_{b *} \rho\right)$. Six functor calisthenics. Here $S_{\mu} \in D_{\text {ét }}\left(\left[\operatorname{Gr}_{G, \leq \mu} / L_{n}^{+} G\right], \mathbf{Z}_{\ell}\right)$ comes from geometric Satake. Next key fact: Various things are ULA. In particular, $i_{b *} \rho$ is ULA (for the structure map) and $\epsilon^{*} S_{\mu}$ is h_{1} ULA $\rightsquigarrow \epsilon^{*} S_{\mu} \otimes h_{1}^{*} i_{b *} \rho$ is ULA, and then also $j^{*}\left(\epsilon^{*} S_{\mu} \otimes h_{1}^{*} i_{b *} \rho\right)$ is ULA. In particular, we can contemplate its characteristic class, and the characteristic class of its proper pushforward by h_{2}^{\prime}.

Step 3: Invocation of the trace formula cont'd

From the two Key Facts, we see that we need to understand

$$
\operatorname{tr} . \operatorname{dist} R \Gamma(G, b, \mu)[\rho]=\operatorname{cc}_{\operatorname{Bun}_{G}^{1}}\left(h_{2 *}^{\prime} j^{*}\left(\epsilon^{*} \mathcal{S}_{\mu} \otimes h_{1}^{*} i_{b *} \rho\right)\right)
$$

NOW WE INVOKE THE TRACE FORMULA: h_{2}^{\prime} is proper, so the trace formula (as described in Lecture 3) says that we have an equality

$$
\begin{equation*}
\mathrm{cc}_{\mathrm{Bun}_{G}^{1}}\left(h_{2 *}^{\prime} A\right)=\operatorname{In}\left(h_{2}^{\prime}\right)_{*} \mathrm{Cc}_{\mathrm{Hck}_{G, \leq \mu}^{1}} \tag{A}
\end{equation*}
$$

in $H^{0}\left(\operatorname{In}\left(\operatorname{Bun}_{G}^{1}\right), K\right) \cong \operatorname{Dist}(G(F), \Lambda)^{G(F)}$ for any ULA sheaf A.
So we want to compute

$$
\operatorname{In}\left(h_{2}^{\prime}\right)_{*} \mathrm{Cc}_{\mathrm{Hck}}^{G, \leq \mu} 1
$$

This is still a complicated piece of data, because the map $\operatorname{In}\left(h_{2}^{\prime}\right)$ is rather crazy. But remember! We only care about the elliptic part tr.dist ${ }_{\text {ell }} R \Gamma(G, b, \mu)[\rho]$, or equivalently about the restriction of $\operatorname{In}\left(h_{2}^{\prime}\right) * \mathrm{cc}_{\mathrm{Hck}_{G, \leq \mu}^{1}}\left(j^{*}\left(\epsilon^{*} \mathrm{~S}_{\mu} \otimes h_{1}^{*} i_{b *} \rho\right)\right)$ to (distributions on) the open substack $\operatorname{In}\left(\operatorname{Bun}_{G}^{1}\right)^{\text {ell }}=\left[G(F)_{\text {ell }} / G(F)\right] \subset[G(F) / G(F)]=\operatorname{In}\left(\operatorname{Bun}_{G}^{1}\right)$. Miracle: The fiber product $\operatorname{In}\left(\operatorname{Hck}_{G, \leq \mu}^{1}\right)$ ell $=\operatorname{In}\left(\operatorname{Bun}_{G}^{1}\right)^{\text {ell }} \times_{\operatorname{In}\left(\operatorname{Bun}_{G}^{1}\right)} \operatorname{In}\left(\operatorname{Hck}_{G, \leq \mu}^{1}\right)$ is nothing more than $\left[X_{1} / G(F)\right]$, and the map $\operatorname{In}\left(h_{2}^{\prime}\right)^{\text {ell }}: \operatorname{In}\left(\operatorname{Hck}_{G, \leq \mu}^{1}\right)^{\text {ell }} \rightarrow \operatorname{In}\left(\operatorname{Bun}_{G}^{1}\right)^{\text {ell }}$ identifies with the map $q_{2} / G(F)$ discussed earlier. In particular, $\operatorname{In}\left(h_{2}^{\prime}\right)^{\text {ell }}$ is finite étale. Moreover, the map $\operatorname{In}\left(\operatorname{Hck}_{G, \leq \mu}^{1}\right)^{\text {ell }} \rightarrow \operatorname{In}\left(\operatorname{Bun}_{G}\right)$ induced by $h_{1} \circ j$ factors over the open substack $\operatorname{In}\left(\operatorname{Bun}_{G}^{b}\right)$ ell, and agrees with the map $q_{1} / G_{b}(F)$ discussed earlier.

Step 3: Invocation of the trace formula cont'd

To recap: The arguments so far show that

$$
\operatorname{tr.dist}_{\mathrm{ell}} R \Gamma(G, b, \mu)[\rho]=\operatorname{In}\left(h_{2}^{\prime}\right)_{*}^{\mathrm{ell}} \mathrm{cc}_{\mathrm{Hck}_{G, \leq \mu}^{1}}\left(j^{*}\left(\epsilon^{*} S_{\mu} \otimes h_{1}^{*} i_{b *} \rho\right)\right)^{\mathrm{ell}},
$$

where $\mathrm{cc}_{\mathrm{Hck}_{G, \leq \mu}^{1}}\left(j^{*}\left(\epsilon^{*} S_{\mu} \otimes h_{1}^{*} i_{b *} \rho\right)\right)^{\text {ell }}$ denotes the restriction of the characteristic class $\mathrm{cc}_{\mathrm{Hck}_{G, \leq \mu}^{1}}\left(j^{*}\left(\epsilon^{*} \mathcal{S}_{\mu} \otimes h_{1}^{*} i_{b *} \rho\right)\right)$ from $\operatorname{In}\left(\operatorname{Hck}_{G, \leq \mu}^{1}\right)$ to the open substack $\operatorname{In}\left(\operatorname{Hck}_{G, \leq \mu}^{1}\right)^{\text {ell }} \cong\left[X_{1} / G(F)\right]$, and $\operatorname{In}\left(h_{2}^{\prime}\right)^{\text {ell }}=q_{2} / G(F)$ as in the definition of $\mathcal{T}_{b, \mu}^{G_{b} \rightarrow G}$. It remains to match the rest of (the RHS of) this formula with the remaining pieces of the definition of $\mathcal{T}_{b, \mu}^{G_{b} \rightarrow G}$.
Rough idea for how this goes: We will decompose $\operatorname{cc}_{\operatorname{Hck}_{G, \leq \mu}^{1}}\left(j^{*}\left(\epsilon^{*} \mathrm{~S}_{\mu} \otimes h_{1}^{*} i_{b *} \rho\right)\right)$, by some kind of Künneth formula, into separate contributions from ρ and S_{μ}. Then on the elliptic locus, ρ will contribute $\left(q_{1} / G_{b}(F)\right)^{*}$ tr.dist $_{\text {ell }} \rho$ (using that $\operatorname{In}\left(h_{1} \circ j\right)^{\mathrm{ell}}=q_{1} / G_{b}(F)$ as mentioned on the previous slide), and \mathcal{S}_{μ} will contribute the kernel function K_{μ}.

Step 4: Decoupling ρ and δ_{μ}

Setup. Consider a Cartesian diagram of small v-stacks

smooth-locally nice over $*=\operatorname{Spd} \mathbf{C}_{p}$. Suppose $A_{i} \in D_{\text {ét }}\left(X_{i}, \Lambda\right)$ is ULA.

Proposition (Exceptional Künneth formula)

In the above setup, suppose that $S \rightarrow *$ and $\Delta: S \rightarrow S \times * S$ are both cohomologically smooth. Then there is a canonical map

$$
\kappa: H^{0}\left(\operatorname{In}\left(X_{1}\right), K\right) \otimes H^{0}\left(\operatorname{In}\left(X_{2}\right), K\right) \rightarrow H^{0}(\operatorname{In}(Y), K)
$$

the sheaf $p_{1}^{*} A_{1} \otimes p_{2}^{*} A_{2}$ is ULA, and we have an equality

$$
\operatorname{cc}_{Y}\left(p_{1}^{*} A_{1} \otimes p_{2}^{*} A_{2}\right)=\kappa\left(\operatorname{cc}_{X_{1}}\left(A_{1}\right) \otimes \operatorname{cc}_{X_{2}}\left(A_{2}\right)\right) .
$$

Step 4: Decoupling cont'd

When $S=*$ this is an easy exercise, but the general case is much less obvious. The hypothesis on S is very strong, but is satisfied if $S=[* / \mathcal{G}]$ for some cohomologically smooth group diamond \mathcal{G}.
Essence of step 4: Apply the above proposition to the diagram

choosing the sheaves to be $i_{b *} \rho$ and \mathcal{S}_{μ}.
Modulo actually understanding what the map κ does in our specific situation, this (finally!) reduces us to computing $\operatorname{cc}_{\left[\operatorname{Gr}_{G, \leq \mu} / L_{n}^{+} G\right]}\left(\mathcal{S}_{\mu}\right)$.

Step 5: Local terms on the B_{dR}-affine Grassmannian

Repeat: We want to compute $\mathrm{cc}_{\left[\operatorname{Gr}_{G, \leq \mu} / L_{n}^{+} G\right]}\left(\mathcal{S}_{\mu}\right)$.
Without further qualification this is a meaningless task, since the whole inertia stack $\operatorname{In}\left(\left[\operatorname{Gr}_{G, \leq \mu} / L_{n}^{+} G\right]\right)$ is complicated, and the space of distributions on it is intractable. However, there is a large open substack which is purely "combinatorial", and we only need to understand the situation after restriction to this substack.
More precisely, let $L_{n}^{+, \text {sr }} G$ be the (open conjugation-invariant) preimage of $G^{\text {sr }} \subset G$ under the θ-map $L_{n}^{+} G \rightarrow G$, and let $\operatorname{In}\left(\left[\operatorname{Gr}_{G, \leq \mu} / L_{n}^{+} G\right]\right)^{\text {sr }}$ be the preimage of the open substack $\left[L_{n}^{+, \text {sr }} G / L_{n}^{+} G\right] \subset \operatorname{In}\left(\left[* / L_{n}^{+} G\right]\right)$ along the evident map. Then $\left|\operatorname{In}\left(\left[\operatorname{Gr}_{G, \leq \mu} / L_{n}^{+} G\right]\right)^{\mathrm{sr}}\right| \cong X_{*}(T)_{\leq \mu} / W$ and

$$
H^{0}\left(\operatorname{In}\left(\left[\operatorname{Gr}_{G, \leq \mu} / L_{n}^{+} G\right]\right)^{\mathrm{sr}}, K\right) \cong C\left(X_{*}(T)_{\leq \mu}, \Lambda\right)^{W}
$$

Proposition

Under the previous identification, we have an equality

$$
\mathrm{cc}_{\left[\operatorname{Gr}_{G, \leq \mu} / L_{n}^{+} G\right]}\left(\mathcal{S}_{\mu}\right)^{\mathrm{sr}}: \lambda \mapsto(-1)^{\langle 2 \rho, \mu\rangle} \operatorname{dim} r_{\mu}[\lambda] .
$$

This is exactly what we want to see!

Step 5: Local terms on the B_{dR}-affine Grassmannian, cont'd

After a nontrivial unwinding, this reduces to the following stack-free statement. Let $V \in \operatorname{Rep}\left(\hat{G}_{\Lambda}\right)$ be any representation, corresponding to some object $\mathcal{S}_{V} \in D_{\text {ét }}\left(\operatorname{Gr}_{G}, \Lambda\right)^{L^{+} G}$ in the Satake category. Let $g \in G(\bar{F})$ be any strongly regular semisimple element.

Proposition

Under the assumptions above, g has only isolated fixed points on Gr_{G}, and for any such fixed point x there is an equality

$$
\operatorname{loc}_{x}\left(g, S_{V}\right)=(-1)^{\left\langle 2 \rho, \lambda_{x}\right\rangle} \operatorname{dim} V\left[\lambda_{x}\right] .
$$

Here $\lambda_{x} \in X_{*}(T) / W$ records which open Schubert cell of Gr_{G} contains x, and $V\left[\lambda_{x}\right]$ denotes the λ_{x}-weight space of V.

In the more familiar setting of complex analytic / schematic / Witt vector affine Grassmannians, this proposition can be deduced from a recent theorem of Varshavsky (using a nontrivial global-to-local argument with the weight functors in geometric Satake). In the B_{dR} setting, a direct attack seems impossible. Instead, we degenerate from the B_{dR}-affine Grassmannian to the Witt vector affine Grassmannian, using a suitable Beilinson-Drinfeld affine Grassmannian over $\mathcal{O}_{\mathbf{C}_{p}}$ as an intermediary.

Thank you for listening!

