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1 Notes on shtukas and Harris’s conjecture1

1.1 Motivation

Fix a finite extension E/Qp with uniformizer π and residue field Fq. Set Γ = Gal(E/E) and Ĕ = Êunr, and

let σ ∈ Aut(Ĕ/E) be the natural q-Frobenius.
Fix a reductive group G/E, and set G = G(E). For simplicity I’ll assume G is quasisplit. Fix, then, a

maximal torus T ⊂ G and a Borel subgroup B ⊃ T both defined over E. The group Γ acts on X∗(T), and
we have a natural dominant cone X∗(T)dom.

Now consider triples (G, µ, b) where µ ∈ X∗(T)dom is a B-dominant cocharacter and b ∈ G(Ĕ) is an
element whose Kottwitz class satisfies [b] ∈ B(G, µ−1).2 Then we have a moduli space of local shtukas with
infinite level structure ShtG,µ,b, defined as a certain functor

ShtG,µ,b : Perf/Ĕ → Sets.

For any S ∈ Perf/Ĕ , the set ShtG,µ,b(S) consists of isomorphism classes of triples (F , u, α) where

• F is a G-bundle over XS! ,

• u : F|X
S! !S

∼
→ Eb,S! |X

S!!S is a G-bundle isomorphism extending to a type-µ modification of the G-
bundle Eb,S!/XS! , and

• α : Etriv,S!
∼
→ F is a G-bundle isomorphism.

Then ShtG,µ,b has natural commuting actions of G = G(E) and Jb : S %→ Aut(Eb,S!), and there are two period
morphisms sitting in a diagram

ShtG,µ,b

πGM

!!

πHT "" GrG,µ−1

GrG,µ

where the map πGM forgets α, and the map πHT records (u ◦ α−1) as giving a µ−1-bounded modification of
Etriv,S! along S. Each object in this diagram is a diamond over Ĕ. The targets of πGM and πHT have natural
actions of Jb and G, respectively, and the period maps are equivariant for these commuting actions on Sht.

1Version of 5/24/2016; comments and corrections to hansen@math.columbia.edu
2By a recipe of Kottwitz, b gives rise to a canonical cocharacter νb ∈ X∗(GĔ) ⊗ Q such that νhbσ(h)−1 = hνbh

−1; this
cocharacter can be conjugated uniquely to a Galois-invariant and B-dominant cocharacter factoring through T, which we denote
by ν[b] ∈ X∗(T)Q,dom. Let us say that b is well-chosen if νb = ν[b] and b is contained in the standard Levi M[b] = Cent(ν[b]).
Every class [b] ∈ B(G) has a well-chosen representative.

1



The image of πGM is always open and partially proper inside its target; this is the so-called admissible
locus, denoted GrEb−adm

G,µ , and defined intrinsically as follows: For any S ∈ Perf/Ĕ , the set GrEb−adm
G,µ consists

of the set of isomorphism classes of pairs (F , u) where

u : F|X
S!!S

∼
→ Eb,S! |X

S!!S

is a G-bundle isomorphism extending to a type-µ modification of the G-bundle Eb,S!/XS! as before, with the
further property that for any point Spa(K,OK)→ S, the pullback of F to XSpa(K!,O!

K) is semistable of degree

zero. The image Grb
G,µ−1 of πHT is much stranger, and is open exactly when b is basic.

Example. Take G = GLn/E and µ = (1, 0, . . . , 0), and let bi be a representative of the σ-conjugacy class
with slopes (−1/(n− i), . . . ,−1/(n− i), 0, . . . , 0) (where 0 appears i times) for 0 ≤ i ≤ n− 1. Then b0 is basic
and bn−1 is µ-ordinary, and the bundle Eb is generally ) O( 1

n−i) ⊕ Oi. In this case, GrG,µ−1
∼= Pn−1

E , with

the strata
(
Pn−1

E

)(i)
= Grbi

G,µ−1 described as follows:

•
(
Pn−1

E

)(0) ∼= Ωn−1 is the open stratum, and is isomorphic to Drinfeld space over E.

•
(
Pn−1

E

)(n−1)
= Pn−1(E) is the set of E-points of Pn−1.

• The intermediate strata can be described as follows: Let

Pi,j =

(
GLi

Gij
a GLj

)

denote the standard maximal parabolic of type (i, j) in GLi+j . Then Pi,n−i(E) acts naturally on Ωn−1−i
E

through its projection to GLn−i(E), and
(
Pn−1

E

)(i) ∼= Ωn−1−i
E ×Pi,n−i(E) GLn(E). On C-points, a point

x ∈ Pn−1(C) lies in the ith stratum iff the associated hyperplane Hx ⊂ Cn satisfies dimE(Hx ∩En) = i;

the projection
(
Pn−1

E

)(i)
→ Pi,n−i(E)\GLn(E) simply records the flag 0 ⊂ Hx ∩ En ⊂ En. Note

that Pi,n−i(E)\GLn(E) is a “naive” p-adic manifold, although we may also give it the structure of a
zero-dimensional adic space or diamond over E.

Theorem 1.1. If i > 0, then H∗
c (ShtG,µ,bi ,Q") is induced from Pi,n−i(E) as a representation of GLn(E).

Proof. Consider the GLn(E)-equivariant composite map

π̃HT : ShtG,bi,µ
πHT→

(
Pn−1

E

)(i) pr
→ Pi,n−i(E)\GLn(E) = Xi.

Note that Xi contains a natural basepoint e, with stabilizer Pi,n−i(E). Then

H∗
c (ShtG,bi,µ,Q") ∼= H0(Xi, R

∗π̃HT!Q")

∼= IndGLn(E)
Pi,n−i(E)

(
R∗π̃HT!Q"|e

)

where R∗π̃HT!Q"|e denotes the stalk at e.
Medidating on this example, one reaches the following conclusion:
For any (G, µ, b) such that Grb

G,µ−1 fibers G-equivariantly over the E-points of a nontrivial flag variety for
G, the cohomology of ShtG,µ,b is induced.

So when does this happen?

1.2 The canonical retraction

For simplicitly we fix fix E = Qp, G = GLn, B upper-triangular, and µ the B-dominant cocharacter with

weights (k1 ≥ · · · ≥ kn). Fix b ∈ GLn(Q̆p) with [b] ∈ B(G, µ−1), and let Eb,S! denote the associated rank
n vector bundle on XS! for any S ∈ Perf/Q̆p

; since this bundle is totally functorial with respect to any map
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XS! → XT ! induced by a map S → T , we sometimes denote it agnostically by Eb. (Whereby we’re really
regarding it as an Fp-point of the stack Bunn(X ).) For simplicity we assume kn ≥ 0,3 so S-points in GrGLn,µ

give rise to modifications u : F|X
S! !S

∼
→ Eb,S! |X

S!!S which are effective, i.e. modifications for which u extends
to an injection u : F ↪→ Eb,S! of finite locally free OX -modules. By definition, such a modification lies in

the admissible locus GrEb−adm
GLn,µ if and only if F is pointwise semistable of slope zero at all points of |S|; we’ll

sometimes just say (F , u) is admissible.
Let 0 = E0

b " E1
b " E2

b · · · " Es
b = Eb denote the slope filtration of Eb, where s denotes the number of

distinct slopes of Eb. Each E i
b/E

i−1
b is semistable. The condition [b] ∈ B(G, µ−1) unwinds in this case to the

usual relation between Newton and Hodge polygons; examination of polygons then produces the inequality

deg(E i
b) ≤

∑

1≤j≤rank(Ei
b)

kj

for any 1 ≤ i ≤ s, with equality for i = s. Let I ⊆ {1, . . . , s} denote the ordered set of integers for which this
inequality is an equality; since s ∈ I always, |I| ≥ 1.

Definition 1.2. The datum (G, µ, b) is Hodge-Newton(HN)-reducible if |I| ≥ 2. We say E i
b is HN-reducing if

i ∈ I # {s}.

Remark. When µ is minuscule, it’s easy to check that |I| ≤ 3. For non-minuscule µ, however, |I| can be
arbitrarily large.

Suppose (G, µ, b) is HN-reducible. Let {d1, . . . , dk} denote the ordered set

{rank(E i1
b ), rank(E i2

b /E i1
b ), . . . , rank(Eb/E

ik−1

b )},

with I = {i1 < · · · < ik = s} as above. Consider the standard Levi

M =






GLd1

GLd2

. . .
GLdk





⊂G.

We write P = M · U for the standard parabolic containing M. After possibly replacing b by a σ-conjugate,
we assume that b ∈ M(Q̆p) and that νb−1 factors through M and is M-conjugate to ν[b−1].

4 Writing bm for
the projection of b into the mth block of M, we then get a decomposition Eb

∼= ⊕1≤i≤kEbi , or equivalently a
canonical reduction of Eb to an M-bundle, such that the induced P-bundle structure is a coarsening of the
slope filtration of Eb.

One easily checks that (M, µ, b) defines a local shtuka datum, which is naturally a product of local shtuka

data
∏k

m=1(GLdm , µm, bm) (where again µm denotes the projection of µ resp. b into the mth block of M) and
we get canonical compatible isomorphisms

GrM,µ
∼= GrGLd1

,µ1
×Spd Q̆p

· · · ×Spd Q̆p
GrGLdk,µk

and
GrEb−adm

M,µ
∼= Gr

Eb1−adm
GLd1

,µ1
×Spd Q̆p

· · · ×Spd Q̆p
Gr

Ebk
−adm

GLdk,µk
.

There is a canonical inclusion of period domains

i : GrM,µ ↪→ GrG,µ

3This can always be achieved by a suitable twisting of the datum b, µ.
4This holds, for example, if b−1 is well-chosen; the unfortunate inverse here is due to the negation of slopes when passing from

the isocrystal (Q̆n
p , bσ) to the bundle Eb.
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induced by the decomposition Eb
∼= ⊕1≤i≤kEbi and therefore sending GrEb−adm

M,µ into GrEb−adm
G,µ . These inclusions

are equivariant for a natural action of the group Jb = Jb(Qp) ⊂M(Q̆p). In fact, i is equivariant for the much
larger group JM

b = AutBun(M)(Eb) =
∏

1≤m≤k Aut(Ebm). Note that the full automorphism group Jb = Aut(Eb)

acts on GrG,µ, and that Jb canonically decomposes as the semidirect product JM
b $ JU

b , where JU
b is the

subgroup of elements
f ∈ Aut(Eb) ⊂ Hom(Eb, Eb)

such that f − 1 carries each E im

b into E im−1

b . (To be clear, Jb and its decorated variants are not groups, but
group sheaves, i.e. functors Perf/Q̆p

→ Groups. E.g. Jb(S) = Aut(Eb,S!). These are all group diamonds.)
The first main result is the following theorem.

Theorem 1.3. The inclusion i : GrEb−adm
M,µ ↪→ GrEb−adm

G,µ admits a canonical JM
b -equivariant retraction

r : Grb−adm
G,µ → Grb−adm

M,µ .

In other words, any admissible type-µ modification of Eb,S! along S admits a canonical reduction to a collection
of admissible type µi-modifications of the bundles Ebi,S! along S.

1.3 The canonical retraction on points

We first explain the idea in the case when S is a point, where things are technically simpler. Fix any
perfectoid field K/Qp with corresponding adic space S = Spa(K,OK), so we have the adic Fargues-Fontaine
curve X = XK!,Qp

. This is a locally Noetherian quasicompact adic curve, and we have a natural closed
immersion i : S → X . Let

0→ F
u
→ E → Q → 0

be a short exact sequence of coherent sheaves on X , where F and E are both rank n vector bundles and Q
is supported at the distinguished point x(∞) = i(S) ∈ |X |. Then the stalk Q = Qx(∞) is a finite torsion

module over the DVR ÔX ,x(∞)
∼= B+

dR(K), and we say (F , u) is a type-µ modification of E along x(∞) if
there is an isomorphism Q ) ⊕1≤i≤nB+

dR(K)/ξki (here ξ denotes any uniformier of B+
dR(K)). (If E = Eb, the

(K,OK)-points of GrEb−adm
G,µ are exactly the isomorphism classes of such pairs (F , u) with the further property

that F is semistable of slope zero.)

Theorem 1.4. With notation as in the preceding paragraph, let E+ ⊆ E be any saturated subbundle, and set
F+ = F ∩ E+. Then if F is semistable of slope zero, we have the inequality

deg(E+) ≤
∑

1≤i≤rank(E+)

ki,

and if equality holds then F+ is also semistable of slope zero.

Proof. Let Q+ denote the image of the stalk E+
x(∞) in Q. It’s easy to see the equality

deg(E+) = deg(F+) + '(Q+),

where ' denotes length as a B+
dR(K)-module. Since F is semistable of slope zero and F+ ⊆ F is saturated,

F+ must have degree ≤ 0, so dropping deg(F+) from this equality gives deg(E+) ≤ '(Q+). If r denotes the
rank of E+, clearly E+

x(∞) and then also Q+ are generated by r elements, so Lemma 1.5 implies the inequality

'(Q+) ≤
∑

1≤i≤r ki. Combining these inequalities, the first part of the theorem follows. Putting together the
first equality with this second inequality, we also get

deg(E+)−
∑

1≤i≤r

ki ≤ deg(F+),

so if the left-hand side is zero then F+ has degree zero. But then F+ must be semistable of degree zero,
since otherwise it would have a positive-degree subbundle as a step in its slope filtration, contradicting the
semistability of F .
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Lemma 1.5. Let R be a DVR with uniformizer π, and let M be a finite torsion R-module, so M )
⊕1≤i≤nR/πki for some uniquely determined sequence µ(M) = (k1 ≥ · · · ≥ kn) with kn > 0. Let N ⊆ M
be an R-submodule generated by j elements. Then '(N) ≤ k1 + · · ·+kj, and if equality holds then N is a direct
summand.

We will somewhat abusively refer to elements of the ordered sequence µ(M) as “elementary divisors” of M .

Proof. For the first claim, it clearly suffices to show that '(M/N) ≥
∑

j<i≤n ki. For this we use Fitting
ideals. Recall that for any finite torsion module Q over R with elementary divisors ki, we have an equality
Fittj(Q) = (π

P

j<i ki); in particular, Fitt(Q) = Fitt0(Q) = (π"(Q)), and Fittm(Q) = R if Q is generated by
≤ m elements. Returning to the situation at hand, we have an inclusion

Fittj(N)Fitt(M/N) ⊆ Fittj(M) = (π
P

j<i≤n ki)

(this is a special case of Proposition XIII.10.7 in Lang’s Algebra). But Fittj(N) = R since N is generated by
j elements, so we get

(π"(M/N)) = Fitt(M/N) ⊆ Fittj(M) = (π
P

j<i≤n ki),

and this immediately implies the desired inequality.
For the second claim, we argue by induction on j; the case j = 1 is easy. For the induction step, choose

a projection f : M → R/πk1 onto a maximal-length cyclic direct summand, so ker f ) ⊕2≤i≤nR/πki . Let
n1, . . . , nj be a set of elements generating N . After rearranging the ni’s, we may assume that f(N) = f(C)
where C = Rn1 ⊆ N , i.e. that f(N) is generated by f(n1). After then possibly replacing ni by ni − rin1

for all 2 ≤ i ≤ j, we may assume that ker f contains the submodule N ′ generated by n2, . . . , nj . Note that
we have inequalities '(N ′) ≤ k2 + · · · + kj and '(C) ≤ k1, the latter because πk1 kills M and the former by
applying the first half of the lemma to N ′ ⊆ ker f . By assumption, we have '(N) = k1 + · · · + kj so now the
chain of inequalities

'(N) = '(N ′ + C) ≤ '(N ′) + '(C) ≤ k1 + · · · + kj = '(N)

forces equalities '(N ′) = k2 + · · · + kj and '(C) = k1. Since N ′ and C are generated by j − 1 elements
and 1 element, respectively, they are both direct summands of M by the induction hypothesis. Finally, the
above chain also forces the equality '(N ′ + C) = '(N ′) + '(C), which implies that N ′ ∩ C = 0 inside M , so
N ∼= N ′ ⊕ C ⊆ M is a direct summand of M .

Returning to the setting of Theorem 1.3, take E = Eb,S! , and choose (F , u) corresponding to a (K,OK)-

point of GrEb−adm
G,µ . Then for any i such that E i = E i

b,S! is HN-reducing, the equality deg(E i) =
∑

1≤j≤rank(Ei) kj

holds by assumption, so by Theorem 1.4 we get that the bundle F i = F ∩ E i is semistable of slope zero, and
then another application of Lemma 1.5 shows that the module

Qi = im(E i → Q) = E i/F i ⊆ Q

is a direct summand of Q such that Qi ) ⊕1≤j≤rank(Ei)B
+
dR(K)/ξkj . Doing this for all the HN-reducing i’s,

we get a canonical flag 0 " F i1 " · · · " F ik = F with each step semistable of slope zero. Thus the quotients
are all ss of slope zero too, and we can form the short exact sequences

0→ F im/F im−1
um→ E im/E im−1 → Qim/Qim−1 → 0.

But then easy induction on m shows that

Qim/Qim−1 ) ⊕rank(Eim−1)<j≤rank(Eim )B
+
dR(K)/ξkj ,

so we conclude that each pair (F im/F im−1 , um) is canonically an admissible type-µm modification of E im/E im−1 ∼=
Ebm . Thus we get a canonical (K,OK)-point of GrEb−adm

M,µ , as desired.
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1.4 Spreading out the canonical retraction

1.4.1 Finite projective virtuality

First we do some module theory over B+
dR. The relevance of the material here will become clear in the next

subsection.
Fix a perfectoid Tate ring A/Qp, and let ξ ∈ B+

dR(A) denote a choice of generator for the kernel of
θ : B+

dR(A) ! A. This is a non-zero-divisor, unique up to a unit.

Definition 1.6. A B+
dR(A)-module M is finite projective virtually (fpv) over A if M can be resolved by a

short exact sequence
0→ P1 → P0 →M → 0

where P0 and P1 are finite projective B+
dR(A)-modules, and some finite power of ξ kills M .

In other words, M is fpv over A if M is ξ-torsion and 1-fpd as a B+
dR(A)-module in the sense of [KL2]. Note

the word “virtually”: M is typically not an A-module, since B+
dR(A) is not an A-algebra. Note that any finite

direct sum ⊕iB+
dR(A)/ξni is fpv over A, and so is any finite projective A-module (regarded as a B+

dR(A)-module
via θ). Anyway, we regard these modules as a full subcategory of B+

dR(A)-modules. By [KL2], Lemma 1.1.5,
the property of being fpv over A is stable under formation of extensions. We record some further properties
as a lemma.

Proposition 1.7. i. Let
0→M1 →M2 →M3 → 0

be an exact sequence of B+
dR(A)-modules. If M2 is finite projective and M3 is fpv over A, then M1 is finite

projective. In fact, if M2 is finite projective and M3 is ξ-torsion, then M1 is finite projective if and only if M3

is fpv over A.
ii. If M is fpv over A, then so are the submodules ξnM and M [ξn] for any n.
iii. If 0 →M → N → L → 0 is an exact sequence of B+

dR(A)-modules such that N and L are both fpv, then
M is fpv.

Proof. We just use the different portions of Lemma 1.1.5 of [KL2] a bunch of times. Part i. and part iii. are
easy. For part ii., we note that M/ξnM is 2-fpd, so then considering the sequence

0 → ξnM →M →M/ξnM → 0

Lemma 1.1.5(f) of [KL2] shows that ξnM is 1-fpd, and hence fpv. But then looking at the sequence

0→ M [ξn]→M → ξnM → 0,

part iii. implies that M [ξn] is 1-fpd.

Proposition 1.8. If M is a B+
dR(A)-module which is fpv over A, and N ⊆ M is a direct summand of M ,

then N is fpv over A.

Proof. Let e(M) be the smallest integer e such that ξe kills M . We prove the claim by induction on e(M).
When e(M) = 1, the result is clear: in this case, M is a finite projective A-module, and N is a direct summand
thereof, so also finite projective over A. In general, we have a commutative diagram with exact rows

0 "" N [ξ] ""

!!

N ""

!!

ξN ""

!!

0

0 "" M [ξ] "" M "" ξM "" 0

where the vertical arrows identify the upper row as a direct summand of the lower row, in the evident sense.
But e(M [ξ]) = 1 and e(ξM) = e(M) − 1, so N [ξ] and ξN are fpv over A by the induction hypothesis. Since
the property of being fpv over A is stable under forming extensions, we get the result.

6



Our next goal is a pointwise criterion for a B+
dR(A)-module to be fpv over A. In order to do this, we

introduce the following auxiliary notion.

Definition 1.9. A B+
dR(A)-module M is finite projective narrowly (fpn) over A if M is finitely generated and

the graded module
grξ(M) = ⊕i≥0(ξ

iM/ξi+1M)

is a finite projective A-module.

It’s easy to check that these conditions imply that M is ξ-adically separated and killed by a finite power
of ξ. One also checks that if M is fpn over A, then M is fpv over A. The proof is again by induction on e(M):
the case of e = 1 is easy (since then M is just a finite projective A-module), and for the induction step one
uses the sequence

0→ ξM →M →M/ξM → 0,

noting that grξ(ξM) is an A-module summand of grξ(M).

Proposition 1.10. Let N be a B+
dR(A)-module which is finitely generated and ξ-torsion, and set X =

Spa(A, A◦). If the elementary divisors of Nx = N ⊗
B
+
dR

(A) B+
dR(Kx) are locally constant as a function of

x ∈ |X |, then N is fpn over A, and hence fpv over A.

Proof. Let k1,x ≥ k2,x ≥ . . . be the elementary divisors of Nx as a B+
dR(Kx)-module. These can be read off

from gr(Nx) by the following recipe: dimKxgriNx =the # of kj,x’s with kj,x > i. In particular, the hypotheses
of the theorem guarantee that

dimKxgrξ(Nx)

is locally constant as a function of x ∈ |X |. On the other hand, there is a natural map

grξ(N)⊗A Kx
∼= grξ(N)⊗

B
+
dR

(A) B+
dR(Kx)→ grξ(Nx)

which one checks5 is an isomorphism. Putting these two things together, we get that

dimKxgrξ(N)⊗A Kx

is locally constant as a function of x. Then since A is uniform, Proposition 2.8.4 of [KL1] implies that grξ(N)
is a finite projective A-module. This verifies that N is fpn over A, and thus fpv.

The following thing is no longer used in the present draft, but I’ll keep it for later reference.

Proposition 1.11. Let M be a B+
dR(A) module which is fpv over A, and set X = Spa(A, A◦). Then the

natural map

M →
∏

x∈|X|

(
M ⊗

B
+
dR

(A) B+
dR(Kx)

)

is injective. In particular, if m ∈M is nonzero, its image in M ⊗
B
+
dR

(A) B+
dR(Kx) is nonzero for some x ∈ |X |.

The proof which follows is the first one I worked out; shorter arguments are also possible.

Proof. Fix ξ ∈ B+
dR(A) generating ker θ; in what follows, we’ll implicitly use the fact that for any continuous

map A → B of perfectoid Tate rings over Qp, the image of ξ also generates ker θ ⊂ B+
dR(B).

To lighten notation, we define some natural functors on B+
dR(A)-modules as follows:

• Mx = M ⊗
B
+
dR

(A) B+
dR(Kx) for any x ∈ |X |.

• T (M) = M ⊗
B
+
dR

(A)

∏
x∈|X| B

+
dR(Kx).

• T (M) =
∏

x∈|X| Mx.
Note the obvious natural transformations id → T (−) → T (−) " (−)x. It’s not clear (and rather unlikely)

5Probably I should add a proof of this; one can use e.g. induction on e(N).
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that T and T have any good properties in general. However, we’re going to prove that on the subcategory of
B+

dR(A)-modules M which are finite projective virtually over A, the functors T and T are naturally isomorphic,
additive, exact and faithful. In particular, the natural map M → T (M) is injective when M is fpv over A,
which is exactly the claim we’re trying to prove.

The key ingredient in showing all this is the injectivity of the map

B+
dR(A) →

∏

x∈|X|

B+
dR(Kx),

which we now check. Since both sides are ξ-adically separated, it suffices to check this modulo ξn for all n.
Set Ã◦ =

∏
x∈|X| K

◦
x with the p-adic topology, and set Ã = Ã◦[ 1p ] ⊂ Ȧ =

∏
x∈|X| Kx. Then Ã is perfectoid,

and since A is uniform, the map A → Ã is an injective homeomorphism onto its image by an old theorem of
Berkovich. In particular, A → Ȧ is injective. Now playing around, we deduce cascadingly that

• A◦$ → Ã◦$ is injective.
• Both arrows in the sequence of maps

W (A◦$)→W (Ã◦$)→
∏

x∈X

W (K◦$
x )

are injective (by looking at Teichmuller coordinates). Actually the second map is an isomorphism.
• All three arrows in the sequence

W (A◦$)[ 1p ] →W (Ã◦$)[ 1p ]→

(
∏

x∈X

W (K◦$
x )

)

[ 1p ]→
∏

x∈|X|

W (K◦$
x )[ 1p ]

are injective (easy).
• The map

W (A◦$)[ 1p ]/ξn →
∏

x∈|X|

(
W (K◦$

x )[ 1p ]/ξn
)

is injective for any n. We show this by induction on n. For n = 1 this becomes our original map A→ Ȧ. For
the induction step, look at the diagram

0 "" ξnW (A◦$)[ 1p ]/ξn+1 ∼= ξnA ""

!!

W (A◦$)[ 1p ]/ξn+1 ""

!!

W (A◦$)[ 1p ]/ξn ""

!!

0

0 ""
∏

x∈|X|

(
ξnW (K◦$

x )[ 1p ]/ξn+1
)
∼= ξnȦ ""

∏
x∈|X|

(
W (K◦$

x )[ 1p ]/ξn+1
)

""
∏

x∈|X|

(
W (K◦$

x )[ 1p ]/ξn
)

"" 0

(note that the rows are exact). Then the lefthand vertical arrow is injective, and the righthand vertical arrow
is injective by our induction hypothesis, so now the snake lemma implies the claim.

• The map B+
dR(A) →

∏
x∈|X| B

+
dR(Kx) is injective. Take the limit in the previous step.

Now suppose M is fpv, and fix a presentation

0→ P0 → P1 →M → 0

with Pi finite projective. Writing Pi as a summand of a finite free module, one easily checks (using the
injectivity of B+

dR(A) → T (B+
dR(A))) that the natural map Pi → T (Pi) is injective and that the natural map

T (Pi) → T (Pi) is an isomorphism. Applying both functors to the presentation of M , and taking the previous
sentence into account, we get a commutative diagram with exact rows

T (P0) ""

*

!!

T (P1) ""

*

!!

T (M) ""

!!

0

T (P0) "" T (P1) "" T (M) "" 0

8



and then an easy diagram chase shows that T (M)→ T (M) is bijective. Next, since each B+
dR(Kx) is a DVR,

the modules Pi,x are finite free and the map P0,x → P1,x is injective: its kernel is torsion-free, hence free, of
rank equal to the generic rank of Mx, which is zero. In particular, by the identification

0 = ker(P0,x → P1,x) = Tor
B
+
dR

(A)
1 (M, B+

dR(Kx)),

we get that M %→ Mx is an exact functor on fpv modules. But then since T (M) =
∏

Mx, we get that T is an
exact functor on fpv modules as well.

Finally, we prove the injectivity of the map M → T (M). Again we argue by induction on e(M). When
e(M) = 1, the module M is a finite projective A-module, and the map M → T (M) identifies with the map
M →

∏
x∈|X| (M ⊗A Kx); by writing M as a summand of a finite free A-module, injectivity of this map

reduces to the aforementioned injectivity of A →
∏

x∈|X| Kx. For the induction step, we use the commutative
diagram

0 "" M [ξ] ""

!!

M ""

!!

ξM ""

!!

0

0 "" T (M [ξ]) "" T (M) "" T (ξM) "" 0

noting that both rows are exact (the lower row by the results of the previous paragraph). Since e(M [ξ]) = 1,
the left vertical arrow is injective; since e(ξM) = e(M)−1, the right vertical arrow is injective by the induction
hypothesis. But then the middle vertical arrow is injective by the snake lemma.

1.4.2 Effective modifications in families

Fix an affinoid perfectoid space S = Spa(A, A+) over Qp with tilt S$ = Spa(R, R+); we choose this notation
for compatibility with [KL1]. Let X = XS! denote the adic Fargues-Fontaine curve over S$; there is a
canonical Zariski-closed embedding i : S → XS! . Let O(1) be the canonical ample line bundle on X , PR =
⊕i≥0H0(X ,O(i)). Then X = XS! = Proj(PR) is the schematic FF curve associated with S$. Set Z = Spec(A),
so we have a canonical closed immersion Z → X such that the completion of X along Z is canonically identified
with Z̃ := Spec B+

dR(A). Furthermore, the subscheme X # Z is affine; we define Be(A) = H0(X # Z,OX) to
be its coordinate ring.

Summing up, we have a canonical diagram of locally ringed spaces

X # Z
∐

Z̃
(fe,f+

dR
)

"" X X
fan

##

Z

$$

S##

$$

over SpecQp, contravariantly functorial in morphisms (A, A+)→ (B, B+) of perfectoid Qp-algebras.

Theorem 1.12 (Kedlaya-Liu). With the setup as above,
i. Pullback along the morphism fan induces an equivalence of exact tensor categories from vector bundles

on X to vector bundles on X .
ii. Pulling back along the pair of morphisms (fe, f

+
dR) and then passing to global sections induces an

equivalence of exact tensor categories from vector bundles on X to B-pairs over A.

In this context, a B-pair over A is a pair M = (Me, M
+
dR) where Me is a finite projective Be(A)-module

and M+
dR is a finite projective B+

dR(A)-lattice in the BdR(A)-module MdR = Me⊗Be(A) BdR(A). If V is a vector
bundle on X (or X), we write M(V) = (Me(V), M+

dR(V)) for the associated B-pair; we denote the functor in
the other direction by M %→ V(M).

We remark that by the functoriality of the above diagram, any point x ∈ Spa(A, A+) gives rise to a
morphism

sx : XSpa(Kx,K+
x )! → XS! .

9



If E is a vector bundle on XS! , we abbreviate the pullback s∗xE by Ex. Note that Ex corresponds to the B-pair
over Kx given by

(Me(E)⊗Be(A) Be(Kx), M+
dR(E) ⊗

B
+
dR

(A) B+
dR(Kx)).

Definition 1.13. Notation and setup as above. An effective modification along S is a triple (E ,F , u) where E
and F are vector bundles on X , and u : F ↪→ E is an injective map of OX -modules such that E/u(F) is killed
by a finite power of the ideal sheaf cutting out S in XS! .

When E is given, we also speak of (F , u) being an effective modification of E along S.

Theorem 1.14. Let E be a vector bundle on X . Then we have a natural identification between the set of
isomorphism classes of effective modifications of E along S and the set of B+

dR(A)-submodules N ⊆ M+
dR(E)

such that M+
dR(E)/N is finite projective virtually over A.

Proof. The functor in one direction sends (F , u) to M+
dR(u)◦M+

dR(F). For the functor in the other direction, set
M ′ = (Me(E), N). This is a B-pair, and by construction there is a natural injection of B-pairs ι : M ′ →M(E)
which is an isomorphism on the first factor. Set F = V(M ′) and u = V(ι); since V(−) is an equivalence,
u : F → E is injective. The remaining verifications are an easy unwinding.

Remark. If E is some vector bundle with associated B-pair (Me, M
+
dR), and N ⊆ M+

dR is any B+
dR(A)

submodule such that N [1ξ ] = M+
dR[ 1ξ ] = MdR, then the following are equivalent:

1. N is a finite projective B+
dR(A)-module.

2. M+
dR/N is finite projective virtually over A.

3. The pair (Me, N) is in the essential image of M(−) (in which case V(Me, N) is an effective modification
of E along S).

Indeed, 1. and 2. are equivalent by Lemma 1.7.i, and 1. and 3. are equivalent by Theorem 1.12. This explains
the condition in the previous theorem.

If E is a fixed vector bundle and (F , u) is an effective modification along S with associated N ⊆ M+
dR(E),

then for any point x ∈ |S| we define the type of the modification at x, denoted µx(F , u), as the ordered
sequence of elementary divisors of the finite torsion B+

dR(Kx)-module

(M+
dR(E)/N)⊗

B
+
dR

(A) B+
dR(Kx).

The key result (which will easily imply Theorem 1.3) is now as follows. We have not stated the most
general version.

Theorem 1.15. Let S = Spa(A, A+) be as above, and let (E ,F , u) be an effective modification along S of
constant type µ = (k1 ≥ k2 ≥ . . . ) such that F is pointwise semistable of slope zero. Let E+ ⊆ E be a subbundle
with the property that for every point x ∈ |S|, E+

x ⊆ Ex is saturated and we have an equality

deg(E+
x ) =

∑

1≤i≤rank(E+
x )

ki.

Then the sheaf F+ = F ∩ E+ defines a sub-vector bundle of F , and the bundle F+ is pointwise semistable of
slope zero.

Proof. We argue at the level of B-pairs over A. Precisely, set Q = M+
dR(E)/M+

dR(F); this is a B+
dR(A)-module

which is fpv over A by Theorem 1.14. Consider the B+
dR(A)-submodule

Q+ = im(M+
dR(E+) → Q)

10



of Q; this is finitely generated and ξ-torsion. We are going to prove that Q+ is fpv over A. Granted this,
Proposition 1.7 implies that

N = ker(M+
dR(E+)→ Q+) = M+

dR(E+) ∩M+
dR(F)

is a finite projective B+
dR(A)-module. Then (Me(E+), N) defines a B-pair, and we obtain F+ as the associated

vector bundle.
To show that Q+ is fpv over A, we note that it sits in a short exact sequence

0→ Q+ → Q → Q− → 0,

where

Q− = M+
dR(E)/

(
M+

dR(F) + M+
dR(E+)

)

= coker
(
M+

dR(F)⊕M+
dR(E+)→M+

dR(E)
)
.

Since Q is fpv, Proposition 1.7 shows it suffices to prove Q− is fpv over A. We’re going to do this by applying
the pointwise criterion from Proposition 1.10.

Note that unlike Q+ (at least a priori), Q and Q− interact well with specializing to points x ∈ |S|. In
particular, for any x ∈ |S| we have a commutative diagram of B+

dR(Kx)-modules

0

!!

0

!!

0

!!
0 "" M+

dR(E+
x ) ∩M+

dR(Fx) ""

!!

M+
dR(E+

x ) ""

!!

Tx
""

!!

0

0 "" M+
dR(Fx) ""

!!

M+
dR(Ex) ""

!!

Q⊗
B
+
dR

(A) B+
dR(Kx) ""

!!

0

0 "" Sx
""

!!

M+
dR(Ex)/M+

dR(E+
x ) ""

!!

Q− ⊗B
+
dR

(A) B+
dR(Kx) ""

!!

0

0 0 0

with exact rows and columns and with everything in the first two columns finitely generated and free. By
hypothesis, the elementary divisors of Q ⊗

B
+
dR

(A) B+
dR(Kx) are constant and simply given by the ki’s in the

theorem. But now putting together the pointwise hypotheses in the theorem with Theorem 1.4 and Lemma
1.5, we see that Tx is a direct summand of Q⊗

B
+
dR

(A) B+
dR(Kx) with elementary divisors k1 ≥ · · · ≥ krank(E+

x )

for any x ∈ |S|, so Q− ⊗B
+
dR

(A) B+
dR(Kx) has elementary divisors

krank(E+
x )+1 ≥ krank(E+

x )+2 ≥ . . .

for any x ∈ |S|. In particular, since rank(E+
x ) is locally constant, the elementary divisors of Q−⊗B

+
dR

(A)B
+
dR(Kx)

are locally constant. Thus Proposition 1.10 applies, and so Q− is fpv over A. This completes the proof.

1.5 More about the retraction

Fix all data as in the leadup to Theorem 1.3. What can we say about the fibers of the retraction r?

Theorem 1.16. The natural action map

GrEb−adm
M,µ ×Spd Q̆p

JU
b → GrEb−adm

G,µ

is pro-étale-locally surjective.
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Proof. We argue as follows. Let f : S = Spa(A, A+)→ GrEb−adm
G,µ be an S-point, with (F , u) the corresponding

admissible type-µ modification of Eb,S! along S. Let 0 " F i1 " · · · " F ik = F be the canonical P-bundle
structure on F (where k = |I| as before). Then applying the canonical retraction, i.e. looking at the point
r ◦f : Spa(A, A+)→ GrEb−adm

M,µ , we get a collection (Fm, um)1≤m≤k of admissible type-µm modifications of the
summands Ebm,S! . The point i ◦ r ◦ f then corresponds to viewing ⊕1≤m≤k(Fm, um) as a type-µ modification
of Eb,S!

∼= ⊕1≤m≤kEbm,S! . We’re going to (pro-étale-locally on S) find an element j ∈ JU
b (S) which transports

the point i ◦ r ◦ f to the point f .
Now, the fact that f and i◦ r ◦f have the same retraction translates into the following fact: After choosing

compatible isomorphisms ιm : F1 ⊕ F2 ⊕ · · · ⊕ Fm ) F im (which we can do pro-étale-locally on S), the
compatible-in-m maps

νm : u|Fim ◦ ιm : F1 ⊕F2 ⊕ · · · ⊕ Fm → E im ∼= ⊕1≤i≤mEbi

and
ηm : u1 ⊕ · · · ⊕ um : F1 ⊕F2 ⊕ · · · ⊕ Fm → E im ∼= E im ∼= ⊕1≤i≤mEbi

coincide after projection along E im ! Ebm . We are going to show that each νm ◦ η−1
m , which is initially only a

meromorphic endomorphism of E im , actually defines a global section of (E im )∨ ⊗ E im such that νm ◦ η−1
m − 1

defines a section of the subbundle (E im)∨ ⊗ E im−1 . To do this, note that by an easy induction, each map
ηm− νm : F im → E im−1 has zeros of order ≥ kd1+···+dm−1

along S ⊂ XS! . On the other hand, u−1
m : Ebm → Fm

has poles of order ≤ kd1+···+dm−1+1 along S.6 Now, formally, we have the identity

νm ◦ η−1
m = νm−1 ◦ η−1

m−1 + νm ◦ u−1
m

= νm−1 ◦ η−1
m−1 + (νm − ηm + ηm) ◦ u−1

m

= νm−1 ◦ η−1
m−1 + (νm − ηm) ◦ u−1

m + ηm ◦ u−1
m .

But (νm− ηm) ◦ u−1
m : Ebm → E im−1 is well-defined by our previous remarks on zeros and poles, and ηm ◦ u−1

m :
Ebm → E im is just the canonical inclusion as a direct summand. Thus we get the desired properties of νm ◦η−1

m

by induction, noting that ν1 ◦ η−1
1 = id. But this analysis shows that the section

j = νk ◦ η−1
k ∈ H0(XS! , E∨

b ⊗ Eb)

defines an element of JU
b (S), and by construction it transports ⊕1≤m≤k(Fm, um) to

(F , u) ) (⊕1≤m≤kFm, u ◦ ιk),

so we’re done.

1.6 Adding infinite level structure, and cohomological consequences

Setup as in Theorem 1.3. For brevity, we set G, M, P=G(Qp),M(Qp),etc. We’ve already defined spaces
ShtG,µ,b and ShtM,µ,b. These sit in a diagram

ShtM,µ,b

πM

!!

"" ShtG,µ,b

πG

!!

GrEb−adm
M,µ

"" GrEb−adm
G,µ

of diamonds over Spd Q̆p, where πM (resp. πG) presents its source as a pro-étale M -torsor (resp. G-torsor)
over its target. We’e already proved that the lower horizontal arrow retracts in a canonical way. Now we’d
like to study the upper arrow.

6It’s not hard to make these statements about poles and zeros precise; the point is that the ideal sheaf cutting out S ⊂ XS!

is locally principal and generated by a non-zero-divisor.
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Following Mantovan, we do this by defining an intermediate space ShtP,µ,b of P-shtukas. The precise

definition is as follows: for S a perfectoid space over Q̆p, the S-points of ShtP,µ,b consist of triples (F , u, α)
where (F , u) corresponds to an S-point of GrEb−adm

G,µ and α : On
X

S!

∼
→ F is a trivialization matching the flag

0 " Od1

X
S!
⊕ 0 " Od1+d2

X
S!

⊕ 0 " · · · " On
X

S!

with the flag
0 " F i1 " F i2 " · · · " F .

In particular, we have inclusions of subfunctors

ShtM,µ,b

(1)
⊂ ShtP,µ,b

(2)
⊂ ShtG,µ,b,

and there is a natural action of P on ShtP,µ,b compatible with the M - and G-actions on ShtM,µ,b and ShtG,µ,b.
There is also a natural action of Jb = JM

b $JU
b on ShtP,µ,b making the inclusions (1) and (2) JM

b -equivariant
and Jb-equivariant, respectively.

We are going to prove the following two things.

Theorem 1.17. The inclusion ShtP,µ,b ⊂ ShtG,µ,b induces a canonical equivariant identification

ShtG,µ,b
∼= ShtP,µ,b ×

P G.

In particular, ShtP,µ,b → GrEb−adm
G,µ is a pro-étale P -torsor, and there is a canonical G-equivariant isomorphism

H∗
et (ShtG,µ,b × Spd C,Q") ∼= IndG

P (H∗
et (ShtP,µ,b × SpdC,Q"))

preserving degrees and compatible with all additional structures; here C/Q̆p denotes any complete algebraically
closed field. The same formula holds for compactly supported cohomology.

Indeed, we’ve essentially already shown this. On the other hand, we prove

Theorem 1.18. The natural action map

a : ShtM,µ,b ×Spd Q̆p
JU

b → ShtP,µ,b

is an isomorphism of diamonds.

In particular, the product ShtM,µ,b ×Spd Q̆p
JU

b admits a canonical P -action; we caution the reader that
although the action of M ⊂ P is indeed the obvious one, given by its action on the first factor, the full P -action
mixes both factors in a way which is a little tricky to describe directly.

Proof. We construct a two-sided inverse to a. Let S ∈ Perf/Spa Q̆p
and (F , u, α) ∈ ShtP,µ,b(S) be given. We

need to construct a point ∏

1≤m≤k

(Gm, vm, βm) ∈ ShtM,µ,b(S)

and an element j ∈ JU
b (S). The first is easier to find: applying the retraction on period domains to (F , u) ∈

GrEb−adm
G,µ (S) gives a point

(gr(F), gr(u)) =
∏

1≤m≤k

(Fm, um) ∈ GrEb−adm
M,µ (S).

Now by the definition of ShtP,µ,b, it’s easy to see check that “gr(α)” gives a well-defined sequence of trivial-
izations αm : Odm

X
S!

∼
→ Fm, and this gives a point

(gr(F), gr(u), gr(α)) =
∏

1≤m≤k

(Fm, um, αm) ∈ ShtM,µ,b(S)
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as desired.
To construct j, recall from the proof of Theorem 1.16 that after making any choices of compatible isomor-

phisms ιm : F1 ⊕F2 ⊕ · · · ⊕ Fm ) F im (1 ≤ m ≤ k), the two maps

νk : u ◦ ιk : F1 ⊕F2 ⊕ · · · ⊕ Fk → Eb
∼= ⊕1≤i≤kEbi

and
ηk : u1 ⊕ · · · ⊕ uk : F1 ⊕F2 ⊕ · · · ⊕ Fk → Eb

∼= ⊕1≤i≤kEbi

have the property that νk ◦ η
−1
k defines an element of JU

b . Now we simply observe that at infinite level, there
is a canonical choice for the ιm’s, as indicated by the diagram

F1 ⊕F2 ⊕ · · · ⊕ Fm Od1+···+dm
X

α|(O
d1+···+dm
X ⊕0)

∼ ""∼

α1⊕···⊕αm

## F im .

In other words, we take
ιk = α ◦

(
α−1

1 ⊕ · · · ⊕ α−1
k

)
= α ◦ gr(α)−1,

and then
νk ◦ η−1

k = u ◦ ιk ◦ gr(u)−1 = u ◦ α ◦ gr(α)−1 ◦ gr(u)−1 ∈ JU
b (S)

is the element we seek.

Corollary 1.19. The retraction r lifts canonically to a retraction of the natural inclusion ShtM,µ,b ⊂ ShtP,µ,b

with fibers given by JU
b -torsors. More precisely, the diagram

GrEb−adm
M,µ ×Spd Q̆p

JU
b

a

%% %%!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

GrEb−adm
M,µ

&&
"

"
"

"
"

"
"

"
"

"
"

"
"

"
"

"
"

"
i "" GrEb−adm

G,µ

r

''

has a canonical equivariant lifting to a diagram

ShtM,µ,b ×Spd Q̆p
JU

b

a

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

ShtM,µ,b

&&
"

"
"

"
"

"
"

"
"

"
"

"
"

"
"

"
"

"
i "" ShtP,µ,b

r

((

with the map r given as a−1 followed by the projection ShtM,µ,b ×Spd Q̆p
JU

b → ShtM,µ,b.

The following diagram summarizes the situation in a manner which we hope is suggestive:

ShtP,µ,b

IndG
P (−)

))$$$$$$$$$$

r

**
ShtM,µ,b

πM

!!

""

i

++%%%%%%%%%%

ShtG,µ,b

πG

!!

GrEb−adm
M,µ

i "" GrEb−adm
G,µ

r

,,
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With the previous two theorems in hand, it just remains to calculate the geometric étale cohomology of
JU

b , which turns out to be very simple:

Theorem 1.20. For any complete algebraically closed field C/Q̆p, we have

RΓet(J
U
b × SpdC,Q") ) Q"[0]

and
RΓet,c(J

U
b × Spd C,Q") ) Q"(−d)[−2d],

where
d = dimJU

b =
〈
2ρU, ν[b−1]

〉
= dimShtG,µ,b − dimShtM,µ,b.

Sketch. After unwinding, JU
b is a finite product of diamonds B+,ϕ=pj

crys for varying j (viewed as diamonds over
SpdC). One computes their cohomology by induction on j. For j = 1, use that B+,ϕ=p

crys is representable by

a perfectoid space X ; passing to the tilt, X$ is just the perfection of the open unit disk over C$, and the
Q"-cohomology of the latter was calculated by Berkovich. For j > 1, use the “fibration” sequence

0→ B+,ϕ=pj−1

crys
·t
→ B+,ϕ=pj

crys
θ
→ A1,♦ → 0

(which splits pro-étale-locally on A1,♦) together with Berkovich’s computation of the Q"-cohomology of A1.

The main cohomological result is then as follows.

Theorem 1.21. There are canonical G-equivariant isomorphisms

H∗
et

(
ShtG,µ,b ×Spd Q̆p

SpdC,Q"

)
∼= IndG

P

(
H∗

et

(
ShtM,µ,b ×Spd Q̆p

Spd C,Q"

))

and
H∗

et,c

(
ShtG,µ,b ×Spd Q̆p

Spd C,Q"

)
∼= IndG

P

(
H∗−2d

et,c

(
ShtM,µ,b ×Spd Q̆p

Spd C,Q"

)
(−d)

)

preserving degrees and compatible with all additional structures; here d = dimShtG,µ,b − dimShtM,µ,b, and

C/Q̆p denotes any complete algebraically closed field.

We remark that there are no subtleties in defining the compactly supported (pro-)étale cohomology groups
occurring here: all the diamonds in question are spatial and partially proper, so these cohomologies are just
the derived functors of global sections with compact support. Strictly speaking, in the deduction of Theorem
1.21 from Theorem 1.20, we’re appealing to some kind of Künneth formula/smooth base change theorem for
Q"-cohomology of diamonds, but such a thing is a moral certainty in this situation: all diamonds in play are
spatial and partially proper, and JU

b is smooth in a very strong sense.7
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