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These informal notes discuss a recent joint paper of Jack Thorne and myself.

A basic fact of life

Let G be a connected reductive group over Q. Set G∞ = G(R), and let K∞ ⊂ G∞ be a maximal compact-
mod-center subgroup, so D∞ = G∞/K∞ is the usual symmetric space for G. Following the notation in Borel
and Wallach’s book, we set

l0 = rank(G∞) − rank(K∞)

and
q0 = 1

2 (dimD∞ − l0).

These are both nonnegative integers.
For any open compact subgroup K ⊂ G(Af ) we have the usual locally symmetric quotient

YK = G(Q)\ (D∞ × G(Af )) /K

=
∐

i

ΓK,i\D∞.

It’s a basic fact of life that the integer l0 controls, to a remarkable degree, the geometry and arithmetic of
the YK ’s and associated automorphic representations of G(A). Here are some examples of this principle:

1) (Harish-Chandra) The semisimple group Gad
∞ has a discrete series if and only if l0 = 0. If D∞ is

Hermitian symmetric (i.e. the YK ’s are Shimura varieties), then l0 = 0.
2) (Bergeron–Venkatesh) The integral cohomology groups

H∗(YK ,Z)

conjecturally have a large (relative to vol(YK)) torsion subgroup if and only if l0 = 1.
3) (Borel–Wallach, Zuckerman) Let Lλ,C be an irreducible algebraic representation of G(C). If π is a

cuspidal automorphic representation of G(A) such that π∞ is tempered and cohomological of weight λ, then
the π-part of Hn(YK ,Lλ,C) is nonvanishing only for n ∈ [q0, q0 + l0], in which case

dimHn(YK ,Lλ,C)π = mπ,K ·

(

l0
n − q0

)

.

Here mπ,K is an integer (possibly zero).
4) Let π be a tempered cohomological cusp form as in the previous example. Then conjecturally we have

ords=0L(s, ad0π) = l0.

This is known in many cases, e.g. when G = ResF/QGLn for some number field F/Q. (Note: my convention

for the adjoint representation ad0 is that L(s, π ⊗ π∨) = ζF (s)L(s, ad0π) when G = ResF/QGLn, i.e. I’m
stripping off the trivial part of the adjoint representation of LG. )
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5) (Hida, Urban) Let X = XG,K denote the eigenvariety for G (of some tame level K), with its weight
map w : X → W = WG,K . Let x ∈ X be a “noncritical” point associated with a tempered cohomological cusp
form π. Then any irreducible component of X containing x has conjectural dimension dimW − l0.

Venkatesh has recently conjectured a remarkable “arithmetic enhancement” of 3) above. Our paper
explores a surprising link between Venkatesh’s conjecture and 5).

Venkatesh’s conjecture

For simplicity, let me restrict to the case where G = ResF/QGLn for some number field F/Q with r1 (resp. r2)
real (resp. complex) places as usual. A fun calculation (left to the reader) shows that l0 =

⌊

n−1
2

⌋

r1+(n−1)r2

in this case, so e.g.:

• l0 = 0 exactly when F is totally real and n = 2,

• l0 = 1 exactly when F = Q and n ∈ {3, 4}, or when F has one complex place and n = 2.

Let π be a regular algebraic cusp form on G. According to a fundamental conjecture of Clozel, there should
be an irreducible rank n Grothendieck motive Mπ over F with coefficients in some number field E containing
the field of Hecke eigenvalues of π, such that the Frobenius eigenvalues on the λ-adic realizations Mπ,λ match
up with the Hecke eigenvalues of π in the usual way. Now, the cohomology groups in 3) make equally good
sense with coefficients in E rather than C, and Venkatesh’s conjecture is then the following:

Conjecture. There is a canonical E-vector space Vπ of dimension l0 together with a canonical (degree-
lowering) action of the exterior algebra ∧∗

EVπ on

H∗(YK ,Lλ,E)π

making the latter finite free and generated in degree q0 + l0 as a graded module over the former. The vector
space Vπ is given explicitly by

Vπ = Ext1MMotOF
(1, ad0Mπ(1))

where MMotOF
denotes a putative category of mixed motives over OF (with coefficients in E).

Note that this conjecture would “explain” the dimensions of the π-parts in 3) above in a purely arithmetic
fashion.

Why might you believe this? As a first sanity check, note that for any finite place λ of E, the λ-adic
realization functor on mixed motives should induce an isomorphism

Vπ ⊗E Eλ
∼= H1

f (F, ad0Mπ,λ(1)),

and the Bloch-Kato conjecture predicts ords=0L(s, ad0π) = l0 as the dimension of this H1
f , so the conjectural

dimension of Vπ is at least correct.
A more serious shadow of the conjecture is that, if this conjecture were true, we would get in particular

an isomorphism
Hq0(YK ,Lλ,E)π

∼= Hq0+l0(YK ,Lλ,E)π ⊗E detEVπ.

Now in many cases, the “comparison” of rational structures on Hq0 and Hq0+l0 can be related to periods of
π and then to adjoint L-values; on the other hand, comparison of rational structures on detRVπ ⊗ R should
give rise to the periods intervening in Beilinson’s conjecture for L(1, ad0π).

A summary of our results

We now restrict further to the case F = Q (the actual setting considered in our paper, although our ideas
work equally well over a general F ). So, let π be a regular algebraic cuspidal automorphic representation on
G = GLn/Q as above, contributing to some H∗(YK ,Lλ,C) as in 3). Let λ = (k1 ≥ k2 ≥ · · · ≥ kn) be the
highest weight of Lλ,C, and let E ⊂ C be the number field generated by the Hecke eigenvalues of π. Choose a
prime p such that πp is unramified with regular semisimple Satake parameter, and let α = (α1, . . . , αn) be a
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fixed ordering on the eigenvalues of rec(πp ⊗ | det |
1−n

2 )(Frobp). (These eigenvalues give the Satake parameter
of πp up to scalar multiple, and there are n! such orderings. When n = 2 and π is generated by a newform
of weight k and level prime to p, the αi’s are the roots of the usual polynomial X2 − af (p)X + εf (p)pk−1.)
Fix an isomorphism ι : C

∼
→ Qp, and let L ⊂ Qp be the finite extension of Qp generated by ι(E) and the

ι(αi)’s. From now on, I’ll typically suppress ι.
Let N be the conductor of π. Let Γ1(N) ⊂ GLn(Z) be the usual group of matrices with lowest row

≡ (0, . . . , 0, 1)modN , and let Γ1(N ; p) ⊂ Γ1(N) be the subgroup of matrices which are upper-triangular
modulo p. For brevity, we set

Hi
π = Hi (Γ1(N),Lλ,L)π

and
Hi

π,α = Hi (Γ1(N ; p),Lλ,L)π,α .

Here the subscripts (−)π (resp. (−)π,α) denote the π-part (resp. the (π, α)-part) of this cohomology (see the
paper for details). By a direct calculation using the aforementioned results of Borel–Wallach together with
results of Clozel, Franke–Schwermer, Jacquet–Piatetski-Shapiro–Shalika, etc., we prove that the L-vector

spaces Hi
π and Hi

π,α vanish for i /∈ [q0, q0 + l0] and have L-dimension exactly

(

l0
n − q0

)

otherwise. Our

goal is to say something about Venkatesh’s conjecture for the cohomologies H∗
π,α and H∗

π.
Let X denote the eigenvariety for GLn/Q of tame level Γ1(N) with its weight map w : X → W . By

the construction of X, there is a natural algebra map φ : T → O(X) where T is the usual “abstract” Hecke
algebra generated over Qp by the usual operators T$,i (( ! Np) and Up,i for 1 ≤ i ≤ n. Assuming that the
refinement α satisfies a “small slope” condition, we construct a canonical point x = x(π, α) ∈ X(L) of weight

λ attached to the pair (π, α). Let Tx = ÔX,x and Λ = ÔW,λ be the completed local rings of the eigenvariety
and of the weight space at x and λ = w(x), respectively, so Tx is naturally a finite Λ-algebra. We set
things up in such a way that these are naturally complete local Noetherian L-algebras with residue field L
(in particular Λ , L[[t1, . . . , tn]]). We also construct a finite faithful Tx-module H∗

x = ⊕0≤i≤dimD∞
Hi

x of
p-adic automorphic forms, with the further property that

Hq0+l0
x ⊗Λ L ∼= Hq0+l0

π,α

canonically and Hecke-equivariantly.
In this setting, Hida and Urban conjecture the equality

dimTx = dimΛ − l0(= 1 + .n/2/),

which we shall refer to as the dimension conjecture (at x). For n = 2 this is classical; when n ∈ {3, 4},
I proved this result in my thesis. In general, Newton proved (using ideas from my thesis) the inequality
dimTx ≥ dimΛ − l0.

Our first main result is the following theorem.
Theorem A. Let notation and assumptions be as above, and assume the dimension conjecture holds at

x = x(π, α). Then
(a) The module Hi

x vanishes for i 0= q0 + l0, and Hx := Hq0+l0
x is free of rank one over Tx.

(b) There exist canonical isomorphisms

TorΛi (Hx, L) ∼= Hq0+l0−i(Γ1(N ; p),Lλ,L)π,α = Hq0+l0−i
π,α

for all i ≥ 0.
(c) The map Λ → Tx is surjective, and the ring Tx is a complete intersection.
(d) Set Vx = (ker(Λ → Tx)) ⊗Λ L, an l0-dimensional L-vector space. Then there is a canonical degree-

lowering action of ∧∗
LVx on H∗

π,α which makes the latter free of rank one as a graded module over the former.
Here is a sketch of the proof. The vanishing result for Hi

x, assuming the dimension conjecture, is essentially
immediate from a lemma in commutative algebra; the relevant lemma was observed separately by Calegari-
Geraghty and myself in the context of the Taylor-Wiles method. Since Hx ⊗Λ L , L, Hx is a quotient of Λ
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by Nakayama’s lemma, say with Hx , Λ/I. Granted the vanishing of Hi
x for i 0= q0 + l0, we see that Hx is

also faithful over Tx. Since Tx is a Λ-subalgebra of EndΛ(Hx) = Λ/I, we get Tx
∼= Λ/I as well. This shows

(a) together with the first part of (c).
For (b), we construct a canonical spectral sequence

TorΛ−i

(

Hj
x, L

)

⇒ Hi+j
π,α

by adapting a spectral sequence for overconvergent cohomology from my thesis. By the vanishing result in
(a), this degenerates to the claimed isomorphisms.

To see that Tx is a complete intersection, it suffices (by our knowledge of dimensions plus the fact that
Λ is complete regular local) to show that I can be generated by l0 elements. For this, we examine the
isomorphism in (b) for i = 1: since Hx , Tx

∼= Λ/I as Λ-modules, we get

Hq0+l0−1
π,α

∼= TorΛ1 (Hx, L) , TorΛ1 (Λ/I, L) ∼= I ⊗Λ L,

but we already know dimHq0+l0−1
π,α = l0, so we conclude by Nakayama.

For (d), we observe that TorΛ∗ (Λ/I, L) (which is naturally a skew-commutative graded ring) acts on the
graded module

TorΛ∗ (Hx, L) ∼= Hq0+l0−∗
π,α

with the latter free of rank one over the former; on the other hand, we prove that

TorΛ∗ (Λ/I, L) ∼= ∧∗
L(I ⊗Λ L) = ∧∗

LVx.

(Here we use that I is generated by a regular sequence.)
The space Vx is somewhat mysterious. Can we relate it to Vπ? There is a big hint here, as we’ve already

said: one expects the p-adic realization functor on mixed motives to induce a canonical isomorphism

Vπ ⊗E,ι L ∼= H1
f (Q, adρπ(1))

where ρπ : GQ → GLn(L) denotes the Galois representation associated with π (and ι) by the work of very
many mathematicians: we mention in particular Eichler, Shimura, Deligne, Clozel, Kottwitz, Harris-Taylor,
Morel, Shin, HLTT, and Scholze (please note that in what follows, we shall assume that ρπ satisfies full
local-global compatibility at all places, including p; this is known when π is essentially self-dual, and in some
cases beyond). But in order to see the appearance of an H1

f , we need another idea.
The idea now is to consider a Galois deformation problem Dπ,α on Artinian local L-algebras, consisting

of deformations of ρπ which are minimally ramified at primes away from p and trianguline at p with a
triangulation lifting the triangulation of ρπ|GQp

determined by α. This deformation problem, appropriately
defined, is pro-represented by a complete local Noetherian L-algebra Rπ,α, which moreover is canonically a
Λ-algebra. We can then take advantage of the following circumstances:

• On the one hand, we believe in a natural “R = T”-type conjecture in this setting.

• On the other hand, the tangent space of Dπ,α (and its local-at-p analogue) is naturally related to H1
f ’s.

The necessary local-at-p trianguline deformation functor here was studied in detail by Bellaïche-Chenevier,
and we draw heavily on their results. In particular, they prove that the tangent space H1

α(Qp, adρπ) ⊂
H1(Qp, adρπ) sits in a canonical short exact sequence

0 → H1
f (Qp, adρπ) → H1

α(Qp, adρπ)
dw
→ Ln → 0.

Using this together with Poitou-Tate duality and some other results of Bellaïche-Chenevier, we show the
following theorem.

Theorem B.
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(a) The tangent space Dπ,α(L[ε]) is naturally identified with a certain global Selmer group H1
α(Q, adρπ),

which sits in a canonical five-term exact sequence

0 → H1
f (Q, adρπ) → H1

α(Q, adρπ) → Ln µ∨
α→ H1

f (Q, adρπ(1))∨ → H1
α (Q, adρπ(1))∨ → 0.

Here (−)∨ denotes L-linear dual, and µα : H1
f (Q, adρπ(1)) → Ln is a certain canonically defined regulator

map. The first three terms in this sequence are compatible (via localization at p) with the aforementioned
short exact sequence.

(b) There is a canonical isomorphism Rπ,α ⊗Λ L ∼= Rπ,crys.
(c) The ring Rπ,α has tangent space of dimension g = h1

α(Q, adρπ) and admits a presentation Rπ,α ,
L[[x1, . . . , xg]]/(f1, . . . , fr) where r ≤ h1

α(Q, adρπ(1)). Furthermore, h1
α(Q, adρπ) − h1

α(Q, adρπ(1)) = n− l0.
The relevant R = T conjecture is as follows:
Conjecture C. There is an isomorphism Rπ,α

∼
→ Tx of Λ-algebras satisfying the usual compatibility

between Frobenius and Hecke eigenvalues.
Why should you believe in this conjecture? Most convincingly, it’s true in the unitary group setting,

thanks to results of Bellaïche-Chenevier, Chenevier, and Allen. There are also certain formal similarities
on both sides: in particular, point (c) above implies that Rπ,α has dimension ≥ n − l0 and is a complete
intersection if equality holds, while recall we proved exactly the same result independently for Tx!

Here is an arrangement of the rest of our results which differs a bit from the Theorem stated in our paper
(but which I find compelling).

Theorem D. Suppose there is a surjection of Λ-algebras

Rπ,α ! Tx

satisfying the expected compatibilities, and that µα is injective. Then:
(a) The map Rπ,α → Tx is an isomorphism of n − l0-dimensional regular local rings; in particular, the

eigenvariety is smooth at x, and the dimension conjecture is true at x, so all the conclusions of Theorem A
hold as well.

(b) We have H1
f (Q, adρπ) = 0 and dimLH1

f (Q, adρπ(1)) = l0.

(c) The map µα induces a canonical isomorphism H1
f (Q, adρπ(1)) ∼= Vx, so we get a canonical action of

∧∗
LH1

f (Q, adρπ(1)) on H∗
π,α with the latter free of rank one over the former.

Here is an idea of the proof. By Newton’s theorem mentioned above, we have dimTx ≥ n − l0. On the
other hand, the injectivity of µα implies h1

α(Q, adρπ(1)) = 0 and (by the Greenberg-Wiles duality formula)
h1

α(Q, adρπ) = n − l0, so by part (b) of Theorem B we deduce Rπ,α , L[[x1, . . . , xn−l0 ]]. Comparing
dimensions, the map R → T is an isomorphism. To deduce (b), we note that

Rπ,crys , Rπ,α ⊗Λ L , Tx ⊗Λ L , L,

by Theorems A and B together with our knowledge of R = T; since H1
f (Q, adρπ) is the tangent space of

Rπ,crys, its vanishing follows. The remainder of (b) follows from Greenberg-Wiles duality again.
For (c), let I be the kernel of the surjection Λ → Tx as before; since Tx is regular, the generators of I lie

in mΛ $ m2
Λ and we get a natural injection Vx = I ⊗Λ L ↪→ mΛ/m2

Λ. Now, dualizing the five-term sequence
from Theorem B and noting that the outermost terms vanish, we get a short exact sequence

0 → H1
f (Q, adρπ(1))

µα→ mΛ/m
2
Λ

t
→ mR/m

2
R
∼= mT/m

2
T → 0.

Since Vx ⊆ ker t = imµα and dimVx = h1
f(Q, adρπ(1)), µα induces an isomorphism

H1
f (Q, adρπ(1)) ∼= Vx

as desired.
We have one more conjecture. To state it, note that the natural restriction map Hi(Γ1(N),−) →

Hi(Γ1(N ; p),−) induces a graded isomorphism rα : H∗
π

∼
→ H∗

π,α.
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Conjecture E. Suppose the hypotheses of Theorem D holds true for a fixed π and multiple α’s, so for
each α we get an action

∧∗H1
f (Q, adρπ(1)) → End (H∗

π)

by intertwining the action from part (c) of Theorem D with the isomorphism rα. Then this action is inde-
pendent of α.

This last action should be the p-adic completion of the “true” action of Vπ on H∗(Γ1(N),Lλ,E)π predicted
by Venkatesh’s conjecture.

More on the regulator µα

In this section, we give two definitions of the regulator map µα from Theorem B. We hope to convince the
reader that µα is a p-adic analogue of the Beilinson regulator for adMπ(1). This at least makes its injectivity
morally reasonable.

The regulator map µα : H1
f (Q, adρπ(1)) → Ln is defined as a certain composite

H1
f (Q, adρπ(1))

resp
→ H1

f (Qπ, adρπ(1))
να→ Ln,

so we need to define the local regulator map να. Our first definition of να goes as follows. Recall the short
exact sequence

0 → H1
f (Qp, adρπ) → H1

α(Qp, adρπ)
dw
→ Ln → 0

of Bellaïche-Chenevier mentioned above. An easy snake lemma argument gives an associated short exact
sequence

0 → Ln = H1
α/H1

f → H1/H1
f → H1/H1

α → 0,

where H1
• := H1

• (Qp, adρπ). By the self-adjointness of the crystalline Selmer condition under Tate local
duality, taking the L-linear dual gives a short exact sequence

0 → H1
α(Qp, adρπ(1)) → H1

f (Qp, adρπ(1)) → Ln → 0,

(this is the definition of the dual local condition H1
α(Qp, adρπ(1))), and we define να as the third arrow in

this sequence.
To give our second definition of να, we temporarily work in a slightly more general setting. Let V

be an n-dimensional L-linear crystalline representation of GQp
. We may identify Dcrys(V ) ∼= DdR(V ), so

Dcrys(V ) has a canonical Hodge filtration by subspaces Fili = FiliDdR(V ). We shall assume that V has n
distinct Hodge-Tate weights w1 < w2 < · · · < wn, and that ϕ acting on Dcrys(V ) has n distinct eigenvalues
ϕ1, . . . , ϕn which furthermore satisfy ϕiϕ

−1
j /∈ {1, p±1} for i 0= j. 1 Fix an ordering α = (α1, . . . , αn) on the

ϕ-eigenvalues. By our multiplicity-freeness assumption, our chosen ordering α determines a unique refinement

F(α) : {0 % F1 % F2 % · · · % Fn = Dcrys(V )}

of Dcrys(V ) by the usual rule det(X−ϕ)|Fi =
∏

1≤j≤i(X−αj). We suppose that this refinement is noncritical,

i.e. that Fi⊕Filwi+1 = Dcrys(V ) for all 1 ≤ i ≤ n−1. This assumption is absolutely essential in what follows.
In the context of Theorems B and D, this noncriticality is guaranteed by our “small slope” assumption.

Our second construction of να goes via the Bloch-Kato logarithm, with the target Ln now realized as a
quotient of

DdR (adV (1)) /D+
dR (adV (1)) .

Compare this structure to the target of the Beilinson regulator

r : Ext1MMQ
(Q(0), M) → Ext1

MH+
R

(R(0), MB ⊗ R)

∼= (Fil0MdR ⊗ R)\(MdR ⊗ R)/(M+
B ⊗ R).

1When V is the restriction of a representation of GQ coming from a pure motive, the possibility ϕiϕ
−1

j = p±1 is automatically
ruled out, since the ϕi’s are then p-Weil numbers of some weight independent of i.
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Set D = Dcrys(V ) for brevity, and set adD = HomL(D, D) with the induced ϕ-module structure and
Hodge filtration. By the functoriality of Dcrys we have adD ∼= Dcrys(adV ). Set

adα,0D = {f ∈ HomL(D, D) | f(Fi) ⊆ Fi ∀1 ≤ i ≤ n}

and
adα,−1D = {f ∈ HomL(D, D) | f(Fi) ⊆ Fi−1 ∀1 ≤ i ≤ n} .

These are ϕ-stable subspaces of ad(D), and

adα,0D/adα,−1D ∼=
n

∏

i=1

EndL(Fi/Fi−1)

∼= Ln.

Let qα : adα,0D ! Ln denote the composite of this isomorphism with the projection adα,0D → adα,0D/adα,−1D.
Fact one: If W is any de Rham representation of GQp

with Dcrys(W )ϕ=1 = 0, the Bloch-Kato exponential
induces an isomorphism

expW : DdR(W )/D+
dR(W )

∼
→ H1

f (Qp, W ).

We write logW for the inverse isomorphism as usual.
One checks that under the assumptions above, the previous fact applies in the case W = adV (1), so we

get
logadV (1) : H1

f (Qp, adV (1))
∼
→ DdR (adV (1)) /D+

dR (adV (1)) .

Fact two (key observation): Under the isomorphism Dcrys (adV (1)) ∼= DdR (adV (1)), the noncritical-
ity assumption implies the direct sum decomposition

DdR (adV (1)) = D+
dR (adV (1)) ⊕ (adα,0D)(1),

i.e. (adα,0D)(1) splits the inclusion D+
dR (adV (1)) ⊂ DdR (adV (1)). In particular, we get a canonical isomor-

phism
prα : DdR (adV (1)) /D+

dR (adV (1))
∼
→ (adα,0D)(1) ∼= adα,0D.

Theorem F. The composite map

qα ◦ prα ◦ logadV (1) : H1
f (Qp, ad(V )(1)) → Ln

coincides with να.
It seems worth noting that in the global context above, the map

logadρπ(1) ◦ resp : H1
f (Q, adρπ(1)) → DdR(adρπ(1))/D+

dR(adρπ(1))

is conjecturally injective; indeed, this map is expected to coincide with the syntomic regulator, whose injec-
tivity for pure motives of weight ≤ −2 seems to be a folklore conjecture.

After playing with duality, one reduces Theorem F to the following lemma.
Lemma G. For V as above, the Bloch-Kato dual exponential exp∗ = exp∗

ad(V )(1) induces a short exact
sequence

0 → H1
f (Qp, adV ) → H1(Qp, adV )

exp∗

−→ D+
dR(adV ) → 0,

and H1
α(Qp, adV ) ⊂ H1(Qp, adV ) is the preimage of D+

dR(adV )∩ adα,0D. Furthermore, there is a canonical
isomorphism D+

dR(adV ) ∩ adα,0D ∼= Ln such that the induced map exp∗ : H1
α(Qp, adV ) → Ln coincides with

the map dw.
The proof of this lemma requires actually knowing something about the definition of H1

α(Qp, adV ) in
terms of the cohomology of (ϕ, Γ)-modules.

Question. Suppose n = 4 and π is such that ρπ , Ind
GQ

GF
χ, where F/Q is an abelian quartic CM field

and χ is a p-adic Hecke character of F . Suppose for simplicity that p is split completely in F , so there is an
“ordinary” refinement α. Can the injectivity of µα in this case be reduced to more familiar problems in the
algebraic number theory of F , or perhaps even be shown unconditionally?
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