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Abstract

We prove, under a certain assumption of ÒHodge-Newton reducibilityÓ, a strong form of a
conjecture of Harris on the cohomology of moduli spaces of mixed-characteristic local shtukas for
GL n . Our strategy is roughly based on a previous strategy developed by Mantovan in the setting
of p-divisible groups, but the arguments are completely di!eren t. In particular, we reinterpret
and generalize the Hodge-Newton Þltration of a p-divisible group in terms of modiÞed vector
bundles on the Fargues-Fontaine curve. We also compute the dualizing complex and compactly
supported Žtale cohomology of any positive Banach-Colmez space over any base; this should be
of independent interest.

Contents

1 Introduction 2
1.1 Local shtukas and their moduli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Cohomology of moduli of local shtukas. . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 A canonical retraction of period domains. . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 The idea behind the canonical retraction. . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Adding inÞnite level structure, and cohomological consequences. . . . . . . . . . . . 11
1.6 Other results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Preliminaries 14
2.1 Notation, terminology, and assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Some module theory overB+

dR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Vector bundles and modiÞcations on relative curves. . . . . . . . . . . . . . . . . . . 17
2.4 Section and automorphism functors of a bundle. . . . . . . . . . . . . . . . . . . . . 24

3 Canonical Þltrations on an admissible modiÞcation 25
3.1 The case of a point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 The general case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Applications to moduli of shtukas 29
4.1 Surjectivity of the retraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 The retraction at inÞnite level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Conseqences for cohomology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

! Max Planck Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany; dhansen@mpim-bonn.mpg.de

1



References 42

1 Introduction

Since their dramatic appearance in Harris and TaylorÕs proof of the local Langlands conjecture for
GLn [HT01], moduli spaces ofp-divisible groups have played a central role in the Langlandsprogram.
Until recently, the most general available family of spacesof this type was essentially the ÒRapoport-
Zink spacesÓ deÞned and studied in [RZ96]. In his 2014 course at Berkeley [SW17], Scholze vastly
generalized these ideas by constructing moduli spaces ofmixed-characteristic local shtukas. Like
Shimura varieties, these spaces are constructed axiomatically from simple group-theoretic input
data. In general they are not rigid analytic varieties, and must be interpreted as diamonds; this
is related to the fact that the Hodge type of the p-adic Hodge structures they parametrize is not
necessarily minuscule.

In this paper, we study a conjecture of Harris on the cohomology of these spaces, using the
language and tools developed in [SW17] and [Sch17]. Roughly speaking, HarrisÕs conjecture says
that when the underlying Òlocal shtuka datumÓ is not basic, the (class in the Grothendieck group
of the) cohomology of the space is parabolically induced. Inthe original setting of Rapoport-
Zink spaces, Mantovan proved many cases of HarrisÕs conjecture in a beautiful paper [Man08].
MantovanÕs wonderful idea is that under a certain assumption of ÒHodge-Newton reducibilityÓ, the
spaces themselves are parabolically induced.

Our goal here, broadly stated, is to extend MantovanÕs strategy to the more general spaces
considered in [SW17]. However, out of necessity, the ingredients and details ofour arguments are
completely di!erent from those in [ Man08]. In particular, one of our main observations is that
the structures observed by Mantovan are entirely accountedfor by the actions of certain group
diamonds. We also reinterpret and generalize the Hodge-Newton Þltration of a p-divisible group
considered by Mantovan-Viehmann [MV10], which plays a key role in [Man08], in the language of
modiÞed vector bundles on the Fargues-Fontaine curve. Finally, we carry out a di"cult calculation
in the Žtale cohomology of diamonds, which should have interesting applications beyond those given
here.

1.1 Local shtukas and their moduli

In this section we deÞne moduli spaces of mixed-characteristic local shtukas with inÞnite level
structure, summarizing some material from [SW17].

Fix a Þnite extension E/ Qp with uniformizer ! and residue ÞeldFq. Set ! = Gal( E/E ) and
ùE = !E unr , and let " ! Aut( ùE/E ) be the natural q-Frobenius. Choose a reductive groupG/E . For
simplicity in this introduction, we assume that G is split over E , so we may choose a Borel subgroup
B " G and a split maximal torus T " B both deÞned overE . In the remainder of this article, we
always denote algebraic groups overE in boldface, and we denote theirE -points in standard font,
so G = G(E), B = B (E), etc.

For the purposes of this introduction, a local shtuka datum is a triple (G, µ, b), where µ !
X ! (T )dom is a B -dominant cocharacter andb ! G( ùE ) is an element whose" -conjugacy class[b] !
B (G) lies in the Kottwitz set B (G, µ" 1).1 Let Jb denote the" -centralizer of b, so this is the algebraic

1Again, we do not take a maximally general setup here.
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group over E whose functor of points sends anyE-algebra R to the group

Jb(R) =
!

g ! G(R # E ùE) | g = b(id # " )(g)b" 1
"

.

For any perfectoid spaceS over ùE, the datum of b gives rise to aG-bundle Eb,S! on the relative
Fargues-Fontaine curveXS! = XS! ,E , functorially in S, whose isomorphism class depends only on
the " -conjugacy class[b]. We then make the following deÞnition:

DeÞnition 1.1. The moduli space of local shtukas(with one leg, and with inÞnite level structure)
associated with the datum (G, µ, b) is the functor

ShtG ,µ,b : Perfd/ ùE $ Sets

on perfectoid spaces overùE sendingS ! Perfd/ ùE to the set of isomorphism classes of triples(F , u, #),
where F is a G-bundle over XS! ,

u : F| X S ! ! S
#$ E b,S! |X S ! ! S

is an isomorphism which extends to a type-µ meromorphic modiÞcation ofEb,S! along the natural
closed immersionS " X S! , and # : Etriv ,S !

#$ F is a G-bundle isomorphism trivializing F .

We note that, strictly speaking, it is more natural to consider slightly larger moduli spaces
parametrizing shtukas whose meromorphy type is bounded byµ rather than being given exactly by
µ, which we denote byShtG ,$ µ,b . Indeed, this is what is done in [SW17]. From the point of view
of the present paper, however, it is more natural to Þx the meromorphy type exactly. When µ is
minuscule, there is no di!erence.

The spaceShtG ,µ,b is something like an inÞnite-level Rapoport-Zink space, and the following
heuristic might be helpful in parsing the deÞnition of ShtG ,µ,b :

¥ the data of Eb,S! is ÒlikeÓ thep-divisible group H = Hb %F q
S! over S! , where Hb/ Fq is

the (nonexistent) Ò! -divisible OE -module with G-structureÓ whoseOE -Dieudonne module is
determined by b;

¥ the data of F and u is ÒlikeÓ a quasideformation÷H of H to S;

¥ the data of # is ÒlikeÓ a trivialization of the rational Tate moduleVp ÷H .

In some cases whenµ is minuscule, this heuristic can be made into literal truth, but in general
ShtG ,µ,b is unrelated to p-divisible groups.

In any case, the functor ShtG ,µ,b is a very rich object. First of all, itÕs obviously Þbered over
Spa ùE as a functor, and itÕs not hard to check thatShtG ,µ,b deÞnes a sheaf on the big pro-Žtale site
Perfdproet

/ ùE
. By the equivalence of sites

Perfdproet
/ ùE

&= Perfproet
/ Spd ùE

,

wherePerf " Perfd denotes the category of characteristicp perfectoid spaces, we can and do regard
ShtG ,µ,b as a pro-Žtale sheaf onPerf Þbered over the diamondSpd ùE.

Next, we observe that there are two natural commuting group actions on ShtG ,µ,b : on the one
hand, the group G &= Aut( Etriv ) acts onShtG ,µ,b via the right action sending # to # ' g; on the other
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hand, Jb < Aut( Eb) acts via the left action sendingu to j ' u. Here, following our conventions,Jb

is the group of E-points in the " -centralizer Jb.
There are also two period maps out ofShtG ,µ,b , the Grothendieck-Messing period map

! GM : ShtG ,µ,b $ GrG ,µ

and the Hodge-Tate period map

! HT : ShtG ,µ,b $ GrG ,µ ! 1 .

Here GrG ,µ is an open Schubert cell in theBdR -a"ne Grassmannian GrG / Spd ùE, whose deÞnition
we will recall later. By the results of [SW17], GrG ,µ is a locally spatial diamond overSpd ùE. The
map ! GM forgets #, while the map ! HT interprets #" 1 ' u" 1 as giving a (non-trivialized) type-
µ" 1 modiÞcation of Etriv along S. There are natural actions of Jb and G on GrG ,µ and GrG ,µ ! 1 ,
respectively, such that ! GM and ! HT are G %Jb-equivariant for (respectively) the trivial actions of
G and Jb on their targets.

The starting point for the investigations in this paper is th e following result.

Theorem 1.2 (Scholze, via Caraiani-Scholze, Fargues-Fontaine, Kedlaya-Liu, Scholze-Weinstein).
Let the notation and assumptions be as above. Then:

i. The image of the period morphism! GM is a non-empty open and partially proper subdiamond
GrEb" adm

G ,µ of the diamond GrG ,µ , stable under the action ofJb.
ii. The induced morphism

! GM : ShtG ,µ,b $ GrEb" adm
G ,µ

is representable and pro-Žtale, and it makesShtG ,µ,b into a pro-Žtale G-torsor over GrEb" adm
G ,µ . In

particular, ShtG ,µ,b is a locally spatial diamond overSpd ùE.
iii. For any open compact subgroupK " G, the quotient ShtG ,µ,b /K parametrizing shtukas with

K -level structure is a locally spatial diamond Žtale overGrEb" adm
G ,µ .

iv. When µ is minuscule, the diamondsGrG ,µ , GrEb" adm
G ,µ and ShtG ,µ,b /K are in the essential

image of the functor (( )! from smooth rigid analytic spaces overSpa ùE. In particular, the rigid
spaceM K over Spa ùE such that

M !
K

&= ShtG ,µ,b /K

is the local Shimura variety with K -level structure associated with the datum(G, µ, b) sought by
Rapoport and Viehmann [RV14].

v. When µ is minuscule and G = GL n , there is a natural isomorphism ShtG ,µ,b
&= M !

H b,%
compatible with all structures, whereM H b,% is a certain inÞnite-level Rapoport-Zink space.

In the case whereG = GL n /E , we give a detailed proof of parts i.-iv. of this theorem in ¤2.3
below. Let us emphasize that we donÕt claim any real originality here: the existence of (some version
of) the spaceGrEb" adm

G ,µ together with its universal Qp-local system was announced over eight years
ago by Kedlaya-Liu, and the possibility of constructing this space by some version of the argument
we give was one of the primary motivations for the writing of [KL15]. In the case of minusculeµ,
Rapoport and Viehmann formulated (prior to the invention of diamonds and the proof of Theorem
1.2) a very precise qualitative description of the spacesShtG ,µ,b in [RV14]. As far as we can tell,
though, the idea that spaces likeShtG ,µ,b might exist in some reasonable geometric category for an
arbitrary Hodge cocharacterµ is due entirely to Scholze. (We also note that an analogous theorem
holds for the spacesShtG ,$ µ,b , and this is a much more subtle result; indeed, the fact thatShtG ,$ µ,b

is a locally spatial diamond is one of the main theorems of [SW17].)
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1.2 Cohomology of moduli of local shtukas

One of the primary motivations for studying spaces like ShtG ,µ,b is that their Q" -cohomology is
widely expected to realize instances of the local Langlandscorrespondence forG and the local
Jacquet-Langlands correspondence betweenG and Jb. In the particular case when b is basic, the
group Jb is an inner form of G, and a precise conjecture was formulated by Kottwitz. Very roughly,
KottwitzÕs conjecture predicts that for $ : WE $ L G(Q" ) a discrete L-parameter and ! (resp. %)
an irreducible smooth representation ofG (resp. Jb) in the discrete L-packet associated with$, the
virtual WE -representation2

#

i & 0

(( 1)i HomG' J b

$
H i

c

$
ShtG ,µ,b %Spd ùE Spd %E, Q"

&
, ! ! %

&

coincides with some number of copies ofrµ ' $, where rµ is the algebraic representation ofL G
with highest weight µ, and that this number can be read o! from expected propertiesof the lo-
cal Langlands correspondence. In particular, KottwitzÕs conjecture implies that for b basic, every
supercuspidal representation ofG occurs in the geometric Žtale cohomology ofShtG ,µ,b .

On the other hand, whenb is not basic, Harris conjectured that no supercuspidal representation
of G contributes to the Euler characteristic of H !

c (ShtG ,µ,b , Q" ) [Har01]. This follows from a more
quantitative statement, which we now describe. To formulate HarrisÕs conjecture, letM [b! 1 ] be
the standard Levi subgroup centralizing the B -dominant Newton cocharacter&[b! 1 ] ! X ! (T )Q ,dom .
After possibly replacing b by a " -conjugate, we can and do assume thatb ! M [b! 1 ]( ùE) and that &b! 1

is M [b! 1 ]( ùE )-conjugate to &[b! 1 ] ; if these properties hold, we sayb is well-chosen.3 For any standard
Levi subgroup M containing M [b! 1 ] , consider the Þnite set of cocharacters

Wµ,b (M ) =
'

' ! X ! (T )M " dom ) W áµ | [b" 1] ! B (M , ' )
(

,

whereW denotes the absolute Weyl group ofG. For each ' ! W µ,b (M ), the tuple (M , ', b ) deÞnes
a local shtuka datum. In the setting of p-divisible groups (i.e., for minusculeµ), Harris conjectured
a formula expressing (roughly) the%-part of the virtual representation

#

i & 0

(( 1)n H i
c

$
ShtG ,µ,b %Spd ùE Spd %E, Q"

&

in terms of the %-part of the virtual representation
#

#(W µ,b (M )

#

i & 0

(( 1)n IndG
P

$
H i

c

$
ShtM ,#,b %Spd ùE Spd %E, Q"

&&
.

Here P is the standard parabolic with Levi factor M , and %denotes any irreducible smooth repre-
sentation of Jb. We note that HarrisÕs original formulation of his conjecture was slightly wrong for
nonsplit G , and the corrected formulation given above (and its generalization beyond the quasisplit
case) is due to Viehmann, cf. [RV14, Conj. 8.4] for the most general statement. We follow Rapoport
in calling this general statement the Harris-Viehmann conjecture.

Let us note right away that itÕs a little delicate to extend HarrisÕs conjecture beyond the case of
minusculeµ, since there are cases where the setWµ,b (M ) as deÞned above is empty (although there

2Cf. ¤4.3 for a precise discussion of the cohomology groups H !
c (! , Q ! ) considered here.

3The presence of inverses here (and elsewhere) is related to t he negation of slopes which occurs when passing from
b to the associated bundle Eb: the Òslope cocharacterÓ ofEb is given by ! b! 1 .
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is a natural way to modify the deÞnition of Wµ,b (M ) which Þxes this problem). However, it still
seems reasonable to expect that for any' ! W µ,b (M ), the cohomology ofShtM ,#,b contributes to
the cohomology ofShtG ,µ,b in some way. Note in particular that if µ ! W µ,b (M ), we at least have
a natural map of diamonds

ShtM ,µ,b $ ShtG ,µ,b ,

and one can ask how close this map, or some parabolic induction of it, comes to describing the
total cohomology of ShtG ,µ,b . One of the main results of this article is that when G = GL n and
the datum (G, µ, b) is Hodge-Newton reduciblein the sense deÞned below, there is a canonical Levi
subgroup M " G such that this map completely accounts for the cohomology ofits target.

1.3 A canonical retraction of period domains

We now set up the notation and terminology necessary to stateour results precisely. For the
remainder of the paper, we restrict our attention to the caseG = GL n /E . Let B be the upper-
triangular Borel, and choose aB -dominant diagonal cocharacterµ with exponents (k1 * á á á *
kn ) ! Zn . As usual, we conßateµ with the ordered tuple of ki Õs, and we conßateG-bundles on any
XS! = XS! ,E with rank n vector bundles.

Fix an element b ! GLn ( ùE ) with [b] ! B (G, µ" 1), and let Eb,S! denote the associated rankn
vector bundle on the relative Fargues-Fontaine curveXS! for any S ! Perfd/ ùE as before. Any map
S $ T induces a canonical mapXS! $ X T ! such that the pullback of Eb,T ! identiÞes naturally with
Eb,S! . In particular, we sometimes denote the bundle agnostically by Eb.4 For simplicity we assume
that kn * 0,5 so anS-point f : S $ GrGL n ,µ corresponds to a modiÞcation of vector bundles

u : F| X S ! ! S
#$ E b,S! |X S ! ! S

which is e!ective, i.e. a modiÞcation for which u extends to an injection u : F ($ E b,S! of Þnite
locally free OX -modules. By deÞnition, such a modiÞcation lies in theadmissible locusGrEb" adm

GL n ,µ
deÞned earlier if and only ifF is pointwise-semistable of slope zero at all points of|S|; weÕll refer
to an S-point (F , u) ! GrEb" adm

G ,µ (S) as anadmissible (type-µ) modiÞcation of Eb along S.
Let 0 = E0

b " E1
b " E2

b á á á" Es
b = Eb denote the slope Þltration of Eb, where s denotes the

number of distinct slopes ofEb. Each Ei
b/ Ei " 1

b is a semistable vector bundle, with strictly decreasing
slopes as a function ofi . The condition [b] ! B (G, µ" 1) unwinds in this setting to the usual relation
between Newton and Hodge polygons, or equivalently to the condition that the inequality

deg(Ei
b) +

#

1$ j $ rank( Ei
b )

kj

holds for every 1 + i + s, with equality for i = s. Let I , { 1, . . . , s} denote the ordered set of
integers for which this inequality is an equality; sinces ! I always, |I| * 1.

DeÞnition 1.3. The datum (G, µ, b) is Hodge-Newton (HN-) reducible if |I| * 2. We say Ei
b is

HN-reducing if i ! I # { s} .

Graphically, this is equivalent to requiring that aside from touching at their endpoints, the
Newton and Hodge polygons also touch at some interior breakpoint of the Newton polygon.

4Whereby weÕre really regarding it as an F q-point of the stack Bun n .
5This is no restriction on our results, since it can always be a chieved by a suitable Òcentral twistingÓ of the datum

(b, µ) which leaves all spaces in question essentially unchanged.
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Remark. When µ is minuscule, itÕs easy to check that at most two interior breakpoints of the Newton
polygon touch the Hodge polygon. For non-minusculeµ, however, the number of such points can
be arbitrarily large.

Let I = { i 1 < á á á< i k = s} " { 1, . . . , s} be the ordered set of indices in the slope Þltration as
deÞned above, and let{ d1, . . . , dk } ! N k denote the ordered set

{ rank(Ei 1
b ), rank(Ei 2

b / Ei 1
b ), . . . , rank(Ei k

b / Ei k ! 1

b )} .

Consider the standard Levi

M =

)

*
*
*
+

GLd1

GLd2

. . .
GLdk

,

-
-
-
.

" G ,

and let P = MU be the associated standard parabolic. We shall refer toM and P as the
Hodge-Newton Levi (resp. Hodge-Newton parabolic) associated with the datum (G, µ, b). Note
that (G, µ, b) is Hodge-Newton reducible if and only if M " G. After possibly replacing b by a
" -conjugate, we can and do assume thatb is well-chosen, so in particular we have an inclusion

b ! M [b! 1 ]( ùE ) " M ( ùE).

Writing bm for the projection of b into the mth block of M , we then get a decompositionEb
&=

- 1$ i $ k Ebi , or equivalently a canonical reduction of Eb to an M -bundle, such that the induced
P-bundle structure on Eb is a coarsening of the slope Þltration.

Writing µm for the projection of µ into the mth block of M , one easily checks that we have a
product decomposition

GrM ,µ
&= GrGL d 1 ,µ 1 %Spd ùE á á á %Spd ùE GrGL d k ,µ k

of diamonds over Spd ùE. One also checks that(M , µ, b) deÞnes a local shtuka datum, which is
naturally decomposed into a direct product of local shtuka data, vis.

(M , µ, b) &=
k/

m =1

(GL dm , µm , bm ).

This product decomposition induces canonical compatible isomorphisms

GrEb" adm
M ,µ

&= Gr
Eb1 " adm
GL d 1 ,µ 1

%Spd ùE á á á %Spd ùE Gr
Ebk

" adm
GL d k ,µ k

,

and
ShtM ,µ,b = Sht GL d 1 ,µ 1 ,b 1

%Spd ùE á á á %Spd ùE ShtGL d k
,µ k ,bk .

There is also a compatible and canonicalJb-equivariant inclusion

i : GrM ,µ ($ GrG ,µ
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induced by the decompositionEb
&= - 1$ i $ k Ebi and thereby sendingGrEb" adm

M ,µ into GrEb" adm
G ,µ , and

this inclusion Þts into a diagram

ShtM ,µ,b

$GM

!!

i " ""ShtG ,µ,b

$GM

!!
GrEb" adm

M ,µ
i ""GrEb" adm

G ,µ

equivariant for all obvious group actions.
Next, we observe that the left and right columns of this diagram admit canonical actions of

certain groups objectsJ M
b, ùE

and J b, ùE , respectively, extending the action ofJb: here J b, ùE and J M
b, ùE

are the functors on Perf/ Spd ùE sending anyS/ ùE to the group of bundle automorphismsAut( Eb,S! ),
resp. to the subgroup of automorphisms which respect the canonical M -bundle structure described
above. Again, an elementj acts by sending a pair(F , u) to (F , j ' u). ItÕs not hard to see that
J b, ùE canonically decomposes as the semidirect productJ M

b, ùE
$ J U

b, ùE
, where J U

b, ùE
is the subgroup of

elementsj ! Aut( Eb) such that j ( id carries eachEi m
b into Ei m ! 1

b , and that Jb < J M
b compatibly

with all group actions. The functor J b, ùE and its decorated variants are examples ofgroup diamonds

over Spd ùE. Our main observation, roughly speaking, is that in the HN-reducible setting these group
diamonds are Òlarge enoughÓ to account for the di!erence between the period domains and shtuka
spaces associated withM and those associated withG.

Our Þrst precise result along these lines is as follows.

Theorem 1.4. Maintain the notation and assumptions as above. Then
i. The inclusion i : GrEb" adm

M ,µ ($ GrEb " adm
G ,µ admits a canonical J M

b, ùE
-equivariant retraction

r : GrEb" adm
G ,µ $ GrEb" adm

M ,µ .

In other words, any admissible type-µ modiÞcation (F , u) of Eb,S! along S admits a canonical re-
duction to a collection of admissible type-µm modiÞcations (Fm , um ) of the bundlesEbm ,S ! along S,
for all 1 + m + k = |I| .

ii. The natural action map

GrEb" adm
M ,µ %Spd ùE J U

b, ùE
$ GrEb" adm

G ,µ

induced byi is surjective and pro-Žtale.

This result seems to be new even in the setting ofp-divisible groups.
Let us illustrate this theorem in the simple case whereE = Qp, G = GL 2, µ = (1 , 0), and

b = diag( p" 1, 1). Then M is the diagonal maximal torus and

GrEb " adm
M ,µ = Gr M ,µ = Spd ùQp

is a single point. We also have a natural isomorphismGrG ,µ
&= P1,!

ùQ p
which, by an old result of

Dwork, induces an isomorphism
GrEb" adm

G ,µ
&= A 1,!

ùQ p
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(cf. [RZ96]). Then i is just the inclusion of Spd ùQp at the origin, and r is the structure map to
Spd ùQp. More exotically, we Þnd that

J U
b, ùQ p

&= B+ ,%= p
crys

&=
$

SpfùZp[[T 1/p "
]]
&ad

&

is representable by an open preperfectoid ball overSpa ùQp, and the action of this on GrEb" adm
G ,µ is

given as follows: for anyS = Spa(A, A + ) ! Perf/ ùQ p
, an element j ! B+ ,%= p

crys (A) acts by sending an
element

a ! A = Hom / Spd ùQ p
(Spd(A, A + ), A 1,!

ùQ p
)

to the element a + ) (j ). Finally, the map in part ii. is just the usual surjection ) : B+ ,%= p
crys " A 1,! .

Thus, even in this simple case,J U
b, ùQ p

is not a classical object: itÕs a group object in preperfectoid

spaces. This may explain why the actions ofJ b, ùQ p
and J U

b, ùQ p
at the level of period domains havenÕt

been much exploited.

1.4 The idea behind the canonical retraction

WeÕd like to explain in detail the construction of the retraction r from Theorem 1.4.i at the level of
S-points in the case where|S| is a single point, i.e. whenS = Spa(K, OK ) for some perfectoid Þeld
K/ ùE. Choose such anS, and let X = XK ! ,E be the associated Fargues-Fontaine curve. This is a
locally Noetherian quasicompact adic curve, and we have a natural closed immersioni : S $ X .

Let
0 $ F u$ E $ Q $ 0

be a short exact sequence of coherent sheaves onX , where F and E are rank n vector bundles and
Q is supported at the distinguished point x(. ) := i (|S|) ! |X | . The stalk Q = Qx (% ) is then a
Þnite torsion module over the discrete valuation ring

%OX ,x (% )
&= B+

dR (K ).

With µ = ( k1 * á á á * kn ) ! Zn as before, we say(F , u) is a type-µ modiÞcation of E along S if
there is an isomorphism

Q / - 1$ i $ n B+
dR (K )/* k i

(here * denotes any uniformizer ofB+
dR (K )).

Theorem 1.5. With the notation and assumptions as above, letE+ , E be any saturated subbundle,
i.e. any subbundle such thatE/ E+ is also a vector bundle; setF + = F )E + . Then if F is semistable
of slope zero, we have the inequality

deg(E+ ) +
#

1$ j $ rank( E+ )

kj .

If F is semistable of slope zero and equality holds in the previous inequality, then F + is also
semistable of slope zero, and

E+ / F + / - 1$ i $ rank( E+ ) B
+
dR (K )/* k i

is a direct summand ofQ.
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In the setting of Theorem 1.4, we apply this result with E = Eb,S! and with (F , u) corresponding
to a (K, OK )-point of GrEb" adm

G ,µ . Then for any 1 + i + s such that Ei = Ei
b,S! is HN-reducing, the

equality deg(Ei ) =
0

1$ j $ rank( Ei ) kj holds by assumption, so by Theorem1.5 the bundle F i = F )E i

is semistable of slope zero, and the module

Qi := im( Ei $ Q) = Ei / F i , Q

is described by the isomorphism

Qi / - 1$ j $ rank( Ei ) B
+
dR (K )/* k j .

Moreover, Qi is a direct summand ofQ. Forming these objects for alli ! I , we get a canonical ßag

0 " F i 1 " á á á" F i k = F

of vector subbundles ofF with each step semistable of slope zero and with successive graded pieces
of ranks d1, . . . , dk ; we call this ßag theHodge-Newton Þltration of F . The successive quotients

Fm = F i m / F i m ! 1

are all semistable of slope zero as well, and they sit in natural short exact sequences

0 $ F m
um$ E i m / Ei m ! 1 $ Qi m /Q i m ! 1 $ 0.

But now an easy induction on m shows that

Qi m /Q i m ! 1 / - rank( Ei m ! 1 )<j $ rank( Ei m ) B
+
dR (K )/* k j ,

so we conclude that each pair(Fm , um ) is canonically an admissible type-µm modiÞcation of
Ei m / Ei m ! 1 &= Ebm along S! Therefore we get a canonical map

r : GrEb" adm
G ,µ (K, OK ) $ GrEb" adm

M ,µ (K, OK )

(F , u) 0$
/

1$ m $ k

(Fm , um )

on (K, OK )-points, and this is clearly a retraction of the inclusion

GrEb" adm
M ,µ (K, OK ) " GrEb " adm

G ,µ (K, OK ).

Let us remark here that the Hodge-Newton Þltration

0 " F i 1 " á á á" F i k = F

deÞned above is our analogue of the Hodge-Newton Þltration of a p-divisible group [MV10], and the
role it plays in this paper is analogous with the role of the Hodge-Newton Þltration in [Man08]. In
fact, itÕs not hard to reprove the main results in [MV10] by combining Theorem 1.5 with some of
the ideas in [SW13], but we wonÕt pursue this here.

Happily, the argument for Theorem 1.5 is short and direct, requiring only the basic properties
of modiÞcations and slopes together with a piece of elementary commutative algebra. However, in
order to deduce Theorem1.4 in full, we need arelative version of Theorem1.5 treating the situation
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where S = Spa(A, A + ) is an arbitrary a"noid perfectoid space over ùE. This is harder, for at least
two good reasons:

1. The relative curve XS! is not locally Noetherian in general.
2. In the relative setting thereÕs noa priori reason forF ) E + to even be a vector bundle.

Our strategy for the relative version of Theorem 1.5, which is stated and proved as Theorem3.1
below, is to reduce to the pointwise result above by way of some careful commutative algebra
over the relative Fontaine ring B+

dR (A). The arguments here are somewhat technical, and rely
crucially on various results from Kedlaya-LiuÕs foundational volumes on relativep-adic Hodge theory
[KL15, KL16].

1.5 Adding inÞnite level structure, and cohomological cons equences

Returning to the setting of ¤1.3, we now want to equivariantly lift the structures exhibited in
Theorem 1.4 to similar structures on moduli of shtukas with inÞnite level structure. Following
Mantovan, we do this by deÞning an intermediate spaceShtP ,µ,b of P-shtukas. The precise deÞnition
is as follows: for any perfectoid spaceS over ùE, the S-points of ShtP ,µ,b consist of isomorphism
classes of triples(F , u, #P ) where (F , u) is an S-point of GrEb " adm

G ,µ and #P : On
X S !

#$ F is a
trivialization matching the ßag

0 " Od1
X S !

" Od1 + d2
X S !

" á á á" On
X S !

with the Hodge-Newton ßag
0 " F i 1 " F i 2 " á á á" F

constructed in ¤1.4. In particular, we have inclusions of subfunctors

ShtM ,µ,b
(1)
" ShtP ,µ,b

(2)
" ShtG ,µ,b ,

and there is a natural action of P on ShtP ,µ,b compatible with the M - and G-actions on ShtM ,µ,b

and ShtG ,µ,b . There is also a natural action ofJ b, ùE = J M
b, ùE

$ J U
b, ùE

on ShtP ,µ,b making the inclusions

(1) and (2) J M
b, ùE

-equivariant and J b, ùE -equivariant, respectively.
The next two theorems give a precise meaning to the expectation that ShtP ,µ,b should mediate

betweenShtG ,µ,b and ShtM ,µ,b .

Theorem 1.6. The inclusion ShtP ,µ,b " ShtG ,µ,b induces a canonical equivariant identiÞcation

ShtG ,µ,b
&= ShtP ,µ,b %P G.

In particular, the period map
! GM : ShtP ,µ,b $ GrEb" adm

G ,µ

is a pro-Žtale P-torsor, and there is a canonical G-equivariant isomorphism

H !
c

$
ShtG ,µ,b %Spd ùE SpdC, Z/+n

&
&= indG

P

$
H !

c

$
ShtP ,µ,b %Spd ùE SpdC, Z/+n

&&

of smooth G-representations preserving degrees and compatible with all additional structures; here
indG

P denotes unnormalized smooth induction, andC/ ùE is any complete algebraically closed Þeld. A
similar formula holds for Q" -coe"cients.
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This theorem is a completely straightforward consequence of the results weÕve proved so far. On
the other hand, the following theorem is not obvious.

Theorem 1.7. The natural action map

a% : ShtM ,µ,b %Spd ùE J U
b, ùE

$ ShtP ,µ,b

is an isomorphismof diamonds. In particular, the retraction r lifts canonically to a retraction r% of
the natural inclusion ShtM ,µ,b " ShtP ,µ,b , with Þbers given by canonically trivialJ U

b -torsors. More
precisely, the diagram

GrEb" adm
M ,µ %Spd ùE J U

b, ùE

a

####!
!!

!!
!!

!!
!!

!!
!!

!!
!

GrEb" adm
M ,µ

$$""""""""""""""""""
i ""GrEb" adm

G ,µ

r

%%

has a canonical equivariant lifting to a diagram

ShtM ,µ,b %Spd ùE J U
b, ùE

a"

##
##

##
##

##
##

##
##

##

##
##

##
##

##
##

##
##

##

ShtM ,µ,b

$$$$$$$$$$$$$$$$$$$$ i " ""ShtP ,µ,b

r "

&&

with the map r% deÞned asa" 1
% followed by the natural projection

ShtM ,µ,b %Spd ùE J U
b, ùE

($ ShtM ,µ,b .

The extremely simple structure of the mapa% came as a surprise to us.6 Note that by the Þrst
claim of this theorem, the product ShtM ,µ,b %Spd ùE J U

b, ùE
inherits a canonicalP-action; we caution the

reader that although the action of M " P is indeed the obvious one, given by its natural action on
the Þrst factor, the full P-action mixes both factors in a way which seems a little tricky to describe
directly. In particular, it seems hard to see the simple structures in this theorem at any Þnite level;
they only reveal themselves at inÞnite level.

The following diagram summarizes the situation so far in a manner which we hope is suggestive:

6 It turns out there is a heuristic explanation for this struct ure based on comparing the Hodge-Tate period maps
out of ShtG ,µ,b and ShtM ,µ,b , but we only discovered this heuristic after the fact.
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ShtP ,µ,b

Ind G
P (" )

''%%%
%%%

%%%
%

r "

((
ShtM ,µ,b

$GM

!!

""
i "

))&&&&&&&&&&
ShtG ,µ,b

$GM

!!
GrEb" adm

M ,µ
i ""GrEb" adm

G ,µ

r

&&

Fig. 1: A suggestive diagram?

Finally, combining the preceding analysis with a calculation of the geometric Žtale cohomology
of J U

b, ùE
and some consequences of a cohomological formalism for diamonds recently developed by

Scholze [Sch17], we deduce our main cohomological result.7

Theorem 1.8. There are canonical G-equivariant isomorphisms

H i
c

$
ShtG ,µ,b %Spd ùE SpdC, Z/+n

&
&= indG

P

$
H i " 2d

c

$
ShtM ,µ,b %Spd ùE SpdC, Z/+n

&
(( d)

&

for all i * 0 compatible with all additional structures, whered = dimSht G ,µ,b ( dimShtM ,µ,b ; in

particular, if C = %E , these isomorphisms are compatible with the naturalWE -actions on both sides.
Here again indG

P denotes unnormalized smooth induction, andC/ ùE is any complete algebraically
closed Þeld.

Let us sketch the proof of this result. Since Theorem1.6 describes the cohomology ofShtG ,µ,b as
the smooth induction of the cohomology ofShtP ,µ,b , itÕs enough to relate the cohomologies ofShtP ,µ,b

and ShtM ,µ,b . The idea now is that from the viewpoint of +-adic cohomology,J U
b, ùE

is ÒcontractibleÓ
in a certain precise sense, so the mapa% from Theorem 1.7 should induce an isomorphism between
the cohomologies ofShtM ,µ,b and ShtP ,µ,b , at least up to a twist and a shift in degree. For a precise
statement, see Theorem4.13.

The main technical point here is the calculation of the compactly supported Žtale cohomology
R! c(J U

b,C , Z/+n ). Forgetting any possible Galois actions, it is not so hard toshow that this is the

expected shift of the constant sheafZ/+n . However, when C = %E we would also like a precise
description of the WE -action, and although the answer is easy to guess, proving itturns out to
be much more subtle. This calculation occupies most of ¤4.3, and exploits the full power of the
six-functor formalism for diamonds developed in [Sch17]. The essential point here is Proposition
4.8, which should have numerous other applications.

One can also prove a similar result withQ" -coe"cients.

1.6 Other results

At the time we Þrst posted these results in preprint form, in the summer of 2016, we planned to
treat the case of general groups in a sequel paper written jointly with Jared Weinstein. However,
we then learned that Gaisin and Imai had also been working along similar lines, and very shortly

7Cf. ¤4.3 for a discussion of the results from [ Sch17] which we need.
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afterwards they were able to treat the case of general groups, by combining our results on canonical
Þltrations with Tannakian methods in the expected way [GI16].

Let us also note that Scholze has announced a proof of the fullHarris-Viehmann conjecture (and
presumably its non-minuscule analogue as well), using ideas drawn from geometric Langlands. As
far as we can tell, the results of the present paper (togetherwith their generalizations in [GI16]) are
neither strictly weaker nor stronger than ScholzeÕs results: our methods only apply in the Hodge-
Newton reducible case, but when they do apply they yield veryprecise information. In particular,
rather than studying an alternating sum of cohomology groups as in the Harris-Viehmann conjecture,
we prove (as Mantovan did before us) that in the Hodge-Newtonreducible case, theindividual
geometric Žtale cohomology groups ofShtG ,µ,b are all parabolically induced.

Acknowledgements

The debt this paper owes to the works of Mantovan and Scholze should be obvious to the reader.
The Þrst written account of these ideas took the form of a letter to Jared Weinstein, and itÕs a
pleasaure to thank Jared for his incisive feedback and for some helpful discussions. IÕm also grateful
to Kiran Kedlaya for some helpful conversations about the material in [ KL15, KL16], to Johan de
Jong for some amusing discussions around Lemma3.2, to Michael Harris for his constant support
and encouraging remarks, and to the anonymous referee for some helpful comments and corrections.
Finally, IÕm very grateful to Peter Scholze for correcting aserious mistake in the early stages of
this project, for some helpful comments on various drafts ofthis paper, and for some very useful
discussions of the material in [Sch17].

2 Preliminaries

2.1 Notation, terminology, and assumptions

This paper freely uses the language of diamonds as developedin [Sch17] and [SW17]; in ¤4.3 weÕll
also use the full power of the six-functor formalism developed in [Sch17].

If X is any analytic adic space overSpaZp with associated diamond X ! , there is a natural
equivalence of categoriesPerfd/X

&= Perf/X ! , and we will use this without any particular comment.
If R is a DVR with uniformizer ! , and M is a nonzero Þnite torsionR-module, then M /

- 1$ i $ n R/! k i for some uniquely determined ordered sequence of positive integers µ(M ) = ( k1 *
á á á *kn ) (where of coursen = dim R/$ M/!M ). We will slightly abusively refer to the ordered
sequence ofki Õs as theelementary divisors of M (as an R-module). For convenience we extendki

to a function of all i * 1 by setting kn +1 = kn +2 = á á á= 0 .
Throughout the remainder of the paper, we shall only explicitly consider the caseE = Qp of

the objects and results described in the introduction. Fromthe point of view of proofs, there is no
danger here: the only real change necessary to explicitly treat generalE in the proofs which follow
is to make the following systematic replacements:

¥ replace all appearances ofùQp with ùE;

¥ replace all appearances of the Witt vectorsW (( ) with the functor

WO E (( ) := W (( ) # W (F q ) OE

of OE -Witt vectors;
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¥ replace all appearances of the Witt vector Frobenius with the natural q-Frobenius $q = $f # 1
on WO E (( ).

2.2 Some module theory over B+
dR

In this section we do some module theory over the relative Fontaine ring B+
dR . The relevance of

the material here will become clear in the next subsection (cf. in particular Remark 2.8 and the
Theorem immediately thereafter).

Fix a perfectoid Tate ring A/ Qp, so we have the usual period ringB+
dR (A), deÞned as theker ) -

adic completion of W (A) ! )[ 1
p ], where ) : W (A) ! )[ 1

p ] " A is the usual surjection of p-adic Hodge
theory. Recall that the kernel of ) is principal and generated by a non-zero-divisor* which is unique
up to multiplication by a unit. We Þx a choice of * in what follows; nothing will depend on this
choice.

DeÞnition 2.1. A B+
dR (A)-module M is Þnite projective virtually (fpv) over A if M can be resolved

by a short exact sequence
0 $ P1 $ P0 $ M $ 0

where P0 and P1 are Þnite projective B+
dR (A)-modules, and some Þnite power of* kills M .

In other words, M is fpv over A if M is *-torsion and 1-fpd as a B+
dR (A)-module in the sense

of [KL16, ¤1.1]. Note the placement of the word ÒvirtuallyÓ:M is typically not an A-module, since
B+

dR (A) is not an A-algebra. Observe that any Þnite direct sum- i B+
dR (A)/* n i is fpv over A, and so

is any Þnite projective A-module regarded as aB+
dR (A)-module via ) . Observe also that if A = K

is a perfectoid Þeld, thenB+
dR (K ) is a DVR, in which case modules fpv overK coincide with Þnite

torsion B+
dR (K )-modules.

We regard modules fpv overA as a full subcategory of the category ofB+
dR (A)-modules. By

[KL16, Lemma 1.1.5(d)], the property of being fpv overA is stable under formation of extensions.
We record some further properties as a lemma.

Lemma 2.2. i. Let
0 $ M 1 $ M 2 $ M 3 $ 0

be an exact sequence ofB+
dR (A)-modules.

i. If M 2 is Þnite projective and M 3 is fpv over A, then M 1 is Þnite projective. In fact, if M 2 is
Þnite projective and M 3 is *-torsion, then M 1 is Þnite projective if and only if M 3 is fpv over A.

ii. If M is fpv over A, then so are the submodules*n M and M [*n ] for any n.
iii. If 0 $ M $ N $ L $ 0 is an exact sequence ofB+

dR (A)-modules such thatN and L are
both fpv, thenM is fpv.

iv. If 0 $ M $ N $ L $ 0 is an exact sequence ofB+
dR (A)-modules such thatM and L are

both fpv, thenN is fpv.

In part ii. here (and elsewhere in what follows),*n M " M is shorthand for im(M
á' n

$ M ).

Proof. Parts i., iii. and iv. are easy, by repeated application of [KL16, Lemma 1.1.5]. For part ii.,
we note that M/* n M is 2-fpd by [KL16, Remark 1.1.3], so then considering the sequence

0 $ *n M $ M $ M/* n M $ 0

[KL16, Lemma 1.1.5(f)] shows that*n M is 1-fpd, and hence fpv. But then looking at the sequence

0 $ M [*n ] $ M $ *n M $ 0,
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part iii. implies that M [*n ] is fpv.

Proposition 2.3. If M is a B+
dR (A)-module which is fpv overA, and N , M is a direct summand

of M , then N is fpv over A.

Proof. Let e(M ) < . be the smallest positive integere such that *e kills M . We prove the claim
by induction on e(M ). When e(M ) = 1 , the result is clear: in this case,M is a Þnite projective
A-module, and N is a direct summand thereof, so also Þnite projective overA. In general, we have
a commutative diagram with exact rows

0 ""N [*] ""

!!

N ""

!!

*N ""

!!

0

0 ""M [*] ""M ""*M ""0

where the vertical arrows identify the upper row as a direct summand of the lower row, in the
evident sense. Bute(M [*]) = 1 and e(*M ) = e(M ) ( 1, so N [*] and *N are fpv over A by the
induction hypothesis. Since the property of being fpv overA is stable under forming extensions, we
get the result.

The next result gives a pointwise criterion for a B+
dR (A)-module to be fpv overA; this criterion

plays a key role in our proof of Theorem1.4.

Proposition 2.4. Let N be a nonzeroB+
dR (A)-module which is Þnitely generated and*-torsion. If

the elementary divisors ofNx = N # B+
dR (A ) B+

dR (K x ) as aB+
dR (K x )-module are locally constant (i.e.,

continuous) as functions of x ! Spa(A, A ) ), then N is fpv over A.

Before proving this, we need a little lemma.

Lemma 2.5. Let M be a Þnite projectiveA-module, viewed as aB+
dR (A)-module via ) . Then

Tor
B+

dR (A )
1 (M, B+

dR (K x )) = 0

for any x ! Spa(A, A ) ).

Proof. We easily reduce to the caseM = A. Applying ( # B+
dR (A ) B+

dR (K x ) to the resolution

0 $ B+
dR (A)

á'
$ B+

dR (A) ($ A $ 0,

the result then follows from the fact that * is a non-zero-divisor inB+
dR (A) and in B+

dR (K x ).

Proof of Proposition 2.4. Let k1,x * k2,x * . . . be the elementary divisors ofNx as a B+
dR (K x )-

module, so by hypothesis the functionx 0$ ki,x is locally constant. Note that e(N ) = sup x k1,x .
We Þrst show that N/*N is a Þnite projectiveA-module. To see this, note that our assumptions

imply the rank of
Nx /*N x = ( N/*N ) # A K x
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as aK x -vector space is locally constant, since this rank is simplythe number of iÕs for whichki,x > 0.
SinceN/*N is a Þnitely generatedA-module and A is a uniform Banach ring, [KL15, Prop. 2.8.4]
now implies that N/*N is a Þnite projective A-module.

We now argue by induction on e(N ). If e(N ) = 1 , then N = N/*N is a Þnite projective A-
module by the argument of the previous paragraph, soN is fpv over A. If e(N ) > 1, consider the
short exact sequence

0 $ *N $ N $ N/*N $ 0.

SinceN/*N is a Þnite projectiveA-module, we see by the previous lemma that this sequence remains
exact after applying ( # B+

dR (A ) B+
dR (K x ), so in particular the natural map

(*N )x = ( *N ) # B+
dR (A ) B+

dR (K x ) $ *N x

is an isomorphism for anyx ! Spa(A, A ) ). Since the elementary divisors of*N x are given by the
locally constant functions max(ki,x ( 1, 0), this implies that the elementary divisors of (*N )x are
locally constant; since moreovere(*N ) = e(N ) ( 1, the induction hypothesis now shows that*N is
fpv over A. Looking again at the sequence

0 $ *N $ N $ N/*N $ 0

and using the fact that the property of being fpv over A is stable under forming extensions, we
deduce that N is fpv over A.

2.3 Vector bundles and modiÞcations on relative curves

Throughout this section, let S denote a perfectoid space overQp, with tilt S! . Unless explicitly
stated otherwise, we assumeS is a"noid perfectoid (so S! is as well), in which case we write
S = Spa(A, A + ) and S! = Spa(R, R+ ); we choose this notation for compatibility with [ KL15, ¤8].

We Þrst summarize some material from [KL15, ¤8.7-8.9]. For any a"noid perfectoid S =
Spa(A, A + ) as above, letX = XS! denote the adic Fargues-Fontaine curve overS! . This is de-
Þned as the quotientY/$ Z , where

Y = YS! " SpaW (R+ )

is the adic space
YS! = Spa W (R+ ) # { x | |p[, ]|x = 0 }

and $ is the natural (properly discontinuous) automorphism of Y induced by the Witt vector
Frobenius. (Here , ! R+ is any pseudouniformizer for R.) There is a canonical Zariski-closed
embedding i : S $ X S! of adic spaces overQp which realizesS as a relative Cartier divisor inside
XS! . Writing ! : YS! " XS! for the canonical projection, i lifts canonically along ! to a Zariski-
closed embedding÷i : S $ Y S! , with this latter embedding coming (at the level of rings) fr om the
usual theta map

) : W (R+ ) " A+ .

Let O(1) be the canonical ample line bundle onX , and deÞne the graded ring

PR = - i & 0H 0(X , O(i )) .

Then X = X S! = Proj( PR ) is the schematic Fargues-Fontaine curve associated withS! . Set
Z = Spec(A), so we have a canonical closed immersionZ $ X such that the completion of X along

17



Z is canonically identiÞed with ÷Z := SpecB+
dR (A). Furthermore, the subschemeX # Z of X is

a"ne; we deÞne Be(A) = H 0(X # Z, OX ) to be its coordinate ring. These objects all Þt together
into a canonical commutative diagram of locally ringed spaces

Y

$

!!
X # Z

1 ÷Z
(f e ,f +

dR ) ""X X
f an

**

Z

i sch

++

Sm**

i

++ ÷i

,,

over SpecQp, covariantly functorial in morphisms

f : S = Spa(A, A + ) $ T = Spa(B, B + )

of a"noid perfectoid spaces overQp. One easily checks that iff : S $ T is an open immersion, then
so is the induced mapYS! $ Y T ! ; combining this with an easy gluing argument shows thatX and
Y, and the rightmost column of the above diagram, exist for arbitrary (i.e., possibly non-a"noid)
perfectoid spaces overQp.

Theorem 2.6 (Kedlaya-Liu) . Let S = Spa(A, A + ) be any a"noid perfectoid space overQp. Then
with the setup as above,

i. Pullback along the morphismf an induces an equivalence of exact tensor categories from vector
bundles onX to vector bundles onX .

ii. Pulling back along the pair of morphisms(f e, f +
dR ) and then passing to global sections induces

an equivalence of exact tensor categories from vector bundles on X to B-pairs over A.
iii. Pullback along the morphism! induces an equivalence of exact tensor categories from vector

bundles onX to $-equivariant vector bundles onY.

Proof. Parts i. and ii. follow immediately by combining Theorems 8.7.7 and 8.9.6 of [KL15], and
part iii. is trivial.

In this context, a B-pair over A is a pair M = ( M e, M +
dR ) whereM e is a Þnite projectiveBe(A)-

module and M +
dR is a Þnite projective B+

dR (A)-lattice inside the Þnite projective BdR (A)-module

M dR = M e # Be (A ) BdR (A).

If E is a vector bundle onX (or on X ), we write M (E) = ( M e(E), M +
dR (E)) for the associated B-pair;

we denote the inverse functor from B-pairs to vector bundlesby M 0$ V(M ).
We remark that by the functoriality of the assignment S # XS! , any point x ! Spa(A, A + ) gives

rise to a morphism
sx : XSpa( K x ,K +

x ) ! $ X S! .

If E is a vector bundle onXS! , we abbreviate the pullback s!
x E on XSpa( K x ,K +

x ) ! by Ex . Note that
Ex corresponds to the B-pair overK x given by

$
M e(E) # Be (A ) Be(K x ), M +

dR (E) # B+
dR (A ) B+

dR (K x )
&

.
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DeÞnition 2.7. Let S be any perfectoid space overQp. An e!ective modiÞcation along S is a
triple (E, F , u) where E and F are vector bundles onXS! , and u : F $ E is an injective map of
OX -modules such that E/u (F ) is killed (locally on X ) by a Þnite power of the ideal sheaf cutting
out S in XS! . When E is given, we also speak of(F , u) as being ane!ective modiÞcation of E along
S.

An e!ective modiÞcation along S is admissible if Fx is semistable of slope zero for all points
x ! S.

Regarding this last piece of terminology, recall that whenS = Spa(K, OK ) is a point, Fargues-
Fontaine [FF15] constructed a canonical slope Þltration on any bundle overXS! ; we say a bundle is
semistable if its slope Þltration has a unique nonzero step.As usual, weÕll use the terms Òsemistable
of slope zeroÓ and ÒŽtaleÓ interchangeably.

E!ective modiÞcations along S form an exact tensor categoryE" /S in an obvious manner, and
any morphism f : S $ T of perfectoid spaces overQp induces a pullback functorf ! : E" /T $ E " /S .

Remark 2.8. If E is a vector bundle onX with associated B-pair (M e, M +
dR ), and N , M +

dR is any
B+

dR (A) submodule such thatN [ 1
' ] = M +

dR [ 1
' ] = M dR , then the following are equivalent:

1. N is a Þnite projective B+
dR (A)-module.

2. M +
dR /N is fpv over A.

3. The pair (M e, N ) is in the essential image ofM (( ) (in which case V(M e, N ) $ E is an
e!ective modiÞcation of E along S).

Indeed, 1. and 2. are equivalent by Lemma2.2.i, and 1. and 3. are equivalent by Theorem2.6.
This explains the appearance of the fpv condition in the following theorem.

Theorem 2.9. Let S = Spa(A, A + ) be an a"noid perfectoid space overQp, and let E be a vector
bundle on XS! . Then we have a functorial identiÞcation between the set of isomorphism classes
of e!ective modiÞcations of E along S, and the set ofB+

dR (A)-submodulesN , M +
dR (E) such that

M +
dR (E)/N is fpv over A.

Proof. The functor in one direction sends(F , u) to

M +
dR (u) ' M +

dR (F ) , M +
dR (E).

For the functor in the other direction, set M * = ( M e(E), N ). This is a B-pair, and by construction
there is a natural injection of B-pairs - : M * $ M (E); set F = V(M *) and u = V(-). Since
V(( ) is an equivalence of exact tensor categories,u : F $ E is injective. Moreover, since- is an
isomorphism on the Be-terms of the B-pairs M (E) and M *, u is an isomorphism away from the
closed immersionS " X . The remaining veriÞcations are then an easy unwinding, taking Remark
2.8 into account.

DeÞnition 2.10. If E is a vector bundle on XS! and (F , u) is an e!ective modiÞcation along S
with associated de Rham moduleN = M +

dR (F ) , M +
dR (E), then for any point x ! | S| we deÞne the

type of the modiÞcation at x, denoted µx (F , u), as the ordered sequence of elementary divisors of
the Þnite torsion B+

dR (K x )-module

(M +
dR (E)/N ) # B+

dR (A ) B+
dR (K x ).

In this terminology, the open Schubert cell GrGL n ,µ can be deÞned as follows.
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DeÞnition 2.11. For any n * 2 and any µ = ( k1 * á á á * kn ) with kn * 0, GrGL n ,µ is the functor
sending S ! Perfd/ Q p to the set of isomorphism classes of e!ective modiÞcations of On

X
S !

along

S of constant type µ. Equivalently, GrGL n ,µ (Spa(A, A + )) is the set of Þnite projective B+
dR (A)-

submodulesN , B+
dR (A)n with *-torsion quotient such that

(B+
dR (A)n /N ) # B+

dR (A ) B+
dR (K x )

has elementary divisors given byµ for all x ! | Spa(A, A + )|.

By [SW17, Corollary 19.3.4], GrGL n ,µ is a locally spatial diamond.
In the remainder of this subsection, we explain the proof of Theorem1.2.i.-iv., in the case where

E = Qp and G = GL n . Let us Þx µ as in the previous deÞnition, together with an element
b ! GLn ( ùQp) such that [b] ! B (GL n , µ" 1). If S = Spa(A, A + ) is any a"noid perfectoid space over
ùQp, then YS! is naturally an adic space overùQp via the maps

ùQp = W (Fp)[ 1
p ] $ W (A+ ! )[ 1

p ] $ O Y ,

and the Frobenius $ on Y is " -semilinear. In particular, we may deÞne a$-equivariant rank n
vector bundle on YS! via the formula

( ÷Eb, $ ÷Eb
) =

$
OY # ùQ p

ùQn
p , $ # b"

&
;

let Eb,S! be the corresponding vector bundle onXS! . The assignmentS # Eb,S! is clearly functorial
in morphisms S $ T of perfectoid spaces overùQp. Note also that if b lies in GLn (Qpr ) for some
Þnite unramiÞed extensionQp " Qpr " ùQp, then Eb,S! is well-deÞned for anyS over Qpr (as
opposed to ùQp).

It seems to us that ÒBcrys (A)Ó is not well-deÞned for an arbitraryA; however, if Qcyc
p , A, then

itÕs reasonable to deÞne this ring by the formula

Bcrys (A) = B+
crys (A) # B+

crys (Q cyc
p ) Bcrys (Qcyc

p ).

Note that with this deÞnition, the expected isomorphism Be(A) &= Bcrys (A)%=1 is indeed true. With
this in mind, itÕs not hard to show that when Qcyc

p , A, the B-pair over A corresponding to
Eb,Spa( A,A + ) ! can be explicitly described via identiÞcations

M e(Eb,S! ) =
$

Bcrys (A) # ùQ p
ùQn

p

&%+ b) =1
,

M +
dR (Eb,S! ) = B+

dR (A)n .

The key point here is the observation that the canonical map

$
Bcrys (A) # ùQ p

ùQn
p

&%+ b) =1
# Be (A ) Bcrys (A) $ Bcrys (A) # ùQ p

ùQn
p = Bcrys (A)n

is an isomorphism, so the scalar extension ofM e(Eb,S! ) along Be(A) $ BdR (A) is canonically
identiÞed with BdR (A)n .

Combining this description of M (Eb) with Theorem 2.9 and DeÞnition 2.11 (and making use of
an easy pro-Žtale descent to get rid of the assumptionQcyc

p , A), we obtain the following result.
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Proposition 2.12. For any Þxedb ! GLn ( ùQp) and any µ = ( k1 * á á á * kn ) ! Zn with kn * 0 as
before, the functor

GrGL n ,µ/ ùQ p
:= Gr GL n ,µ %Spd Q p Spd ùQp

is canonically identiÞed with the functor Perfd/ ùQ p
$ Sets sending S to the set of isomorphism

classes of e!ective modiÞcations(F , u) of Eb,S! along S of constant typeµ. In particular, the latter
functor is a locally spatial diamond overSpd ùQp.

Maintaining the notation and interpretation of GrGL n ,µ/ ùQ p
provided by this proposition, let

GrEb" adm
GL n ,µ " GrGL n ,µ/ ùQ p

be the subfunctor deÞned by the following condition: anS-point

(F , u) !
$

GrGL n ,µ/ ùQ p

&
(S)

factors through an S-point of GrEb" adm
GL n ,µ if and only if the bundle Fx is semistable of slope zero at

every point x ! S. Since all the data of n, µ, b are Þxed, weÕll sometimes abbreviateGrEb" adm
GL n ,µ to

Gradm in what follows.

Theorem 2.13. The functor GrEb" adm
GL n ,µ is a locally spatial diamond overSpd ùQp, and is naturally

open and partially proper as a subdiamond ofGrGL n ,µ/ ùQ p
.

Proof. Let S be any perfectoid space overùQp, and let f : S! $ GrGL n ,µ/ ùQ p
be any S-point of

GrGL n ,µ/ ùQ p
, with (F , u) the associated modiÞcation ofEb,S! along S. Let |S|adm " | S| be the set

of points x ! | S| where Fx is semistable of slope zero. By Lemma 8.5.11 of [KL15], |S|adm " | S| is
open and partially proper, and hence corresponds to a partially proper open immersion of perfectoid
spacesSadm " S. Putting this together with the deÞnition of GrEb" adm

GL n ,µ , we get a pullback square

(Sadm )!

g

!!

v ""S!

f

!!
GrEb" adm

GL n ,µ
u ""GrGL n ,µ/ ùQ p

of sheaves onPerfproet
/ Spd ùQ p

. Since S and f are arbitrary and v is open and partially proper, we

deduce that GrEb" adm
GL n ,µ is an open subfunctor ofGrGL n ,µ/ ùQ p

, and that u is a partially proper open
embedding. Finally, note that since GrGL n ,µ/ ùQ p

is a locally spatial diamond, any open subfunctor
U " GrGL n ,µ/ ùQ p

is a locally spatial diamond as well.

Now let X be any perfectoid space. By Corollary 8.7.10 of [KL15], the category QpLoc(X ) of
Qp-local systems onX is functorially equivalent to the category of vector bundles F on XX ! with
the property that Fx is Žtale at every point x ! X . If F is a vector bundle with this property, let
V (F ) denote the associatedQp-local system onX .

Proposition 2.14. There is a rank n Qp-local system

V univ ! QpLoc
$

GrEb " adm
GL n ,µ

&
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characterized uniquely by the following universal property: for any perfectoid spaceS over ùQp and
any S-point f : S! $ GrEb" adm

GL n ,µ , with (F , u) the associated (pointwise-Žtale) modiÞcation ofEb,S!

along S, there is a canonical and functorial isomorphism

V (F ) &= f ! V univ

of Qp-local systems onS.

Proof. Choose some perfectoid spaceX/ ùQp together with a surjective quasi-pro-Žtale mapg : X ! $
Gradm , and let (F , u) be the associated ÒuniversalÓ modiÞcation ofEb,X ! along X . Since F is
pointwise-Žtale by deÞnition, we can form the associated rank n Qp-local systemV (F ) on X . Now
consider the pullback diagram

X ! %Gr adm X !

pr 1

!!

pr 2 ""X !

g
!!

X ! g ""Gradm

of diamonds over ùQp; note that X ! %Gr adm X ! is representable. By the deÞnition ofGradm , itÕs easy
to see that there is a canonical isomorphismpr!

1F &= pr!
2F which satisÞes the usual cocycle condition,

so we get a descent datum forF relative to the quasi-pro-Žtale coverg. By the functoriality of V (( ),
this induces a descent datum forV (F ) relative to g. Since Qp-local systems on diamonds satisfy
e!ective descent with respect to quasi-pro-Žtale covers, this descent datum (unlike the one forF ) is
e!ective, and we deÞneV univ as the associated descent ofV (F ). The uniqueness and the claimed
properties of V univ are then an easy veriÞcation.

At this point, weÕre almost ready to constructShtGL n ,µ,b . Before doing so, we quickly prove the
following result. Given any diamond D together with a rank n Qp-local systemV on D, let

T riv V / D : Perf/ D $ Sets

be the functor on perfectoid spaces overD sending anyf : T $ D to the set

IsomQ p Loc( T )

$
Qp

n , f ! V
&

of trivializations of f ! V .

Proposition 2.15. The natural map T riv V / D $ D is surjective and pro-Žtale (so in particular,
T riv V / D is a diamond), and the natural GLn (Qp)-action on T riv V / D makes it into a pro-Žtale
GLn (Qp)-torsor over D. If K " GLn (Qp) is any open compact subgroup,T riv V / D /K $ D is
separated and Žtale.

Proof. Note that if X is any adic space andV is any Qp-local system onX , then V admits a
Zp-lattice locally in the analytic topology on X ; more precisely, we can Þnd a covering ofX by open
a"noids Ui together with Zp-local systemsL i " V |Ui such that V |Ui / L i # Z p Qp. This follows
immediately from Remark 8.4.5 and Corollary 8.4.7 in [KL15].

Now, let T be any perfectoid space equipped with a rankn Qp-local systemV . By construction,
T riv V /T $ T is a GLn (Qp)-pretorsor, so it su"ces to prove that T riv V /T is representable and that
T riv V /T $ T is a pro-Žtale cover. These claims are local onT, so we can assume thatT is a"noid
and that V admits a Zp-lattice L 0 " V . As in [KL15], Remark 1.4.7, let L m (L 0) $ T be the
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functor parametrizing Zp-local systemsL " L 0 # Z p Qp = V such that pm L 0 , L , p" m L 0. This
functor is representable by an a"noid perfectoid space and the mapL m (L 0) $ T is Þnite Žtale and
surjective (since it has a section). Moreover, the natural map L m (L 0) $ L m #(L 0) is an open and
closed immersion for anym + m*. Let

Y = LatV /T = colim m ,% L m (L 0) h$ T

be the functor parametrizing Zp-lattices in V ; by our observations so far,Y is a countable disjoint
union of a"noid perfectoid spaces each Þnite Žtale overT , and the map h is surjective, so in
particular Y $ T is an Žtale cover. OverY we have a universalZp-lattice L univ " h! V . Let

T riv L univ /Y : Perf/Y $ Sets

{ g : W $ Y } 0$ IsomZ p Loc( W ) (Zp
n , g! L univ )

be the functor parametrizing trivializations of L univ , so there is a natural equivariant isomorphism
T riv V /T

&= T riv L univ /Y given by sending anX -point . : Qp
n #$ f ! V of T riv V /T (lying over a given

f : X $ T) to the lattice .
$

Zp
n
&

" f ! V together with its evident trivialization.
It thus su"ces to prove that for any Zp-local systemL on any perfectoid spaceY , the functor

T riv L /Y is representable andT riv L /Y $ Y is pro-(Þnite Žtale surjective). SetL /p j = L # Z p Z/p j ,

so L /p j is a sheaf ofZ/p j -modules onYproet which is locally free of rank n, and L &= lim- j L /p j .
Let

T riv (L /p j ) /Y : Perf/Y $ Sets

{ f : T $ Y } 0$ IsomZ /p j Loc( T ) ((Z/p j )
n
, f ! L /p j )

be the evident functor with its natural action of GLn (Z/p j ). By deÞnition

T riv L /Y
&= lim

- j
T riv (L /p j ) /Y ,

so it su"ces to show that each T riv (L /p j ) /Y is representable by a Þnite ŽtaleGLn (Z/p j )-torsor over
Y . This is trivial if L /p j is generated by global sections; sinceL 0/p j is generated by global sections
Žtale-locally on Y, there is some Žtale cover÷Y $ Y such that T riv (L /p j ) /Y $ Y pulls back to a
surjective Þnite Žtale map along÷Y $ Y . We now conclude by the fact that Þnite Žtale maps of
perfectoid spaces satisfy e!ective descent with respect toŽtale covers, cf. [Wei15, Lemma 4.2.4].

For the Þnal statement, we may assume thatK is contained inGLn (Zp), so the mapT riv V /T /K $
T factors over a map

q : T riv V /T /K $ T riv V /T / GLn (Zp) &= LatV /T .

It then su"ces to check that the map q is Þnite Žtale, which again follows from e!ective descent of
Þnite Žtale maps with respect to Žtale covers.

Proposition 2.16. There is a natural GLn (Qp)-equivariant isomorphism

ShtGL n ,µ,b
&= T riv V univ / Gr adm ,

of functors over Gradm = Gr Eb" adm
GL n ,µ .
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Proof. Given an S-point (F , u, #) of ShtGL n ,µ,b lying over an S-point f : S! $ Gradm , we simply
apply V (( ) to the isomorphism

# : On
X S !

#$ F

of pointwise-Žtale vector bundles onXS! . Since V (OX
S !

) = Qp ! QpLoc(S), this gives an isomor-
phism

V (#) : Qp
n #$ V (F ) &= f ! V univ ,

and thus an S-point of T riv V univ / Gr adm . The map in the other direction is similar, taking into
account the universal property of V univ .

Putting together this result with the remarks on T riv V / D directly preceding it and the conclu-
sions of Theorem2.13, we immediately deduce parts i.-iii. of Theorem1.2. Part iv. follows from
the fact that for minuscule µ, the Bialynicki-Birula map GrG ,µ $ F +!

G ,µ is an isomorphism [SW17,

Prop. 19.4.2], so in particular GrG ,µ is the diamond of a smooth rigid space overùQp. For any
smooth rigid spaceY , the functor (( )! on rigid spaces overY induces an equivalenceY«et

&= Y !
«et

[Sch17, Lemma 15.6], so combining this with part iii. shows that ShtG ,µ,b /K is in the essential
image of this functor, as desired.

2.4 Section and automorphism functors of a bundle

DeÞnition 2.17. Choose anyn * 1 and b ! GLn ( ùQp), with Eb the associated bundle. We deÞne
functors H 0(Eb) and J b as follows:

1. H 0(Eb) : Perf / SpdF p
$ Sets is the functor sending any perfectoid spaceS/ Fp to the set

H 0(XS , Eb,S )

2. J b : Perf/ Spd F p
$ Sets is the functor sending any perfectoid spaceS/ Fp to the group

Aut( Eb,S ).

Note that J b is a subfunctor ofH 0(E.
b #Eb). Again, if b ! GLn (Qpr ) for somer * 1, then H 0(Eb) and

J b are more naturally deÞned as functors onPerf/ Spd F p r , and the results which follow all descend
to this smaller base; we will not spell this out, although we will take this perspective in some of
¤4.3.

Proposition 2.18. The functors H 0(Eb) and J b are pro-Žtale sheaves onPerf/ Spd F p
.

Sketch. Any XS! is preperfectoid; vector bundles and morphisms of vector bundles on preperfectoid
spaces can be glued pro-Žtale-locally; and ifS $ T is pro-Žtale then so is the mapXS $ X T .

Proposition 2.19. For any b ! GLn ( ùQp), the structure maps H 0(Eb) $ SpdFp and J b $
SpdFp are representable in locally spatial diamonds. In particular, the base changesH 0(Eb) ùQ p

=

H 0(Eb) %Spd F p
Spd ùQp and J b, ùQ p

= J b %Spd F p
Spd ùQp are locally spatial diamonds.

Proof. Arguing as in [BFH+ 17, Prop. 3.3.6-3.3.7], one checks thatJ b is an open subfunctor of
H 0(E.

b # Eb). It then su"ces to show that the map H 0(Eb) $ SpdFp is representable in locally
spatial diamonds. This follows from Proposition 4.7 below.
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We note that for any S = Spa(A, A + ) over ùQp, the S-points of J b, ùQ p
are just the group

'
g ! GLn (B+

crys (A)) | g = b$(g)b" 1(
,

but we will not need this.
We now put ourselves in the situation of ¤1.3. As in the discussion there, let d1, . . . , dk be

positive integers, and let bi ! GLdi ( ùQp) be some elements with the property that the slopes of
Ebi are strictly greater than the slopes of Ebi +1 for every 1 + i < k . Set n = d1 + á á á+ dk , and
let M &=

2
GLdi " GLn be the associated standard Levi. LetU be the unipotent radical of the

standard parabolic P associated withM . Let b ! M ( ùQp) " GLn ( ùQp) be the element deÞned by the
totality of the bi Õs in the obvious way, soEb,S

&= - 1$ i $ k Ebi ,S functorially for any S ! Perf/ Spd F p
.

Proposition 2.20. In this situation, the group sheafJ b decomposes canonically into the semidirect
product J M

b $ Spd F p
J U

b , where

J M
b = J b1 %Spd F p

á á á %Spd F p
J bk =:

/

1$ i $ k
/ Spd F p

J bi

is the group ofM -bundle automorphisms ofEb and where

J U
b =

/

1$ i<j $ k
/ Spd F p

H 0
$

E.
bj

# Ebi

&

is the kernel of the natural mapJ b $ J M
b . Via base change, we obtain an analogous decomposition

J b, ùQ p
&= J M

b, ùQ p
$ Spd ùQ p

J U
b, ùQ p

.

Proof. Since any automorphism ofEb preseves the slope Þltration, this is clear.

3 Canonical Þltrations on an admissible modiÞcation

The main result in this section is the following theorem.

Theorem 3.1. Let S be a perfectoid space overQp, and let (E, F , u) be an admissible e!ective
modiÞcation along S of constant type µ = ( k1 * k2 * . . . ). Let E+ , E be a saturated subbundle
with the property that for every point x ! | S|, we have an equality

deg(E+
x ) =

#

1$ i $ rank( E+
x )

ki .

Then the sheafF + = F ) E + deÞnes a sub-vector bundle ofF , and the bundleF + is pointwise
semistable of slope zero.

We remind the reader that our strategy is to Þrst give a proof in the special case whereS =
Spa(K, OK ) is a single point, i.e. we Þrst prove (a slightly more generalversion of) Theorem 1.5.
We then bootstrap from this situation to the case of a generalS. These two steps are realized in
¤3.1 and ¤3.2, respectively.
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3.1 The case of a point

The following lemma plays a key role in our argument.

Lemma 3.2. Let R be a DVR with uniformizer ! , and let M be a Þnite torsion R-module, so
M / - 1$ i $ n R/! k i with µ(M ) = ( k1 * á á á * kn ) the elementary divisors ofM . Let N , M be an
R-submodule generated byj elements. Then+(N ) + k1 + á á á+ kj , and if equality holds thenN is a
direct summand.

Here and throughout, + denotesR-module length (whereR will always be a speciÞc DVR clear
from the context).

Proof. For the Þrst claim, it clearly su"ces to show the complementary inequality +(M/N ) *0
j<i $ n ki . For this we use Fitting ideals. Recall that for any Þnite torsion moduleQ over R with

elementary divisors ki , we have an equality Fitt j (Q) = ( !
!

j<i k i ) for any j * 0; in particular,
Fitt( Q) = Fitt 0(Q) = ( ! " (Q) ), and Fitt m (Q) = R if Q is generated by+ m elements. Returning to
the situation at hand, we have an inclusion

Fitt j (N )Fitt( M/N ) , Fitt j (M ) = ( !
!

j<i $ n k i )

(this is a special case of [Lan02, Prop. XIII.10.7]). But Fitt j (N ) = R since N is generated byj
elements, so we get

(! " (M/N ) ) = Fitt( M/N ) , Fitt j (M ) = ( !
!

j<i $ n k i ),

and this immediately implies the desired inequality.
For the second claim, we argue by induction onj ; the casej = 1 is easy and left to the reader.

For the induction step, choose a projectionf : M $ R/! k1 onto a maximal-length cyclic direct
summand of M , so ker f / - 2$ i $ n R/! k i . Let n1, . . . , nj be a set of elements generatingN . After
rearranging the ni Õs, we may assume thatf (N ) = f (C) where C = Rn1 , N , i.e. that f (N ) is
generated byf (n1). After then possibly replacing ni by ni ( r i n1 for all 2 + i + j , we may assume
that ker f contains the submodule N * generated by n2, . . . , nj . Note that we have inequalities
+(C) + k1 and +(N *) + k2 + á á á+ kj , the former because! k1 kills M and the latter by applying
the Þrst half of the lemma to N * , ker f . By assumption we have+(N ) = k1 + á á á+ kj , so now the
chain of inequalities

+(N ) = +(N * + C) + +(N *) + +(C) + k1 + á á á+ kj = +(N )

forces the equalities+(N *) = k2 + á á á+ kj and +(C) = k1. Since N * and C are generated by
j ( 1 elements and1 element, respectively, they are both direct summands ofM by the induction
hypothesis. Finally, the above chain of inequalities also forces the equality+(N *+ C) = +(N *)+ +(C),
which implies that N * ) C = 0 inside M , so N &= N * - C , M is a direct summand ofM .

Theorem 3.3. Let K be any perfectoid Þeld overQp, and set S = Spa(K, OK ). Let E be a rank n
vector bundle onXS! , and let (E, F , u) be an e!ective modiÞcation alongS of type (k1 * á á á * kn ).
Let E+ , E be any saturated subbundle, and setF + = F ) E + , so F + is a saturated subbundle of
F .

i. If F is semistable of slope zero, we have the inequality

deg(E+ ) +
#

1$ j $ rank( E+ )

kj .
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ii. If F is semistable of slope zero and equality holds in the inequality of part i., then F + is also
semistable of slope zero, and furthermore

E+ / F + / - 1$ i $ rank( E+ ) B
+
dR (K )/* k i

as submodules of
Q = E/ F / - 1$ i $ n B+

dR (K )/* k i ,

so in particular E+ / F + is a direct summand ofQ.

Proof. Let Q+ denote the image of the stalkE+
x (% ) in Q (here, as before,x(. ) = i (S) ! X S! ). ItÕs

easy to see the equality
deg(E+ ) = deg(F + ) + +(Q+ ),

where + denotes length as aB+
dR (K )-module. SinceF is semistable of slope zero,F + must have

degree+ 0, so droppingdeg(F + ) from this equality gives deg(E+ ) + +(Q+ ). If r denotes the rank of
E+ , clearly E+

x (% ) and then alsoQ+ are generated byr elements, so Lemma3.2 implies the inequality
+(Q+ ) +

0
1$ i $ r ki . Combining these inequalities gives

deg(E+ ) + +(Q+ ) +
#

1$ i $ r

ki ,

so the Þrst part of the theorem follows.
For the second part, we argue as follows. Putting together the equality deg(E+ ) = deg(F + ) +

+(Q+ ) with the inequality +(Q+ ) +
0

1$ i $ r ki , we get

deg(E+ ) + deg(F + ) +
#

1$ i $ r

ki ,

so if deg(E+ ) =
0

1$ i $ r ki then F + has degree* 0. But F is semistable of slope zero, soF + has
degree+ 0. Therefore F + has degree zero. But thenF + must be semistable of degree zero, since
otherwise it would have a positive-degree subbundle as a step in its slope Þltration, contradicting
the semistability of F . Finally, since deg(F + ) = 0 we get an equality

+(Q+ ) = deg(E+ ) =
#

1$ i $ r

ki ,

so then Lemma3.2 immediately shows that Q+ is a direct summand ofQ, and the maximality of
its length relative to its number of generators then forces it to have the claimed shape.

3.2 The general case

Proof of Theorem 3.1. We argue at the level of B-pairs overA. Precisely, setQ = M +
dR (E)/M +

dR (F );
this is a B+

dR (A)-module which is fpv overA by Theorem 2.9. Consider the B+
dR (A)-submodule

Q+ = im( M +
dR (E+ ) $ Q)

of Q; this is Þnitely generated and*-torsion. We are going to prove that Q+ is fpv over A. Granted
this, Proposition 2.2 implies that

N = ker( M +
dR (E+ ) $ Q+ ) = M +

dR (E+ ) ) M +
dR (F )
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is a Þnite projectiveB+
dR (A)-module. Then (M e(E+ ), N ) deÞnes a B-pair, and we obtainF + as the

associated vector bundle.
To show that Q+ is fpv over A, we Þrst note that it sits in a short exact sequence of Þnitely

generatedB+
dR (A)-modules

0 $ Q+ $ Q $ Q" $ 0,

where

Q" = M +
dR (E)/

3
M +

dR (F ) + M +
dR (E+ )

4

= coker
3
M +

dR (F ) - M +
dR (E+ ) $ M +

dR (E)
4

.

SinceQ is fpv over A, we see from Proposition2.2.iii that to prove Q+ is fpv over A, it su"ces to
show that Q" is fpv over A. WeÕre going to check thatQ" is fpv by applying the pointwise criterion
from Proposition 2.4.

Note that unlike Q+ (at least a priori), Q and Q" interact well with specializing to arbitrary
points x ! | S|. In particular, for any x ! | S| we have a commutative diagram ofB+

dR (K x )-modules

0

!!

0

!!

0

!!
0 ""M +

dR (E+
x ) ) M +

dR (Fx ) ""

!!

M +
dR (E+

x ) ""

!!

Tx ""

!!

0

0 ""M +
dR (Fx ) ""

!!

M +
dR (Ex ) ""

!!

Q # B+
dR (A ) B+

dR (K x ) ""

!!

0

0 ""Sx ""

!!

M +
dR (Ex )/M +

dR (E+
x ) ""

!!

Q" # B+
dR (A ) B+

dR (K x ) ""

!!

0

0 0 0

with exact rows and columns and with everything in the Þrst two columns Þnitely generated and free.
(Here Tx and Sx are deÞned by the commutativity of this diagram.) By hypothesis, the elementary
divisors of Q# B+

dR (A ) B+
dR (K x ) are independent ofx and are simply given by theki Õs in the statement

of the theorem. By our assumptions, itÕs easy to see that the bundles Ex , Fx and E+
x satisfy the

hypotheses of Theorem3.3.ii for any x ! | S|. Therefore, applying Theorem3.3.ii, we deduce that
Tx is a direct summand of Q # B+

dR (A ) B+
dR (K x ) with elementary divisors k1 * á á á * krank( E+

x ) for any

point x ! | S|. This immediately implies that Q" # B+
dR (A ) B+

dR (K x ) has elementary divisors

krank( E+
x )+1 * krank( E+

x )+2 * . . .

for any x ! | S|. In particular, since rank(E+
x ) is locally constant, the elementary divisors of

Q" # B+
dR (A ) B+

dR (K x ) are locally constant as functions ofx ! | S|. Thus Proposition 2.4 applies,
and soQ" is fpv over A. This completes the proof.

Proof of Theorem 1.4.i. Immediate upon combining Theorem3.1 with the discussion in ¤1.4.
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4 Applications to moduli of shtukas

4.1 Surjectivity of the retraction

Fix all notation and assumptions as in the leadup to Theorem1.4. In this section we prove the
surjectivity portion of Theorem 1.4.ii., which we restate for the convenience of the reader.

Theorem 4.1. The natural action map

GrEb" adm
M ,µ %Spd ùQ p

J U
b, ùQ p

$ GrEb " adm
G ,µ

is pro-Žtale-locally surjective.

Proof. We argue as follows. Pick any point f : S = Spa(A, A + ) $ GrEb" adm
G ,µ , with (F , u) the

corresponding admissible type-µ modiÞcation of Eb,S! along S. Let 0 " F i 1 " á á á" F i k = F be
the Hodge-Newton ßag insideF (where k = |I| as before). Then applying the canonical retraction,
i.e. looking at the point r ' f : Spa(A, A + ) $ GrEb" adm

M ,µ , we get a collection (Fm , um )1$ m $ k of
admissible type-µm modiÞcations of the summandsEbm ,S ! . The point i ' r ' f then corresponds to
viewing (- 1$ m $ k Fm , - 1$ m $ k um ) as a type-µ modiÞcation of Eb,S! = - 1$ m $ k Ebm ,S ! . WeÕre going
to (pro-Žtale-locally on S) Þnd an elementj ! J U

b, ùQ p
(S) which transports the point i ' r ' f to the

point f .
Now, the fact that f and i ' r ' f have the same retraction translates into the following fact: After

choosing compatible isomorphisms-m : F1 -F 2 -á á á-F m / F i m (which we can do pro-Žtale-locally
on S), the compatible-in-m maps

&m : u|F i m ' -m : F1 - F 2 - á á á - F m $ E i m &= - 1$ i $ m Ebi

and
/ m : u1 - á á á - um : F1 - F 2 - á á á - F m $ E i m &= Ei m &= - 1$ i $ m Ebi

coincide after projection along Ei m " Ebm . We are going to show that each&m ' / " 1
m , which is

initially only a meromorphic endomorphism ofEi m , actually deÞnes a global section of(Ei m ). #E i m

such that &m ' / " 1
m ( 1 deÞnes a section of the subbundle(Ei m ). # E i m ! 1 . To do this, note that

by an easy induction, each map/ m ( &m : F i m $ E i m ! 1 has zeros of order* kd1 + ááá+ dm ! 1 along
S " X S! . On the other hand, u" 1

m : Ebm $ F m has poles of order+ kd1 + ááá+ dm ! 1 +1 along S.8 Now,
formally, we have the identity

&m ' / " 1
m = &m " 1 ' / " 1

m " 1 + &m ' u" 1
m

= &m " 1 ' / " 1
m " 1 + ( &m ( / m + / m ) ' u" 1

m

= &m " 1 ' / " 1
m " 1 + ( &m ( / m ) ' u" 1

m + / m ' u" 1
m .

But (&m ( / m ) ' u" 1
m : Ebm $ E i m ! 1 is well-deÞned by our previous remarks on zeros and poles, and

/ m ' u" 1
m : Ebm $ E i m is just the canonical inclusion as a direct summand. Thus we get the desired

properties of &m ' / " 1
m by induction, noting that &1 ' / " 1

1 = id . But this analysis shows that the
section

j = &k ' / " 1
k ! H 0(XS! , E.

b # Eb)

8ItÕs easy to make these statements about poles and zeros precise; the point is that the ideal sheaf cutting out
S " X S ! is locally principal and generated by a non-zero-divisor.
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deÞnes an element ofJ U
b, ùQ p

(S), and by construction it transports (- 1$ m $ k Fm , - 1$ m $ k um ) to

(F , u) / (- 1$ m $ k Fm , u ' -k ),

so weÕre done.

4.2 The retraction at inÞnite level

Proof of Theorem 1.7. We construct a two-sided inverse toa% . Let S ! Perfd/ Spa ùQ p
and (F , u, #) !

ShtP ,µ,b (S) be given. We need to construct a point
/

1$ m $ k

(Gm , vm , . m ) ! ShtM ,µ,b (S)

and an elementj ! J U
b, ùQ p

(S). The Þrst is easier to Þnd: applying the retraction on perioddomains

to (F , u) ! GrEb " adm
G ,µ (S) gives a point

(gr(F ), gr(u)) =
/

1$ m $ k

(Fm , um ) ! GrEb" adm
M ,µ (S).

Now by the deÞnition of ShtP ,µ,b , itÕs easy to see check that Ògr(#)Ó gives a well-deÞned sequence
of trivializations #m : Odm

X S !

#$ F m , and this gives a point

(gr(F ), gr(u), gr(#)) =
/

1$ m $ k

(Fm , um , #m ) ! ShtM ,µ,b (S)

as desired.
To construct j , recall from the proof of Theorem4.1 that after making any choices of compatible

isomorphisms-m : F1 - F 2 - á á á - F m / F i m (1 + m + k), the two maps

&k : u ' -k : F1 - F 2 - á á á - F k $ E b
&= - 1$ i $ k Ebi

and
/ k : u1 - á á á - uk : F1 - F 2 - á á á - F k $ E b

&= - 1$ i $ k Ebi

have the property that &k ' / " 1
k deÞnes an element ofJ U

b . Now we simply observe that at inÞnite
level, there is a canonical choice for the-m Õs, as indicated by the diagram

F1 - F 2 - á á á - F m Od1 + ááá+ dm
X

* |(O d 1 + ááá+ d m
X / 0)

# ""#

* 1 /ááá/ * m

** F i m .

In other words, we take
-k = # '

3
#" 1

1 - á á á - #" 1
m

4
= # ' gr(#)" 1,

and then
&k ' / " 1

k = u ' -k ' gr(u)" 1 = u ' # ' gr(#)" 1 ' gr(u)" 1 ! J U
b (S)

is the unique element such that

j á((gr( F ), gr(u), gr(#)) = ( F , u, #),

as desired.
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4.3 Conseqences for cohomology

In order to apply our geometric results to calculations of cohomology, we need some well-behaved
cohomological formalism for diamonds. Such a theory was recently developed by Scholze [Sch17].
One of the key outcomes of this formalism is that many of the results in HuberÕs book [Hub96] have
natural generalizations to morphisms of well-behaved diamonds. In this subsection, we freely use
various notations, terminology and constructions from [Sch17], including the notions of locally spatial
diamonds, partially proper morphisms, and +-cohomologically smooth morphisms. For brevity, we
introduce the following conventions:

¥ A morphism f : X $ Y of small v-stacks is good if (in the terminology of [ Sch17]) it is
compactiÞable, representable in locally spatial diamonds, and of Þnite dim.trg .

¥ A morphism f : X $ Y of small v-stacks issmooth if (in the terminology of [ Sch17]) it is
+-cohomologically smooth for all+1= p.

Note that by convention, any smooth map is good, and any good map is representable in locally
spatial diamonds.

Let # be a coe"cient ring killed by some integer n prime to p. For any small v-stack X , let
D«et (X, #) denote the triangulated category deÞned in [Sch17]. When X is a locally spatial diamond
this agrees with (the left completion of) the honest derivedcategory D(X «et , #) , but in general the
latter is not the correct object. The categories D«et (X, #) support the expected Òfour functorsÓ
f ! , Rf ! , ( # L

! ( , RH om! (( , ( ), and these satisfy all expected compatibilities and adjunctions.
Less obviously, Scholze also proved that iff : X $ Y is a good morphism of small v-stacks, there
is a well-behaved derived direct image functor with proper supports

Rf ! : D«et (X, #) $ D«et (Y,#)

with all expected properties. In particular, Rf ! satisÞes the proper base change theorem and the
projection formula, and admits a well-behaved right adjoint Rf !. When X and Y are the diamonds
associated with analytic adic spaces overSpaZp, these constructions all agree with the constructions
in HuberÕs book.

In what follows we adopt the following convention: if X is a locally spatial diamond which comes
with an evident structure map f : X $ SpdC for some complete algebraically closed ÞeldC, and
moreover f is good, then we set

R! c(X, F ) = R!(Spd C, Rf !F )

for any F ! D«et (X, #) . Our main goal in this section is the calculation of the compactly supported
Žtale cohomology groupsR! c(J b,C , Z/n Z), where J b,C denotes the base change ofJ b, ùQ p

along any

complete algebraically closed extensionùQp $ C. Forgetting any possible Galois actions, it is not so

hard to show that this is the expected shift of Z/n Z. However, whenC = 5Qp we would also like a
precise description of theWQ p -action, and this is signiÞcantly harder. The key point is Proposition
4.8.

Proposition 4.2 (KŸnneth formula) . Let

X %S Y

p

!!

q ""

h

##'
''

'''
''

' Y

g

!!
X

f ""S
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be a cartesian diagram of small v-stacks such thatf and g are good. Then for anyF ! D«et (X, #)
and G ! D«et (Y,#) , there is a natural isomorphism

Rh!
3
p! F # L

! q! G
4 &= Rf !F # L

! Rg!G.

In particular, if S = Spd C is a geometric point, then

R! c(X %S Y, p! F # L
! q! G) &= R! c(X, F ) # L

! R! c(Y, G).

As usual, this follows formally from the proper base change theorem [Sch17, Proposition 22.19]
and the projection formula [Sch17, Proposition 22.23].

Proposition 4.3. Let

W
f #

""

g#

!!
h

--(
((

((
((

( Y

g

!!
X

f ""S

be a cartesian diagram of small v-stacks, wheref and g are good. Suppose moreover that one off
or g is smooth. Then there is a natural isomorphism

Rh!# &= g*! Rf !# # L
! f *! Rg!# .

Proof. By symmetry, we can assumeg is smooth, sog* is as well. Then

Rh!# &= Rg*!Rf !#
&= g*! Rf !# # L

! Rg*!#
&= g*! Rf !# # L

! Rg*!f ! #
&= g*! Rf !# # L

! f *! Rg!# .

Here the Þrst and third lines are trivial; the second line follows from [Sch17, Proposition 23.12.i],
and the fourth line follows from [Sch17, Proposition 23.12.iii].

WeÕll also need the following results.

Proposition 4.4. Let f : X $ Y be any proper map of spatial diamonds, and let# be any
coe"cient ring killed by some integer prime to p. Then the functor Rf ! carries D [a,b]

«et (X, #) into

D [a,b+2dim .trg f ]
«et (Y,#) .

Proof. This is implicit in the proof of [ Sch17, Theorem 22.5].

Proposition 4.5. Let X be a spatial diamond, and let# be a coe"cient ring killed by some
integer prime to p. Suppose that for some complete algebraically closed ÞeldC/ Fp there is a
map f : X $ Spd(C, C) ) with dim.trg f < . , or more generally that there exists an integer
N such that H i (X «et , F ) = 0 for all i > N and all sheaves of# -modules F on X «et . Then
D(X «et , #) is left-complete and compactly generated. In particular, there is a natural equivalence
D«et (X, #) &= D(X «et , #) .
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Note that if such a map f : X $ Spd(C, C) ) exists, then H i (X «et , F ) = 0 for all i > 2dim.trg f
and all F , which justiÞes the wording in the second sentence of the proposition. To see this, note
that by [ Sch17, Proposition 21.11],H i (X «et , F ) = 0 for all F and all i > dim|X | + sup"0= psupx cd" x,
where x runs over the maximal points of X. Then

dim|X | = dim f + dim.trg f

by a straightforward computation, and

cd" x + dim.trg f

for all maximal points and all +1= p by [Sch17, Proposition 21.16].

Proof. Let j : U $ X be any quasicompact separated Žtale map. By [Sch17, Remark 21.14],j «et ! is
an exact functor, soH i (U«et , F ) = H i (X «et , j «et ! F ) for any abelian Žtale sheafF on U. Combining
this with the hypotheses of the theorem, we deduce the existence of an integerN such that for
any quasicompact separated Žtale mapU $ X and any sheafF of # -modules onU«et , the group
H i (U«et , F ) vanishes for alli > N . Granted this, left-completeness ofD(X «et , #) follows by arguing as
in [Sta17, Tag 0719]. The equivalenceD«et (X, #) &= D(X «et , #) then follows from [Sch17, Proposition
14.15].

For compact generation, we leave it to the reader to check that varying over all quasicompact
separated Žtale mapsj : U $ X and all n ! Z, the objects j !#[ n] give a generating set of compact
objects in D(X «et , #) .

Proposition 4.6. Let S be a small v-sheaf, and let÷f : ÷X $ S be a smooth map of small v-sheaves.
Suppose that ÷X is equipped with a freeK -action for some pro-p group K , lying over the trivial action
on S. Set X = ÷X/K , and let f : X $ S be the natural map. Then:

i The natural map q : ÷X $ X is a K -torsor, and the map f : X $ S is smooth.
ii. Any choice of a # -valued Haar measure onK determines an isomorphism

Rf !# / (q! R ÷f !#) K .

In particular, if S = Spd k for some nonarchimedean Þeldk of residue characteristicp, and ÷X arises
from a connected smooth adic spaceY/ Spak, then any choice of a Haar measure onK gives rise to
an isomorphism

Rf !# / #( d)[2d]

with d = dim Y .

Note that up to a shift, q! R ÷f !# is concentrated in one degree, i.e. is a sheaf, so the group action
in part ii. makes sense with the ÒnaiveÓ interpretation.

Proof. The key tool here is [Sch17, Proposition 24.2]. Part i. follows directly from this result
together with [Sch17, Lemma 10.13]. For part ii., recall from [Sch17, Proposition 24.2] that any
choice of a Haar measure onK determines a natural isomorphism of functors

q! Rf ! &= Rq!Rf ! = R ÷f !

(of course there is a canonical choice of Haar measure, giving K total volume 1; however, in a later
argument weÕll actually need the freedom of choosing a di!erent Haar measure). In particular, if we
set 0X = Rf !# and 0 ÷X = R ÷f !# , then such a choice determines an isomorphismq! 0X

&= Rq!0X =

33



0 ÷X . On the other hand, it is easy to see that for any shift of any abelian Žtale sheafF on X , the
natural map

F $ (q! q! F )K

is an isomorphism.9 Putting these observations together, we compute that

0X
&= (q! q! 0X )K &= (q! 0 ÷X )K ,

which proves the Þrst half of ii. Finally, if ÷X arises from a connected smoothY/ Spak as in the
proposition, then 0 ÷X

&= 0Y
&= #( d)[2d] by the results in [Ber93, Hub96], so then(q! 0 ÷X )K / #( d)[2d],

as desired.

We now put ourselves in the following situation. Let b ! GLn (Qp) be any element, so the bundle
Eb,S is well-deÞned onXS for any perfectoid spaceS/ Fp, functorially in S. We may therefore consider
the functor H 0(Eb) sending any S ! Perf to H 0(XS , Eb,S ), with its structure map f b : H 0(Eb) $
SpdFp.10 For C/ Fp any complete algebraically closed extension, writef b,C : H 0(Eb)C $ SpdC for
the base change of the situation alongFp $ C.

Proposition 4.7. Let b ! GLn (Qp) be any element such that the slopes ofEb are all positive, and
let f b and f b,C be as above.

i. The structure map f b is partially proper, representable in locally spatial diamonds and smooth.
ii. For any complete algebraically closed extensionC/ Fp, there is an isomorphism Rf !

b,C # /
#[2d], where d is the degree ofEb.

iii. For any complete algebraically closed extensionC/ Fp, the natural map

# $ Rf b,C ! #

is an isomorphism.

Proof. First, we note that it su"ces to prove i. after base change to S = Spd C for C/ Fp any
complete algebraically closed ÞeldC. To see this, note that SpdC $ SpdFp is surjective as a map
of v-sheaves, so [Sch17, Proposition 13.4.v] shows that if f b,C is separated and representable in locally
spatial diamonds, then so isf b. Moreover, +-cohomological smoothness is a v-local property [Sch17,
Proposition 23.15], and being separated is v-local as well [Sch17, Proposition 10.11.ii]. Finally,
observe that f b automatically satisÞes the valuative portion of the deÞnition of partial properness
[Sch17, DeÞnition 18.4], using the fact that

H 0(XSpa( R,R + ) , E) = H 0(XSpa( R,R %) , E)

for any characteristic p perfectoid Tate-Huber pair (R, R+ ) and any vector bundleE on XSpa( R,R + ) .
Next, observe that H 0(Eb1 - E b2 ) &= H 0(Eb1 ) %Spd F p H 0(Eb2 ), and that H 0(Eb) / H 0(Eb#) if b and

b* are " -conjugate. With these isomorphisms in mind, an easy inductive argument together with
Proposition 4.3 shows that for i. and ii. it su"ces to treat the case where

b =

)

*
*
*
*
*
+

1
1

. . .
1

p" d

,

-
-
-
-
-
.

! GLh (Qp)

9Using the identiÞcation q! q! F = F # ! q! ! , one reduces to the special case whereF = ! , which is trivial.
10 This is a slight change from the notation in ¤2.4, so e.g. the f unctor deÞned in DeÞnition 2.17.1 is the base change

of what we are presently notating by H 0(Eb) along the map Spd F p $ Spd F p .
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for some coprimeh, d, in which case we notateEb = O(d/h ) as usual.
If d + h then H 0(O(d/h ))C coincides with (the base change toC of) the universal cover of an

isoclinic p-divisible group G/ Fp of height h and dimensiond, so by the calculations in [FF15, SW13],
H 0(O(d/h ))C is representable by the perfectoid space

X = Spf( OC [[T 1/p "

1 , . . . , T 1/p "

d ]])ad
& .

In this case partial properness is clear, smoothness off b,C follows from [Sch17, Proposition 24.4],
and part ii. follows from classical calculations of Berkovich and Huber (and in fact the isomorphism
in part ii. is canonical in this case, being realized by a suitable trace map, cf. [Ber93, Hub96]).

We may thus suppose thatd > h . We may choose a short exact sequence of vector bundles

0 $ O m $ O (1)d $ O (d/h ) $ 0

on XSpa C , which induces a short exact sequence ofQp-vector diamonds

0 $ H 0(Om )C / Qm
p $ H 0(O(1)d)C $ H 0(O(d/h ))C $ 0

over S. As in [FF15, SW13], the diamond H 0(O(1)d)C is naturally representable by the perfectoid
space

÷B d =
$

SpaOC [[T 1/p "

1 , . . . , T 1/p "

d ]]
&

&
,

and moreover this isomorphism identiÞes multiplication byp on H 0(O(1)d) with the relative Frobe-
nius $ : Ti 0$ T p

i . Choose a quasicompact open subgroupU0 " ÷B d / H 0(O(1)d)C , and set A0 =
Qm

p ) U0(C), where the intersection is taken inside theC-points of H 0(O(1)d)C . Then A0 / Zm
p , and

the Qm
p -action on H 0(O(1)d)C restricts to a compatible A0-action on U0. Writing Un = p" n U0 and

An = p" n A0 for their preimages under multiplication by pn , we get a rising union of quasicompact
open subgroupsU0 " U1 " U2 " á á á covering H 0(O(1)d)C , each of which is the perfection of a
closed rigid analytic disk overC, with compatible free actions of the group sheavesA0 " A1 " á á á.
In particular, the Un Õs are+-cohomologically smooth overS, and writing ÷f n : Un $ S for the
structure map, we have natural isomorphismsR ÷f !

n # &= #[2d] compatible with varying n. By the
previous proposition, we deduce that the quotient diamondsVn = Un /A n " H 0(O(d/h ))C are spa-
tial and +-cohomologically smooth overS, and that Rf !

n # / #[2d] for any n, where f n : Vn $ S
denotes the structure map. A careful examination of the proof of the previous proposition shows
that these isomorphisms may be chosen compatibly with varying n11, in which case they glue into
an isomorphismRf !

b,C # / #[2d].
For part iii. of the proposition, we return to the case of general b. Let s be the number of

distinct slopes ofEb. On XSpa C , choose an isomorphismEb / - 1$ i $ sEi where eachEi is semistable.
As in the previous paragraph, we may write eachH 0(Ei ) as a rising union 2Un,i /A n,i , where Un,i

is the perfection of a closed rigid disk andAn,i / Zm i
p . (If Ei has slope+ 1, then one chooses the

An,i Õs to be trivial.) Taking the product of these presentations, we get an analogous presentation
of H 0(Eb)C as a rising union

H 0(Eb)C /
6

n

Un /A n

11 Recall that the natural isomorphisms deÞned in Proposition 24.2 of [Sch17] depend on a choice of Haar measure
on the group K ; in the present application, the key point is to Þx the Haar me asure on A 0 with µ(A 0 ) = 1 and then
choose the Haar measures on the A n Õs compatibly with the inclusions A 0 " A n , so in particular the total measure of
A n is pmn .

35



where Un = Un, 1 %S á á á %S Un,s and An =
2

An,i . Let ÷f n : Un $ S and f n : Vn = Un /A n $ S be
the structure maps. We then have a natural isomorphism

Rf b,C ! # &= R lim
-

Rf n ! # ,

cf. Lemma 3.9.2 of [Hub96] and its proof. Using the Cartan-Leray spectral sequence for the Galois
cover Un $ Vn , we compute that

Rf n ! # &= R!( An , R ÷f n ! #)
&= R!( An , #)
&= # .

Under these isomorphisms, it is trivial to check that the transition maps in the inverse system of
Rf n ! # Õs are given by the identity map, soR lim- Rf n ! # &= # , as desired.

Proposition 4.8. As in the previous proposition, let b ! GLn (Qp) be any element such that the
slopes ofEb are all positive, and consider the functorH 0(Eb) with its structure map f b : H 0(Eb) $
SpdFp. Set d = degEb. Then

i. The natural adjunction map Rf b!Rf !
b# $ # is an isomorphism.

ii. There is a natural isomorphism Rf !
b# &= #( d)[2d].

iii. There is a natural isomorphism Rf b!# &= #( ( d)[( 2d].
In particular, if C is any algebraically closed Þeld, then

R! c(H 0(Eb)C , #) / #( ( d)[( 2d].

Proof. The Þnal point follows from iii. by proper base change. Next,note that iii. follows quickly
from i. and ii. Indeed, combining i. and ii. with the projecti on formula gives a chain of natural
isomorphisms

#( d)[2d] # L
! Rf b!# &= Rf b! (#( d)[2d]) &= Rf b!Rf !

b# &= # .

The result then following by tensoring both sides with #( ( d)[( 2d].
Let C/ Fp be any complete algebraically closed extension, and letf b,C : H 0(Eb)C $ SpdC

be the base change alongFp $ C as before. For i., note that by a combination of smooth and
proper base change, it su"ces to prove that for some arbitrary choice ofC, the natural adjunction
Rf b,C !Rf !

b,C # $ # is an isomorphism in D«et (SpdC, #) &= D(#) . Next, observe that there are
natural isomorphisms

Rf b,C !Rf !
b,C # &= Rf b,C !Rf !

b,C (Z/n Z # L
Z /n Z #)

&= Rf b,C !(Rf !
b,C Z/n Z # L

Z /n Z #)

&= (Rf b,C !Rf !
b,C Z/n Z) # L

Z /n Z # ,

where the second line follows from [Sch17, Theorem 1.10.i] and the third line follows from the
projection formula. This reduces us further to the case where # = Z/n Z.

Let K denote the cone of the mapRf b,C !Rf !
b,C # $ # , and let K . = RH om! (K, #) be its dual.

Dualizing the distinguished triangle

Rf b,C !Rf !
b,C # $ # $ K,
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we see thatK . [1] is isomorphic to the cone of the dualized map

# $ RH om! (Rf b,C !Rf !
b,C # , #) .

Next, observe that there are canonical isomorphisms

RH om! (Rf b,C !Rf !
b,C # , #) &= Rf b,C ! RH om! (Rf !

b,C # , Rf !
b,C #) &= Rf b,C ! # ,

where the Þrst isomorphism follows from Verdier duality [Sch17, Theorem 1.8.iv] and the second
follows from biduality [ Sch17, Theorem 1.12]. Moreover, the resulting map# $ Rf b,C ! # coincides
with the obvious adjunction map, which is an isomorphism by the previous Proposition. Therefore
K . is zero. But

RH om! (( , #) : D (#) $ D(#)

is conservative (using that # = Z/n Z), so then K is zero as well.
For ii., we again reduce via Proposition4.3 to the case where

b =

)

*
*
*
*
*
+

1
1

. . .
1

p" d

,

-
-
-
-
-
.

! GLh (Qp)

for some coprimeh, d * 1, so Eb = O(d/h ). In what follows, we only give full details in the case
where h = 1 ; the general case is very similar.

In the subsequent arguments, the following conventions areconvenient. For any small v-sheafX ,
we say that X is absolutely good (resp. absolutely smooth) if the canonical map ! X : X $ SpdFp

is good (resp. smooth). If X is absolutely good, we write0X = R! !
X # . If X is connected and

absolutely smooth, we write 1(X ) for the unique integer such that 0X is concentrated in degree
( 1(X ). For example, SpdQp is connected and absolutely smooth, and1(SpdQp) = 2 .

For brevity, set X d = H 0(O(d)) for any d * 1, with structure map f d : X d $ SpdFp. We
are trying to produce a reasonably canonical isomorphism0X d

&= #( d)[2d]. When d = 1 , such an
isomorphism follows from work of Berkovich and Huber, as weÕll explain below. The general case
is somewhat tricky. Before giving the argument, we introduce a plethora of spaces related toX d

which weÕll need.
Let Yd " X d denote the open subfunctor with S-points parametrizing sections ofO(d) which

donÕt vanish identically on any Þber of|XS | $ | S|, with structure map gd : Yd $ SpdFp. There is
a continuous Q'

p -action on X d given by scaling sections, which restricts to a free action on Yd, and
we setDiv d = Yd/ Q'

p . By [Far17, Proposition 2.18], the natural map q : (Div 1)d $ Div d induces an

isomorphism (Div 1)d/S d
&= Div d. Let Ud be the complement of all the partial diagonals in(Div 1)d,

or equivalently the maximal open subfunctor of (Div 1)d on which the Sd-action restricts to a free
action. Then Vd = Ud/S d is naturally an open subfunctor of Div d, and the map q restricts to a
Þnite ŽtaleSd-coverq : Ud $ Vd. Finally, let Wd " Yd be the preimage ofVd under the natural map
Yd $ Div d. Note that all of these functors are partially proper and absolutely good.

We now argue in a series of steps.
Step One. There is a natural isomorphism 0Div 1 &= #(1)[2] .
Proof. Note that X 1 identiÞes with the functor on Perf sending any Spa(R, R+ ) to R)) . In

particular, it is an open subfunctor of the functor B sending any Spa(R, R+ ) to R+ . By [Sch17,
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Theorem 24.1], there is a canonical natural isomorphism0B
&= #(1)[2] , which then restricts to give

a natural isomorphism 0X 1
&= #(1)[2] . Since Y1 is open in X 1, we also get a natural isomorphism

0Y1
&= #(1)[2] . Let Y1 $ Div 1 be the natural Q'

p -torsor, which can be factored canonically as

Y1
+
$ T

+#

$ Div 1

whereT = Y1/ (1 + pZp); here we use the usual canonical decompositionQ'
p = pZ %F'

p %(1+ pZp).
Note that 2 (resp. 2*) is a 1 + pZp-torsor (resp. a Z % F'

p -torsor); in particular, 2 is proper and
pro-Žtale, while 2* is separated and Žtale. Applying Proposition4.6.ii (with the canonical choice
of Haar measure giving1 + pZp volume one), the previous identiÞcation of0Y1 descends to an
isomorphism 0T

&= #(1)[2] . Next, setting G = Z %F'
p , we observe that sinceR2*! = 2*! , there is a

natural adjunction map 2*
! 2

*! $ id which induces a functorial isomorphism

(2*
! 2

*! F )G
&= F

for any (shifted) Žtale sheaf of# -modulesF , where the subscript on the left-hand side denotes the
coinvariants for the natural G-action.12 Since

2*! 0Div 1 &= 0T
&= #(1)[2] = 2*! #(1)[2]

compatibly with the G-actions, this induces an isomorphism0Div 1 &= #(1)[2] , as desired.
Step Two. There is a natural isomorphism 0(Div 1 )d &= #( d)[2d].
Proof. This follows immediately from Step One by repeated applications of Proposition 4.3.
Step Three. There is a natural isomorphism 0Vd

&= #( d)[2d].
Proof. Since Ud is open in (Div 1)d, restricting the isomorphism exhibited in Step Two gives a

natural isomorphism 0Ud
&= #( d)[2d]. Next, since q : Ud $ Vd is a Þnite Žtale and GaloisSd-cover,

the natural map
F $ (q! q! F )Sd

is an isomorphism for any (shifted) Žtale sheaf of# -modules F on Vd. Since q! = Rq!, we get
natural identiÞcations

q! 0Vd
&= 0Ud

&= #( d)[2d] &= q! #( d)[2d]

compatible with the Sd-actions, so applying(q! ( )Sd gives the desired result.
Step Four. There is a natural isomorphism 0W d

&= #( d)[2d].

Proof. Since the mapWd $ Vd is a Q'
p -torsor, we may factor it as Wd

,
$ W *

d
, #

$ Vd analogously
to the argument in Step One, where. is a Z %F'

p -torsor and . * is a 1 + pZp-torsor. Then

0W #
d

&= R. *!0Vd
&= . *! 0Vd

&= . *! #( d)[2d] &= #( d)[2d],

where the Þrst isomorphism is immediate, the second followsfrom Proposition 4.6, and the third
follows from Step Three.

12 Proof. By the projection formula, " "
! " "! F %= F # " "

! ! , so we immediately reduce to the case F = ! . Taking
stalks at some geometric point x $ Div 1 , one then concludes by observing that (" "

! !) x identiÞes with the G-module
of locally constant compactly supported functions f : |T & Div 1 x| $ ! . Since T & Div 1 x is just a countably inÞnite
number of copies of x permuted simply transitively by G, the coinvariants of (" "

! !) x identify with ! via the map
taking a compactly supported function on |T & Div 1 x| to the sum of its values. Finally, one checks that the latter
map coincides with the coinvariants of the adjunction map in question. $
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To conclude, observe that we now have a chain of isomorphisms

0W d
&= R. !0W #

d
&= . ! 0W #

d
&= . ! #( d)[2d] &= #( d)[2d],

where the Þrst and fourth are trivial, the second follows from the identiÞcation R. ! = . ! , and the
third follows from the previous paragraph.

Step Five. There is a natural isomorphism 0X d
&= #( d)[2d].

Proof. Let j d : Wd $ X d denote the natural open embedding, with closed complementi d : Zd $
X d. By Proposition 4.7, 0X d is a shifted local system concentrated in degree( 2d; in other words,
1(X d) = 2 d. We also note that the structure map Zd $ SpdFp has dim.trg equal to d ( 1; this is
easy and left to the reader. Since

j !
d 0X d = 0W d

&= #( d)[2d] &= j !
d #( d)[2d]

by Step Four, the result now follows from the subsequent lemma.

Lemma 4.9. Let X be a small v-sheaf which is connected and partially proper, andassume that
the structure map ! : X $ SpdFp is smooth, so 0X is concentrated in degree( 1(X ) for some
integer 1(X ). Let i : Z $ X be a closed subfunctor such that2dim.trg( Z/ SpdFp) + 2 + 1(X ). Set
# = Z/n Z for some n prime to p. Then the restriction functor

LocSys! (X ) $ LocSys! (X # Z )

is fully faithful.

Here, for any small v-stack X , LocSys! (X ) denotes the category of sheaves of# -modules F
on X v such that F | ÷X / # m for some m after pullback along some v-cover ÷X $ X . Note that
any such sheaf is in fact trivial on some Þnite Žtale cover ofX : after pullback along ÷X $ X , the
functor Isom(F , # m ) $ X parametrizing trivializations of F becomes a disjoint union of Þnitely
many copies of ÷X , so Isom(F , # m ) $ X is Þnite Žtale surjective by [Sch17, Proposition 10.11.iii].

Proof. Let j : X # Z $ X be the evident open embedding. For anyL , M ! LocSys! (X ), we have
compatible isomorphisms

HomLocSys ! (X ) (L , M ) &= H 0 (R!( X, L . # M ))

and

HomLocSys ! (X ! Z ) (j
! L , j ! M ) &= H 0 (R!( X # Z, j ! (L . # M )))

&= H 0 (R!( X, Rj ! j ! (L . # M )))
&= H 0(R!( X, j ! j ! (L . # M )) .

In particular, it su"ces to show that for any F ! LocSys! (X ), the natural map F $ j ! j ! F is

an isomorphism. SetS = Spd Fp(( t)) and ÷S = Spd %Fp(( t)) , so S $ SpdFp is a smooth v-cover
and ÷S $ S is a proÞnite-Žtale Galois cover for some proÞnite groupG. Let X S, ! S , F S , j S , etc.
denote the obvious base changes of various objects toS, and likewise for ÷S. It su"ces to check that
F $ j ! j ! F is an isomorphism after pulling back along the v-coverX S $ X . By smooth base
change, the pullback of this map identiÞes with the natural map F S $ j S! j !

SF . Writing both sides
of this map as the G-invariants of their pullbacks to X ÷S, it su"ces to prove that the natural map
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F ÷S $ j ÷S! j !
÷S
F ÷S is an isomorphism.13 This map Þts into the long exact sequence of cohomology

sheaves associated with the habitual distinguished triangle

i ÷S! Ri !
÷SF ÷S $ F ÷S $ Rj ÷S! j !

÷SF ÷S $ .

It therefore su"ces to show that Ri !
÷S
G is concentrated in degrees* 2 for any G ! LocSys! (X ÷S).

Passing to a Þnite Žtale coverU $ X ÷S if necessary, we can assume thatG|U / # / m and that
R! !

÷S
# |U / #[1(X )]. In particular, writing i * : Z * $ U for the pullback of the closed immersion

Z ÷S $ X ÷S along U $ X ÷S, there is are (noncanonical) isomorphisms

Ri !
÷SG|U / Ri *!# / m / Ri *!(R! !

÷S#[ ( 1(X )]|U )/ m / Rg!#[ ( 1(X )]/ m ,

whereg : Z * $ ÷S is the evident map. In particular, it su"ces to check that Rg!# is concentrated in
degrees[( 2dim.trg( Z/ SpdFp), 0]: conditional on this concentration, we get that

Ri !
÷SG|U / Rg!#[ ( 1(X )]/ m

is concentrated in degrees[1(X ) ( 2dim.trg( Z/ SpdFp), 1(X )], and 1(X ) ( 2dim.trg( Z/ SpdFp) * 2
by assumption.

To analyze Rg!# , note that the map g : Z * $ ÷S is a partially proper map of locally spatial
diamonds, with target a rank one geometric point, and with

dim.trg( Z */ ÷S) = dim .trg( Z ÷S / ÷S) + dim.trg( Z/ SpdFp) < . .

By Proposition 4.5, for any open spatial subdiamond Z ** " Z * there is a natural equivalence
D«et (Z **, #) &= D(Z **

«et , #) , and in particular, we may naturally regard Rg!# |Z ## as an object of
D (Z **

«et , #) . Making this observation, it now su"ces to show that the stal k of any cohomology sheaf
H i (Rg!# |Z ##) at any geometric point z $ Z ** " Z * vanishes for all i /! [( 2dim.trg( Z/ SpdFp), 0].
Any such stalk is naturally the colimit of H i (R!( W, u! Rg!#)) as one runs over (the coÞltered system
of) all diagrams z $ W u$ Z * where u is a separated Žtale map from a spatial diamond over which
z $ Z * factors. Moreover, for any suchu, the cohomology groupH i

3
R!( W, u! Rg!#)

4
is given

explicitly as the # -linear dual of H " i (R(g ' u)!#) , by an easy application of Verdier duality. ItÕs
thus enough to show that

R(g ' u)!# ! D«et ( ÷S,#) = D(#)

is concentrated in degrees[0, 2dim.trg( Z ÷S / ÷S)] for any such u. This follows from the subsequent
lemma, with W , Z *, and ÷S playing (respectively) the roles of the objects denotedU, X , and S
below.

Lemma 4.10. Let S be a spatial diamond, and letg : X $ S be any good map of locally spatial

diamonds, with canonical compactiÞcationg : X
/S

$ S. Suppose thatg is partially proper, or more

generally that the canonical compactiÞcationX
/S

is locally spatial. Let u : U $ X be any separated
Žtale map from a spatial diamond. ThenR(g ' u)! carries D [a,b]

«et (U,#) into D [a,b+2dim .trg g]
«et (S,#) .

Proof. By [Sch17, Corollary 18.8.vii], the map u extends to a quasi-pro-Žtale mapu : U
/S

$ X
/S

.

Since X
/S

is locally spatial by assumption, we deduce thatU
/S

is also locally spatial by [Sch17,

13 IÕm very grateful to Peter Scholze for suggesting this devic e.
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Corollary 11.28]. Moreover,U $ S is quasicompact, soU
/S

$ S is proper by [Sch17, Corollary

18.8.vi]. Putting these observations together, we see thatU
/S

is in fact a spatial diamond.
By an easy inductive argument with truncation functors, itÕs enough to prove that for any Žtale

sheafF of # -modules onU, the complex R(g ' u)!F lies in D [0,2dim .trg g]
«et (S,#) . Let j : U $ U

/S

be the open embedding ofU into its canonical compactiÞcation, so then

R(g ' u)!F / R(g ' u)! j !F

by deÞnition. Sinceg ' u : U
/S

$ S is a proper map of spatial diamonds, Proposition4.4 shows
that the functor Ri (g ' u)! is nonzero only in degrees

i + 2dim.trg( U
/S

/S ) = 2dim .trg( U/S ).

Sincedim.trg( U/S ) + dim.trg( X/S ) = dim .trgg, the lemma follows.

Incidentally, the proof of Lemma 4.9 also yields the following useful result, which seems hard to
prove by purely topological considerations.

Corollary 4.11. Let X be any small v-sheaf with a smooth partially proper mapf : X $ Spdk,
wherek is a Þeld which is either a complete nonarchimedean Þeld withresidue characteristic p, or a
discrete extension ofFp. Assume moreover thatX is equidimensional in the sense thatRf !# / #[1]
v-locally on X , for some (constant) integer 1. Then for any closed subfunctorZ " X such that
2dim.trg( Z/ Spdk) + 2 + 1, the natural map

! 0(X # Z ) $ ! 0(X )

is a bijection.

Proof. This is immediate from the bijectivity of

C0(! 0(X ), #) &= HomLocSys ! (X ) (# , #) $ HomLocSys ! (X ! Z ) (# , #) &= C0(! 0(X # Z ), #) .

We now return to the notation and setting of ¤1.3-1.5.

Proposition 4.12. The functor J U
b, ùQ p

is a locally spatial diamond, whose structure mapJ U
b, ùQ p

$

Spd ùQp is partially proper and smooth. Moreover, for any complete algebraically closed extension
C/ ùQp, we have

R! c(J U
b,C , #) / #[ ( 2d](( d),

where d = 3µ, 2%4 ( 3µM , 2%4.

Here %M denotes the half-sum of the positive roots ofT occuring in the adjoint action of T on
Lie(M ).

Proof. We Þrst show that
d =

#

1$ i<j $ k

(degEbi ( degEbj ).
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Let %U denote the half-sum of positive roots ofT occuring in the adjoint action on Lie(U ), so %=
%M + %U . ItÕs an easy exercise from the deÞnition of&[b! 1 ] to check that

0
1$ i<j $ k (degEbi ( degEbj )

coincides with
7
&[b! 1 ] , 2%U

8
. After some mild rearranging, one Þnds that the Þnal claimedequality

holds if and only if
7
&[b! 1 ] ( µ, %U

8
= 0 . But direct inspection shows that %U deÞnes an element of

X ! (M ), while on the other hand we have[b" 1] ! B (M , µ) by assumption, which guarantees that

&[b! 1 ] ( µ ! X ! (T ) M der )Q ,

so
7
&[b! 1 ] ( µ, %U

8
= 0 as desired.

By the assumptions laid out in ¤1.3 together with Proposition 2.20, we have a natural isomor-
phism

J U
b, ùQ p

&= H 0
$

- 1$ i<j $ k E.
bj

# Ebi

&

ùQ p

of diamonds overSpd ùQp. By the previous calculation, the bundle - 1$ i<j $ k E.
bj

# Ebi has degreed.
By assumption, the slopes ofEbi are strictly greater than the slopes ofEbi +1 for all 1 + i < k , so the
bundle - 1$ i<j $ k E.

bj
# Ebi has only positive slopes. Applying Proposition4.7 and Proposition 4.8,

the results follow.

Theorem 4.13. There is a natural isomorphism

H !
c (ShtP ,µ,b %Spd ùE SpdC, Z/+n ) &= H !" 2d

c (ShtM ,µ,b %Spd ùE SpdC, Z/+n )( ( d)

compatible with all additional structures, whered = 3µ, 2%4(3µM , 2%4and C/ ùE denotes any complete
algebraically closed extension.

Proof. This follows immediately upon combining Theorem1.7, the KŸnneth formula, and Proposi-
tion 4.12.
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