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Abstract

We prove, under a certain assumption of OHodge-Newton reduibilityO, a strong form of a
conjecture of Harris on the cohomology of moduli spaces of mxed-characteristic local shtukas for
GL,. Our strategy is roughly based on a previous strategy developed by Mantovan in the setting
of p-divisible groups, but the arguments are completely dileren t. In particular, we reinterpret
and generalize the Hodge-Newton Pltration of a p-divisible group in terms of modiPed vector
bundles on the Fargues-Fontaine curve. We also compute the dualizing complex and compactly
supported Ztale cohomology of any positive Banach-Colmez pace over any base; this should be
of independent interest.
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1 Introduction

Since their dramatic appearance in Harris and TaylorOs prdmf the local Langlands conjecture for
GL, [HTO1], moduli spaces op-divisible groups have played a central role in the Langlandgrogram.
Until recently, the most general available family of spacef this type was essentially the ORapoport-
Zink spacesO debned and studied iRZ96]. In his 2014 course at Berkeley $W17], Scholze vastly
generalized these ideas by constructing moduli spaces ofixed-characteristic local shtukas. Like
Shimura varieties, these spaces are constructed axiomaatly from simple group-theoretic input
data. In general they are not rigid analytic varieties, and must be interpreted asdiamonds; this
is related to the fact that the Hodge type of the p-adic Hodge structures they parametrize is not
necessarily minuscule.

In this paper, we study a conjecture of Harris on the cohomolgy of these spaces, using the
language and tools developed in§W17] and [Sch17. Roughly speaking, HarrisOs conjecture says
that when the underlying Olocal shtuka datumO is not basiche (class in the Grothendieck group
of the) cohomology of the space is parabolically induced. Irthe original setting of Rapoport-
Zink spaces, Mantovan proved many cases of HarrisOs conjeet in a beautiful paper [Man08§].
MantovanOs wonderful idea is that under a certain assumptioof OHodge-Newton reducibilityO, the
spaces themselves are parabolically induced.

Our goal here, broadly stated, is to extend MantovanOs stragy to the more general spaces
considered in BW17]. However, out of necessity, the ingredients and details obur arguments are
completely dilerent from those in [Man08]. In particular, one of our main observations is that
the structures observed by Mantovan are entirely accountedfor by the actions of certain group
diamonds We also reinterpret and generalize the Hodge-Newton bltrabn of a p-divisible group
considered by Mantovan-Viehmann MV10], which plays a key role in Man08], in the language of
modibed vector bundles on the Fargues-Fontaine curve. Firly, we carry out a di"cult calculation
in the Ztale cohomology of diamonds, which should have intesting applications beyond those given
here.

1.1 Local shtukas and their moduli

In this section we dePne moduli spaces of mixed-charactetis local shtukas with inPnite level
structure, summarizing some material from EW17). B
Fix a Pnite extension E/ Q, with uniformizer ! and residue beldF,. Set! = Gal( E/E ) and

= Eur and let" ! Aut( E/E ) be the natural g-Frobenius. Choose a reductive grougs/E . For
simplicity in this introduction, we assume that G is split over E, so we may choose a Borel subgroup
B " G and a split maximal torus T " B both debned overE. In the remainder of this article, we
always denote algebraic groups oveE in boldface, and we denote theirE -points in standard font,
soG= G(E), B = B(E), etc.

For the purposes of this introduction, a local shtuka datumis a triple (G, y,b), where p !
X1 (T)gom is a B-dominant cocharacter andb! G (&) is an element whose' -conjugacy class[b] !
B(G) lies in the Kottwitz set B(G, " 1).! Let J, denote the" -centralizer of b, so this is the algebraic

1Again, we do not take a maximally general setup here.



group over E whose functor of points sends anye -algebraR to the group
| "
Jp(R)= g! G(R#e E)|g=nhid# ")(gb *

For any perfectoid spaceS over i, the datum of b gives rise to aG-bundle E, 5. on the relative
Fargues-Fontaine curveXs: = Xgi g, functorially in S, whose isomorphism class depends only on
the " -conjugacy classlb]. We then make the following depPnition:

Debnition 1.1. The moduli space of local shtukagwith one leg, and with inPnite level structure)
associated with the datum (G, y, b) is the functor

Shtg b : Perfd, g $ Sets

on perfectoid spaces ovelt! sendingS! Perfd, 4 to the set of isomorphism classes of tripleg¢F , u, #),
whereF is a G-bundle over Xg,,

U:FIXSM SfEb,S! |Xsl! S

is an isomorphism which extends to a typeg meromorphic modibcation of, s: along the natural
closed immersionS " X i, and # : B, s $F is aG-bundle isomorphism trivializing F .

We note that, strictly speaking, it is more natural to consider slightly larger moduli spaces
parametrizing shtukas whose meromorphy type is bounded by rather than being given exactly by
K, which we denote by Shtg s .. Indeed, this is what is done in BW17]. From the point of view
of the present paper, however, it is more natural to bx the meomorphy type exactly. When p is
minuscule, there is no dilerence.

The spaceShts ;1 is something like an inpnite-level Rapoport-Zink space, ad the following
heuristic might be helpful in parsing the dePnition of Shtg

¥ the data of B, is OlikeO th@-divisible group H = Hy %:—S' over S', where Hy/Fq is
the (nonexistent) Q -divisible Og -module with G -structure® whoseg -Dieudonne module is
determined by b;

¥ the data of F and u is OlikeO a quasideformatidfi of H to S;
¥ the data of # is OlikeO a trivialization of the rational Tate modulé/,H .

In some cases whenu is minuscule, this heuristic can be made into literal truth, but in general
Shtg b is unrelated to p-divisible groups.

In any case, the functor Shtg ,,, is a very rich object. First of all, itOs obviously Pbered owe
Spal‘:"l as a functor, and itOs not hard to check thaShtg ub debnes a sheaf on the big pro-Ztale site
Perfdf:get . By the equivalence of sites

proet & proet
Perfd/@ = Perf/ Spa B
where Perf " Perfd denotes the category of characteristigp perfectoid spaces, we can and do regard
Shtg b as a pro-Ztale sheaf ofPerf Pbered over the diamondSpdH.
Next, we observe that there are two natural commuting group ations on Shtg ,,,: on the one
hand, the group G & Aut( Eyv ) acts on Shtg wb Via the right action sending # to #' g; on the other



hand, J, < Aut( B,) acts via the left action sendingu to j ' u. Here, following our conventions,Jy
is the group of E-points in the " -centralizer Jy,.
There are also two period maps out ofShtg ., the Grothendieck-Messing period map

I om : Shtg b $ Grg i
and the Hodge-Tate period map
'yt : Shtg b $ Grg MEE

Here Grg , is an open Schubert cell in theBgyr -a"ne Grassmannian GrG/Sde_E', whose dePnition
we will recall later. By the results of [SW17], Grg , is a locally spatial diamond overSde_E‘. The
map ! gu forgets #, while the map ! yr interprets # 1 ' u' 1 as giving a (non-trivialized) type-
i’ 1 modibPcation of B, along S. There are natural actions of J, and G on Grg y and Grg y 1,
respectively, such that! gy and !yt are G % Jy-equivariant for (respectively) the trivial actions of
G and Jy, on their targets.

The starting point for the investigations in this paper is th e following result.

Theorem 1.2 (Scholze, via Caraiani-Scholze, Fargues-Fontaine, Ked{@a-Liu, Scholze-Weinstein)
Let the notation and assumptions be as above. Then:
i. The image of the period morphism! gy is a non-empty open and partially proper subdiamond
Grg> ™™ of the diamond Grg ., stable under the action ofJy.
ii. The induced morphism
! GM - ShtG’u'b $ Grgb:;ladm

is representable and pro-Ztale, and it makeShtg wh into a pro-Ztale G-torsor over Grgb:;ladm. In

particular, Shtg . is a locally spatial diamond overSde_El.
iii. For any open compact subgrougK " G, the quotient Shtg v /K _ parametrizing shtukas with

K -level structure is a locally spatial diamond Ztale oveGrg’, *™™.

iv. When p is minuscule, the diamondsGrg ,, GrE”La"m and Shtg ,»/K_ are in the essential

image of the functor (( )' from smooth rigid analytic spaces overSpaF_f'. In particular, the rigid
spaceM g over Spal such that
M & Shtg up/K_

is the local Shimura variety with K -level structure associated with the datum(G, p, b) sought by
Rapoport and Viehmann [RV14].

v. When p is minuscule and G = GL ,, there is a natural isomorphism Shtg 1, & M Lb’%
compatible with all structures, whereM , o, is a certain inpPnite-level Rapoport-Zink space.

In the case whereG = GL ,/E , we give a detailed proof of parts i.-iv. of this theorem in 823
below. Let us emphasize that we donOt claim any real origirif here: the existence of (some version
of) the spaceGrgb:'uadm together with its universal Qp-local system was announced over eight years
ago by Kedlaya-Liu, and the possibility of constructing this space by some version of the argument
we give was one of the primary motivations for the writing of [KL15]. In the case of minusculey,
Rapoport and Viehmann formulated (prior to the invention of diamonds and the proof of Theorem
1.2) a very precise qualitative description of the spaceshts ,n in [RV14]. As far as we can tell,
though, the idea that spaces likeShtg ,,, might exist in some reasonable geometric category for an
arbitrary Hodge cocharactenu is due entirely to Scholze. (We also note that an analogous thorem
holds for the spacesShtg g b, and this is a much more subtle result; indeed, the fact thatShtg g .
is a locally spatial diamond is one of the main theorems of§W17].)



1.2 Cohomology of moduli of local shtukas

One of the primary motivations for studying spaces like Shtg ,,, is that their Q--cohomology is
widely expected to realize instances of the local Langlandsorrespondence forG and the local
Jacquet-Langlands correspondence betweeB and J,. In the particular case whenb is basic, the
group Jy is an inner form of G, and a precise conjecture was formulated by Kottwitz. Very roughly,
KottwitzOs conjecture predicts that for$ : Weg $ - G(Q-) a discrete L-parameter and! (resp. %
an irreducible smooth representation ofG (resp. Jp) in the discrete L-packet associated with$, the
virtual WE -representatior?
, $ 9 & &
(( 1)'Homg: 5, H} Sht ub %g,qe SPAEEQ 11 %
i&0

coincides with some number of copies of, ' $, wherer, is the algebraic representation of-G
with highest weight p, and that this number can be read o! from expected propertiesof the lo-
cal Langlands correspondence. In particular, KottwitzOsanjecture implies that for b basic, every
supercuspidal representation ofG occurs in the geometric Ztale cohomology dShtg wh -

On the other hand, whenbis not basic, Harris conjectured that no supercuspidal representation
of G contributes to the Euler characteristic of H{ (Shtg 5, Q") [HarOlL This follows from a more
quantitative statement, which we now describe. To formulate HarrisOs conjecture, leM [y 17 be
the standard Levi subgroup centralizing the B -dominant Newton cocharacter &y 17! X (T )q,dom -

After possibly replacing b by a " -conjugate, we can and do assume thav! M 1](F_3‘) and that &, 1
isM y 1](@)-conjugate to &y 1y; if these properties hold, we sayb is well-chosen® For any standard
Levi subgroup M containing M, 1, consider the Pnite set of cocharacters

WipM)= "1 X (T)m~dom ) Wap|[b ]! B(M,')(,

where W denotes the absolute Weyl group ofG. For each’ !W (M), the tuple (M,',b) debPnes
a local shtuka datum. In the setting of p-divisible groups (i.e., for minusculep), Harris conjectured
a formula expressing (roughly) the %part of the virtual representation
# % &
((1)"H. Shts up %spq @ SPAES Q-
i&0

in terms of the %part of the virtual representation
# # o $ 3 _ &&
((1)"IndS H{ Shtw 4p %spq @ SPAES Q-
#W up (M) &0

Here P is the standard parabolic with Levi factor M, and %denotes any irreducible smooth repre-
sentation of J,. We note that HarrisOs original formulation of his conjectue was slightly wrong for
nonsplit G, and the corrected formulation given above (and its generatation beyond the quasisplit
case) is due to Viehmann, cf. RvV14, Conj. 8.4] for the most general statement. We follow Rapopd
in calling this general statement the Harris-Viehmann conjecture.

Let us note right away that itOs a little delicate to extend HarisOs conjecture beyond the case of
minuscule y, since there are cases where the s&¥,, (M) as dePned above is empty (although there

2Cf. u4.3 for a precise discussion of the cohomology groups H (!, Q) considered here.
3The presence of inverses here (and elsewhere) is related to the negation of slopes which occurs when passing from
b to the associated bundle Ey: the Oslope cocharacterO oF, is given by !, 1.



is a natural way to modify the debnition of W, (M) which bxes this problem). However, it still
seems reasonable to expect that for any ! W ,,(M), the cohomology ofShty #, contributes to
the cohomology ofShtg b in some way. Note in particular that if p!W (M), we at least have
a natural map of diamonds

Shty o $ Shtg up.

and one can ask how close this map, or some parabolic inductioof it, comes to describing the
total cohomology of Shtg ,n. One of the main results of this article is that when G = GL , and
the datum (G, u, b) is Hodge-Newton reduciblein the sense debned below, there is a canonical Levi
subgroupM " G such that this map completely accounts for the cohomology ofts target.

1.3 A canonical retraction of period domains

We now set up the notation and terminology necessary to stateour results precisely. For the
remainder of the paper, we restrict our attention to the caseG = GL ,/E . Let B be the upper-
triangular Borel, and choose aB-dominant diagonal cocharacterp with exponents (k; * 4aa *
ky)! Z". As usual, we conRategu with the ordered tuple of k; Os, and we conRaté -bundles on any
Xsi = Xg' g with rank n vector bundles.

Fix an elementb! GL,(&) with [0 ! B(G,p" 1), and let E, s denote the associated rankn
vector bundle on the relative Fargues-Fontaine curveXs: for any S! Perfd, 4 as before. Any map
S$ T induces a canonical mapXs: $ X 1. such that the pullback of E, ;. identibes naturally with
E,s' - In particular, we sometimes denote the bundle agnosticajl by E,.* For simplicity we assume
that k, * 0,° so anS-point f : S$ Grg_, u corresponds to a modibcation of vector bundles

U:FIXSM SfEb,S! |Xsl! S

which is elective, i.e. a modiPcation for which u extends to an injectionu : F ¢ E , 5 of Pnite

locally free Ox -modules. By debnition, such a modibcation lies in theadmissible IocusGrEb adm
debned earlier if and only ifF is pointwise-semistable of slope zero at all points ofS|; WeOII refer
to an S-point (F,u) ! GrEb Eldm(S) as anadmissible (type-1) modibcation of i, along S.

Let0=F " B " Egaaél E; = B denote the slope Pltration of B, where s denotes the
number of distinct slopes ofE,. Each E}/ Et'J lisa semlstable vector bundle, with strictly decreasing
slopes as a function of. The condition [b]! B(G, " ') unwinds in this setting to the usual relation
between Newton and Hodge polygons, or equivalently to the aadition that the inequality

_ #
deg®,) + Ki
18] $ rank( E})
holds for every1 + i + s, with equality for i = s. Let | ,{ 1,...,s} denote the ordered set of
integers for which this inequality is an equality; sinces! | always,|I| * 1.

DePnition 1.3. The datum (G, ,b) is Hodge-Newton (HN-) reducibleif |I| * 2. We say E| is
HN-reducing if i 'l # {s}.

Graphically, this is equivalent to requiring that aside from touching at their endpoints, the
Newton and Hodge polygons also touch at some interior breakgint of the Newton polygon.

4Whereby weOre really regarding it as an Fq-point of the stack Bunn. . )
5This is no restriction on our results, since it can always be a chieved by a suitable Ocentral twistingO of the datum
(b, w) which leaves all spaces in question essentially unchanged.



Remark. When p is minuscule, itOs easy to check that at most two interior brakpoints of the Newton
polygon touch the Hodge polygon. For non-minusculeu, however, the number of such points can
be arbitrarily large.

Letl = {i;< adqix=s}"{ 1,...,s} be the ordered set of indices in the slope pltration as
debned above, and lefd;,...,d}! N k denote the ordered set

{rank(E*), rank(E2/ '), ..., rank(Ex/ E' 1)}
Consider the standard Levi

GLg,

4ok R =

GLd2 -

GLg,

and let P = MU be the associated standard parabolic. We shall refer taM and P as the
Hodge-Newton Levi (resp. Hodge-Newton paraboli} associated with the datum (G, , b). Note
that (G, u,b) is Hodge-Newton reducible if and only ifM " G. After possibly replacing b by a
" -conjugate, we can and do assume thab is well-chosen, so in particular we have an inclusion

b! My y(E) " M ().

Writing by, for the projection of b into the mth block of M, we then get a decompositiong, &
- 1siskBn, Or equivalently a canonical reduction of B, to an M -bundle, such that the induced
P -bundle structure on g, is a coarsening of the slope Ppltration.

Writing Py, for the projection of p into the mth block of M, one easily checks that we have a
product decomposition

Grum & GrGLd1,U1 0/OSpdE‘I ééég{?d@ GrGLdk‘uk
of diamonds overSde_El. One also checks that(M , p, b) debnes a local shtuka datum, which is
naturally decomposed into a direct product of local shtuka data, vis.

/k
(M!urb)& (GLdm’P-m,bm)-

m=1
This product decomposition induces canonical compatiblesomorphisms

Ep" adm & Ep, " adm 0 CAAAQ . Ep, " adm
Gry " & GrGLdI’HI /ospd@ aaas/&m. GrGLdeuk ,

and
Shty b = Sht Glaypyng O/OSpd i é.é.é.g/‘gd i ShtGLdk b -

There is also a compatible and canonical,-equivariant inclusion



induced by the decompositionE, & - 15iskE, and thereby sendingGrE,,”':uadm into Gr®" 2™ and

G.u
this inclusion bts into a diagram

Shty b Shtg ub
$em $om
|
Ep" adm i "~ Ep" adm
Gry " — Grg "

equivariant for all obvious group actions.
Next, we observe that the left and right columns of this diagram admit canonical actions of
certain groups objectsJ bM@ and J, s, respectively, extending the action ofJ,: hereJ,  and J bM@

are the functors onPerf, Spd sending anyS/F_EI to the group of bundle automorphismsAut( g, s ),
resp. to the subgroup of automorphisms which respect the camnical M -bundle structure described
above. Again, an elementj acts by sending a pair(F,u) to (F,j ' u). 1tOs not hard to see that

Jp, @ canonically decomposes as the semidirect produclb’v'@ $J bU@, where J bU@ is the subgroup of

elementsj ! Aut(E,) such thatj ( id carries eachg" into Et'{”’ ', and that J, < JM compatibly
with all group actions. The functor J s and its decorated variants are examples ogroup diamonds
overSde_E'. Our main observation, roughly speaking, is that in the HN-reducible setting these group
diamonds are Olarge enoughO to account for the dilerence Wween the period domains and shtuka
spaces associated witiM and those associated withG.

Our brst precise result along these lines is as follows.

Theorem 1.4. Maintain the notation and assumptions as above. Then
i. The inclusion i : Gry" 2™ 6 Grg *™ admits a canonical J % -equivariant retraction

. Ep" adm Ep" adm
r:Grg, " $ Gry .

In other words, any admissible typed modibcation (F,u) of E,s: along S admits a canonical re-
duction to a collection of admissible types, modibcations (Fn,, uy) of the bundlesg, s alongS,
forall 1+ m+ k= |l|.

ii. The natural action map

Ep" ad U Ep" ad
Gr,v,b’uf’1 m Yospg 1 J $ Ger’“a m
induced byi is surjective and pro-Ztale.

This result seems to be new even in the setting op-divisible groups.
Let us illustrate this theorem in the simple case whereE = Qp, G = GL,, p = (1,0), and
b=diag(p %, 1). Then M is the diagonal maximal torus and

Griy 2" = Gry , =Spd @,

1,!

is a single point. We also have a natural isomorphismGrg & P(g
P

Dwork, induces an isomorphism

which, by an old result of

GrE”yLadm & A glp



(cf. [RZ96]). Then i is just the inclusion of Sdep at the origin, and r is the structure map to
Spd®@,. More exotically, we Pnd that

u & +%:p&_$ > p” &aa
‘]b,@p = Bcr)’/s = Spfzp[[T ]] &
is representable by an open preperfectoid ball oveSpa@p, and the action of this on Grgb:'uadm is
given as follows: for anyS = Spa(A,A*) ! Perf,@p, an element;j ! Bgr;ng(A) acts by sending an
element iy
al A= Hom,spd@p(Spd(A,AW,Aé'p)

to the elementa+ ) (j). Finally, the map in part ii. is just the usual surjection ) : Bz#=P " A™!.

Thus, even in this simple caseJ bU@ is not a classical object: itOs a group object in preperfedtb
1< p ~
spaces. This may explain why the actions ofl | 8, and J bU@ at the level of period domains havenOt
: 8,
been much exploited.

1.4 The idea behind the canonical retraction

WeQd like to explain in detail the construction of the retration r from Theorem 1.4.i at the level of
S-points in the case wherg|S| is a single point, i.e. whenS = Spa(K, O ) for some perfectoid Peld
K/ . Choose such arS, and let X = Xy ¢ be the associated Fargues-Fontaine curve. This is a
locally Noetherian quasicompact adic curve, and we have a naral closed immersioni : S $ X .
Let
0$F $E$QS$ O

be a short exact sequence of coherent sheaves ¥n where F and E are rank n vector bundles and
Q is supported at the distinguished point x(. ) := i(|S|) ! |X]| . The stalk Q = Q) is then a
Pnite torsion module over the discrete valuation ring

& x () & Bir (K).

With u = (ks *4daa*ky)! Z" as before, we sayF,u) is a type-4 modibcation of E along S if
there is an isomorphism
Q/- 1sisnBgr(K)* X

(here * denotes any uniformizer ofB (K)).

Theorem 1.5. With the notation and assumptions as above, leE* , E be any saturated subbundle,
i.e. any subbundle such thak/ E* is also a vector bundle; seE* = F)E *. Then if F is semistable
of slope zero, we have the inequality
#
degE") + K .
1$j$ rank( E*)

If F is semistable of slope zero and equality holds in the previgunequality, then F* is also
semistable of slope zero, and

EY/FT - 18 i$ rank( E*)BQR (K )/* K

is a direct summand ofQ.



In the setting of Theorem 1.4, we apply this result with E = E, 5: and with (F,u) corresponding
to a (K, Ok )-point of Grg’,*™. Then for any 1+ i + s such that E' = E 4, is HN-reducing, the

equality deg(E') = 14 rank &) ki holds by assumption, so by Theorent..5the bundle F' = F)E !
is semistable of slope zero, and the module

Q :=im(E'$ Q=FE/F", Q
is described by the isomorphism
Q' /- 1gjsrank( ey Bar (K)/* Y.
Moreover, Q' is a direct summand ofQ. Forming these objects for alli I | , we get a canonical Rag
0" Fl*" 444 Fx=F

of vector subbundles ofF with each step semistable of slope zero and with successiveaged pieces
of ranks dy, ..., dk; we call this Bag the Hodge-Newton Pltration of F. The successive quotients

Fm=Fm/Fim2
are all semistable of slope zero as well, and they sit in natal short exact sequences
0$F n FEM/Em*$ Qm/Q'™' * $ 0.
But now an easy induction on m shows that
Qm/Q'm + /- rank( E'm! 1)<j $ rank( £1m ) Bar (K)/* 4,

so we conclude that each pair(Fm,un) is canonically an admissible typeprn modiPcation of
Em/Emi 1 & E,, along S! Therefore we get a canonical map

r:Grg *M(K, Ok) $ G/r,\E,lb':padm(K, Ok )

(F,u) 0% (Fm,um)
1$m$ k

on (K, Ok )-points, and this is clearly a retraction of the inclusion
Gry 2™ (K, Ok) " Grg > ™ (K, Ok).
Let us remark here that the Hodge-Newton Pltration
0" F1" 444 F'x=F

debned above is our analogue of the Hodge-Newton bltratiorf @ p-divisible group [MV10], and the
role it plays in this paper is analogous with the role of the Halge-Newton Pltration in [Man08g]. In
fact, itOs not hard to reprove the main results in §1V10] by combining Theorem 1.5 with some of
the ideas in BW13], but we wonOt pursue this here.

Happily, the argument for Theorem 1.5 is short and direct, requiring only the basic properties
of modibcations and slopes together with a piece of elementa commutative algebra. However, in
order to deduce Theoreml.4 in full, we need arelative version of Theorem1.5 treating the situation

10



where S = Spa(A,A™*) is an arbitrary a"noid perfectoid space over . This is harder, for at least
two good reasons:

1. The relative curve Xg: is not locally Noetherian in general.

2. In the relative setting thereOs na priori reason forF ) E * to even be a vector bundle.
Our strategy for the relative version of Theorem 1.5, which is stated and proved as Theorem3.1
below, is to reduce to the pointwise result above by way of som careful commutative algebra
over the relative Fontaine ring B (A). Trle arguments here are somewhat technical, and rely
crucially on various results from Kedlaya-LiuOs foundatinal volumes on relativep-adic Hodge theory
[KL15, KL16].

1.5 Adding inbnite level structure, and cohomological cons equences

Returning to the setting of ©1.3, we now want to equivariantly lift the structures exhibited in
Theorem 1.4 to similar structures on moduli of shtukas with inpbnite level structure. Following
Mantovan, we do this by dePning an intermediate spacé&htp ,, of P-shtukas. The precise debnition
is as follows: for any perfectoid spaces over B, the S- -points of Shtp ;,, consist of isomorphism
classes of triples(F,u,#P) where (F,u) is an S-point of GrEb adm and #P - 0g | §F isa
trivialization matching the 3ag .

" d; n di+dy v 4 4 n
0 OXs! OXs! aaa Ox.,
with the Hodge-Newton Rag _ _
0" F'*" F'2" 444 F
constructed in &1.4. In particular, we have inclusions of shfunctors

® @

Shty b Shtpyp’b ' Shteyp,b,

and there is a natural action of P on Shtp ,, compatible with the M - and G-actions on Shty
and Shtg . There is also a natural action ofJ b = J 'V'\ $ J U on Shtp ;5 making the inclusions

(1) and (2) J -equarlant and J, z-equivariant, respectlvely

The next two theorems give a precise meaning to the expectatin that Shtp ,, should mediate
betweenShtg ,,, and Shty .

Theorem 1.6. The inclusion Shtp ,, " Shtg ,b induces a canonical equivariant identiPcation
Shtg up & Shte up %~ G.

In particular, the period map
I o™ Shtp ub $ GI'Eb adm

is a pro-Ztale P-torsor, and there is a canomcaIG—equwarlant isomorphism

$ & $ % &&
He Shtg b Y%gpqw SPAC, Z/+" & inds H¢ Shte up % @ SPAC, Z/+"

of smooth G-representations preserving degrees and compatible withlahdditional structures; here
|ndG denotes unnormalized smooth induction, andC/ & is any complete algebraically closed beld. A
S|m|Iar formula holds for Q--coe"cients.
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This theorem is a completely straightforward consequencefahe results weOve proved so far. On
the other hand, the following theorem is not obvious.

Theorem 1.7. The natural action map
as : Shtv b Ygpq Jpm $ Shte b

is an isomorphismof diamonds In particular, the retraction r lifts canonically to a retraction rq, of
the natural inclusion Shty ,p " Shtp b, With Pbers given by canonically trivialJ bU -torsors. More
precisely, the diagram

with the mapry, debned asa,,' followed by the natural projection

Shtw ub Ygpq Jbtf@ @ Shtv up-

The extremely simple structure of the mapas, came as a surprise to u$. Note that by the prst
claim of this theorem, the product Shty b %g,q @ J b‘f@ inherits a canonical P -action; we caution the
reader that although the action of M " P is indeed the obvious one, given by its natural action on
the Prst factor, the full P-action mixes both factors in a way which seems a little tricky to describe
directly. In particular, it seems hard to see the simple strwctures in this theorem at any Pnite level;
they only reveal themselves at inPnite level.

The following diagram summarizes the situation so far in a maner which we hope is suggestive:

61t turns out there is a heuristic explanation for this struct  ure based on comparing the Hodge-Tate period maps
out of Shtg 1 and Shty b , but we only discovered this heuristic after the fact.
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htp 11 by
- e (")
I

Shty b "ShtG ub
$em r $em
& T~
Ep" adm i "~ Ep" adm
GrMb]“ Ger,u

Fig. 1: A suggestive diagram?

Finally, combining the preceding analysis with a calculation of the geometric Ztale cohomology
of J U\ and some consequences of a cohomological formalism for diands recently developed by

Scholze Bch17, we deduce our main cohomological result.

Theorem 1.8. There are canonical G-equivariant isomorphisms
$ & $ 8 & &
He Shic b Y%gpqw SPAC, Z/+" & indg HY *' Shty b Y%spqw SPAC, Z/+" (( d)

for all i * O compatible with all additional structures, whered = dimShtg b ( dimShty yp; in

particular, if C = ﬁ{’ these isomorphisms are compatible with the natura¥Ve -actions on both sides.
Here again de denotes unnormalized smooth induction, andC/ &l is any complete algebraically
closed peld.

Let us sketch the proof of this result. Since Theo[enﬂ.G describes the cohomology oShtg 1 as
the smooth induction of the cohomology ofShtp 1, itOs enough to relate the cohomologies 8htp b
and Shty . The idea now is that from the viewpoint of +adic cohomology,J U@ is OcontractibleO
in a certain precise sense, so the magy, from Theorem 1.7 should induce an isomorphism between
the cohomologies ofShty ,,» and Shtp 1, at least up to a twist and a shift in degree. For a precise
statement, see Theorem.13

The main technical point here is the calculation of the compatly supported Ztale cohomology
R! ¢(J bHJC,Z/+“). Forgetting any possible Galois actions, it is not so hard toshow that this is the

expected shift of the constant sheafZ/+". However, whenC = 20 we would also like a precise
description of the Wg -action, and although the answer is easy to guess, proving iturns out to
be much more subtle. This calculation occupies most of ©4.3, and expits the full power of the
six-functor formalism for diamonds developed in §ch17. The essential point here is Proposition
4.8, which should have numerous other applications.

One can also prove a similar result withQ--coe"cients.

1.6 Other results

At the time we brst posted these results in preprint form, in the summer of 2016, we planned to
treat the case of general groups in a sequel paper written jatly with Jared Weinstein. However,
we then learned that Gaisin and Imai had also been working alog similar lines, and very shortly

7Cf. 14.3 for a discussion of the results from [ Sch17] which we need.
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afterwards they were able to treat the case of general group®y combining our results on canonical
bltrations with Tannakian methods in the expected way [G116].

Let us also note that Scholze has announced a proof of the fulflarris-Viehmann conjecture (and
presumably its non-minuscule analogue as well), using ideadrawn from geometric Langlands. As
far as we can tell, the results of the present paper (togethewith their generalizations in [GI16]) are
neither strictly weaker nor stronger than ScholzeOs ressit our methods only apply in the Hodge-
Newton reducible case, but when they do apply they yield veryprecise information. In particular,
rather than studying an alternating sum of cohomology grous as in the Harris-Viehmann conjecture,
we prove (as Mantovan did before us) that in the Hodge-Newtonreducible case, theindividual
geometric Ztale cohomology groups o8htg wb are all parabolically induced.
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2 Preliminaries

2.1 Notation, terminology, and assumptions

This paper freely uses the language of diamonds as develop@u[Sch17 and [SW17]; in 24.3 weOll
also use the full power of the six-functor formalism developd in [Sch17.

If X is any analytic adic space overSpaZ, with associated diamond X', there is a natural
equivalence of categorie®erfd,y & perf)y  , and we will use this without any particular comment.

If R is a DVR with uniformizer !, and M is a nonzero Pnite torsionR-module, then M /
- 13isn R/ K for some uniquely determined ordered sequence of positivategers u(M) = (ki *
444 *k,) (where of coursen = dim g M/!M ). We will slightly abusively refer to the ordered
sequence ok;Os as thelementary divisors of M (as an R-module). For convenience we extend;
to a function of all i * 1 by setting kn+1 = kn+2 = a4&0.

Throughout the remainder of the paper, we shall only explictly consider the caseE = Q, of
the objects and results described in the introduction. Fromthe point of view of proofs, there is no
danger here: the only real change necessary to explicitly &at generalE in the proofs which follow
is to make the following systematic replacements:

¥ replace all appearances on with &:

¥ replace all appearances of the Witt vectorsW (( ) with the functor

Woe (() = W(( ) #w e, Oe

of Og -Witt vectors;
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¥ replace all appearances of the Witt vector Frobenius with he natural g-Frobenius$4 = $' # 1
on Wo, (( ).

2.2 Some module theory over By

In this section we do some module theory over the relative Fotaine ring Bj;. The relevance of
the material here will become clear in the next subsection (& in particular Remark 2.8 and the
Theorem immediately thereafter).

Fix a perfectoid Tate ring A/ Qp, so we have the usual period ringB s (A), debned as theker)-
adic completion ofW(A)!)[%], where) : W(A)!)[%] " A is the usual surjection of p-adic Hodge
theory. Recall that the kernel of ) is principal and generated by a non-zero-divisor which is unique
up to multiplication by a unit. We bx a choice of * in what follows; nothing will depend on this
choice.

DePnition 2.1. A By, (A)-module M is Pnite projective virtually (fpv) over A if M can be resolved
by a short exact sequence
0% P1$ Pp$ M$ O

where Py and Py are bnite projective B} (A)-modules, and some bnite power of kills M .

In other words, M is fpv over A if M is *-torsion and 1-fpd as a Bz (A)-module in the sense
of [KL16, =1.1]. Note the placement of the word OvirtuallyQM is typically not an A-module, since
B,r (A) is not an A-algebra. Observe that any Pnite direct sum- By, (A)/* " is fpv over A, and so
is any Pnite projective A-module regarded as @B}, (A)-module via). Observe also that if A = K
is a perfectoid peld, thenB}; (K ) is a DVR, in which case modules fpv ovelK coincide with Pnite
torsion B (K )-modules.

We regard modules fpv overA as a full subcategory of the category ofB}; (A)-modules. By
[KL16, Lemma 1.1.5(d)], the property of being fpv overA is stable under formation of extensions.
We record some further properties as a lemma.

Lemma 2.2. i. Let
0$ M1$ M>$ M3$ O

be an exact sequence @, (A)-modules.

i. If M, is Pnite projective andM 3 is fpv over A, then M, is Pnite projective. In fact, if My is
Pnite projective and M3 is *-torsion, then M is Pnite projective if and only if M3 is fpv over A.

ii. If M is fpv over A, then so are the submodule$"M and M [*"] for any n.

i. f0O$ M$ N$ L$ 0isan exact sequence oB};(A)-modules such thatN and L are
both fpv, thenM is fpv.

iv. f0$ M $ N$ L$ Oisan exact sequence oB);(A)-modules such thatM and L are
both fpv, thenN is fpv.

In part ii. here (and elsewhere in what follows),*"M " M is shorthand for im(M %n M).

Proof. Parts i., iii. and iv. are easy, by repeated application of KL16, Lemma 1.1.5]. For part ii.,
we note that M/* "M is 2-fpd by [KL16, Remark 1.1.3], so then considering the sequence

0$ *"M$ M$ M*"M$ O
[KL16, Lemma 1.1.5(f)] shows that*"M is 1-fpd, and hence fpv. But then looking at the sequence
0$ M[*"]$ M $ *"M $ 0,

15



part iii. implies that M [*"] is fpv. O

Proposition 2.3.  If M is a B (A)-module which is fpv overA, and N , M is a direct summand
of M, then N is fpv over A.

Proof. Let (M) < . be the smallest positive integere such that *€ kills M. We prove the claim
by induction on e(M). When ¢(M) = 1, the result is clear: in this case,M is a Pnite projective
A-module, andN is a direct summand thereof, so also Pnite projective oveA. In general, we have
a commutative diagram with exact rows

0 N [*] N *N 0

0 "M [*] M "M 0

where the vertical arrows identify the upper row as a direct ammand of the lower row, in the
evident sense. Bute(M[*]) =1 ande(*M) = ¢M) ( 1, soN[*] and *N are fpv over A by the
induction hypothesis. Since the property of being fpv overA is stable under forming extensions, we
get the result. O

The next result gives a pointwise criterion for a B (A)-module to be fpv overA; this criterion
plays a key role in our proof of Theorem1.4.

Proposition 2.4.  Let N be a nonzeroBj (A)-module which is Pnitely generated and-torsion. If

the elementary divisors ofNy, = N # BL (A) Bir (Kx) as aB (K x)-module are locally constant (i.e.,
R

continuous) as functions ofx ! Spa(A, A’), then N is fpv over A.
Before proving this, we need a little lemma.
Lemma 2.5. Let M be a bnite projectiveA-module, viewed as & (A)-module via). Then

Tor?dR (A)

(M, Bgr(Kx)) =0
for any x | Spa(A, A)).

Proof. We easily reduce to the casél = A. Applying (# BL (A) Bjr (Kx) to the resolution

0% B'r(A)$ BiL(A)$ AS O,

the result then follows from the fact that * is a non-zero-divisor inB}; (A) and in B} (K ). O

Proof of Proposition 2.4, Let kyx * kax * ... be the elementary divisors ofNy as aBgR(KX)—
module, so by hypothesis the functionx 0$k;x is locally constant. Note that e(N) = sup, ki x .
We brst show that N/*N is a Pnite projective A-module. To see this, note that our assumptions
imply the rank of
Nx/*N x = (N/*N ) #a Ky
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as aK y-vector space is locally constant, since this rank is simplghe number of i Os for whiclk;, > 0.
SinceN/*N is a bnitely generatedA-module and A is a uniform Banach ring, [KL15, Prop. 2.8.4]
now implies that N/*N is a Pnite projective A-module.

We now argue by induction one(N). If ¢N) =1, then N = N/*N is a Pnite projective A-
module by the argument of the previous paragraph, sdN is fpv over A. If e(N) > 1, consider the
short exact sequence

0% *N$ N$ N*N $ O

SinceN/*N is a Pnite projective A-module, we see by the previous lemma that this sequence rernnas
exact after applying (# BL. (A) B, (Kx), so in particular the natural map

(*N)x = (*N)#BQR (A) BER(KX) $ *Ny

is an isomorphism for anyx ! Spa(A,A)). Since the elementary divisors of*N, are given by the
locally constant functions max(kix ( 1,0), this implies that the elementary divisors of (*N )y are
locally constant; since moreovere(*N ) = e(N) ( 1, the induction hypothesis now shows that*N is
fpv over A. Looking again at the sequence

0% *N$ N$ N*N $ 0

and using the fact that the property of being fpv over A is stable under forming extensions, we
deduce thatN is fpv over A. O

2.3 Vector bundles and modibcations on relative curves

Throughout this section, let S denote a perfectoid space oveQ,, with tilt S'. Unless explicitly
stated otherwise, we assumeS is a'noid perfectoid (so S' is as well), in which case we write
S =Spa(A,A*) and S' = Spa(R, R*); we choose this notation for compatibility with [KL15, =8].

We brst summarize some material from KL15, ©8.7-8.9]. For any a"noid perfectoid S =
Spa(A,A*) as above, letX = Xg denote the adic Fargues-Fontaine curve ovelS'. This is de-
Pned as the quotientY/$ Z, where

Y =Yg " SpaW(R")

is the adic space
Ys =SpaW(R") # {x||p[, ]lx =0}

and $ is the natural (properly discontinuous) automorphism of Y induced by the Witt vector

Frobenius. (Here, ! R* is any pseudouniformizer forR.) There is a canonical Zariski-closed
embeddingi : S $ X g of adic spaces oveQ, which realizesS as a relative Cartier divisor inside
Xgr. Writing ! : Yg " Xg for the canonical projection, i lifts canonically along ! to a Zariski-

closed embeddingr: S $ Y &, with this latter embedding coming (at the level of rings) from the
usual theta map
) CW(RY)" A*.
Let O(1) be the canonical ample line bundle onX, and debne the graded ring
Pr = - igoH %(X, O(i)).

Then X = Xg = Proj( Pr) is the schematic Fargues-Fontaine curve associated witl8'. Set
Z = Spec(A), so we have a canonical closed immersian $ X such that the completion of X along
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Z is canonically identiped with Z := SpecB;(A). Furthermore, the subschemeX # Z of X is
a'ne; we debne Be(A) = HO(X # Z, Ox) to be its coordinate ring. These objects all bt together
into a canonical commutative diagram of locally ringed spaes

over SpecQ, covariantly functorial in morphisms
f:S=Spa(A,A")$ T =Spa(B,B*)

of a"noid perfectoid spaces overQ,. One easily checks thatiff : S$ T is an open immersion, then
so is the induced mapYs: $Y :; combining this with an easy gluing argument shows thatX and
Y, and the rightmost column of the above diagram, exist for arbtrary (i.e., possibly non-a"noid)
perfectoid spaces oveQ.

Theorem 2.6 (Kedlaya-Liu). Let S = Spa(A,A™) be any a"noid perfectoid space overQp. Then
with the setup as above,

i. Pullback along the morphisnmf 2" induces an equivalence of exact tensor categories from vecto
bundles onX to vector bundles onX.

ii. Pulling back along the pair of morphismg(fe, f j3) and then passing to global sections induces
an equivalence of exact tensor categories from vector bundgl@n X to B-pairs over A.

iii. Pullback along the morphism! induces an equivalence of exact tensor categories from vecto
bundles onX to $-equivariant vector bundles onY.

Proof. Parts i. and ii. follow immediately by combining Theorems 8.7.7 and 8.9.6 of KL15], and
part iii. is trivial. O

In this context, a B-pair over A is a pairM = (Mg, M ;) WhereM¢ is a Pnite projective B¢(A)-
module and M j is a bnite projective B}, (A)-lattice inside the bnite projective Bqg (A)-module

Mgr = Me#g,(a) Bar (A).

If Eis a vector bundle onX (or on X), we write M (E) = ( M¢(E), M j5 (E)) for the associated B-pair;
we denote the inverse functor from B-pairs to vector bundlesoy M 0$ V(M ).

We remark that by the functoriality of the assignment S# Xg:, any point x ! Spa(A,A*) gives
rise to a morphism

Sx t Xspak, k1) $X i
If Eis a vector bundle onXs:, we abbreviate the pullback s,E on Xg.x, « :y by Ex. Note that
E; corresponds to the B-pair overK given by
$ &
Me(E) #3g,(a) Be(Kx), Mg (E) # 5 (a) Bgr (Kx)
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Debnition 2.7. Let S be any perfectoid space oveQ,. An elective modibcation along S is a
triple (E,F,u) where E and F are vector bundles onXs:, and u : F $ E is an injective map of
Ox -modules such thatE/u (F) is killed (locally on X) by a bnite power of the ideal sheaf cutting
out Sin Xg:'. When E is given, we also speak ofF , u) as being anelective modibcation of E along
S.

An elective modibcation along S is admissible if Fy is semistable of slope zero for all points
x! S.

Regarding this last piece of terminology, recall that whenS = Spa(K, Ok ) is a point, Fargues-
Fontaine [FF15] constructed a canonical slope Pltration on any bundle oveXs: ; we say a bundle is
semistable if its slope bltration has a unique nonzero stepAs usual, weQll use the terms Osemistable
of slope zeroO and OZtaleO interchangeably.

Elective modibcations along S form an exact tensor categoryE" ;s in an obvious manner, and
any morphismf : S $ T of perfectoid spaces ove®, induces a pullback functorf' :E" 5 $E " /s .

Remark 2.8. If E is a vector bundle onX with associated B-pair (Me,M jz), and N , M 4 is any
Bjg (A) submodule such thatN 1= M jr [£] = Mgr, then the following are equivalent:

1. N is a Pnite projective B s (A)-module.

2. M /N is fpv over A.

3. The pair (Me,N) is in the essential image ofM (( ) (in which case V(Me,N) $ E is an
elective modibcation of E along S).

Indeed, 1. and 2. are equivalent by Lemma2.2.i, and 1. and 3. are equivalent by Theorem?2.6.
This explains the appearance of the fpv condition in the folbwing theorem.

Theorem 2.9. Let S = Spa(A,A™) be an a"noid perfectoid space overQ,, and let E be a vector
bundle onXg'. Then we have a functorial identibcation between the set of anorphism classes
of elective modibcations of E along S, and the set of B} (A)-submodulesN , M j;(E) such that
Mg (E)/N is fpv overA.

Proof. The functor in one direction sends(F,u) to
Mar(U)' Mz (F), Mg (E).

For the functor in the other direction, set M " = (Mg(E),N). This is a B-pair, and by construction
there is a natural injection of B-pairs - : M* $ M(E); setF = V(M") and u = V(-). Since
V(() is an equivalence of exact tensor categories) : F $ E is injective. Moreover, since- is an
isomorphism on the Be-terms of the B-pairs M (E) and M”, u is an isomorphism away from the
closed immersionS " X . The remaining veribcations are then an easy unwinding, talng Remark
2.8 into account. O

Debnition 2.10. If E is a vector bundle onXg: and (F,u) is an elective modibcation along S
with associated de Rham moduleN = M 5 (F), M j; (E), then for any point x ! | S| we dePne the
type of the modibcation at x, denoted px (F, u), as the ordered sequence of elementary divisors of
the Pnite torsion B (K x)-module

(Mir (BYN ) #: () Bl (K5).

In this terminology, the open Schubert cell Grg_, . can be debned as follows.
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Debnition 2.11. Forany n* 2and any p = (ky *aaa*kn,) with ky * 0, Grg., u is the functor
sendingS ! Perfd, o, to the set of isomorphism classes of elective modibcationsfd);}s! along
S of constant type p. Equivalently, GrgL, . (Spa(A,A*)) is the set of Pnite projective B} (A)-
submodulesN , B}, (A)" with *-torsion quotient such that

(Bgr (A)"IN )#BER (A) Bir (Kx)
has elementary divisors given byu for all x ! | Spa(®, A*)|.

By [SW17, Corollary 19.3.4], GrgL, u is a locally spatial diamond.

In the remainder of this subsection, we explain the proof of heorem1.2.i.-iv., in the case where
E = Qpand G = GL,. Let us bxp as in the previous debnition, together with an element
b! GLn(@,) such that [ ! B(GL,,u ). If S=Spa(A,A*) is any a"noid perfectoid space over
Qp, then Yg is naturally an adic space over(“ap via the maps

Gp = W(FERIE$ WATEIS$O v,

and the Frobenius$ on Y is "-semilinear. In particular, we may debne a$-equivariant rank n
vector bundle onYg via the formula

. $ ‘ &
(Bn$e)= Oy#g GL8#0D"

let E,s: be the corresponding vector bundle orXg: . The assignmentS # E, ! is clearly functorial
in morphisms S $ T of perfectoid spaces over. Note also that if b lies in GL,(Qp ) for some
Pnite unramibed extensionQp " Qp " @p, then E,5: is well-debned for anyS over Q. (as
opposed to@p). . )

_ It seems to us that @crys (A)O is not well-dePned for an arbitraryA; however, if Q¢ , A, then
itOs reasonable to debne this ring by the formula

Bcrys (A) = Bgrys (A) # Bays (QF°) BC"VS (ngc)

Note that with this dePnition, the expected isomorphism Be(A) & Berys (A)*F! is indeed true. With
this in mind, itOs not hard to show that when Qy° ., A, the B-pair over A corresponding to
By spa(aa +) can be explicitly described via identipcations

$ . S by =1
Me(Eb,S‘) = Bcrys(A)#@p QB )
Mir(Bos:) = Bir(A)"
The key point here is the observation that the canonical map
$ &t by =1

Bcrys (A) #@p @B # Be(A) Bcrys (A)$ Bcrys (A) #@p @B = Bcrys (A)n
is an isomorphism, so the scalar extension oM¢(E,s:) along Be(A) $ Bgr(A) is canonically
identibed with Bgyr (A)".

Combining this description of M (§,) with Theorem 2.9 and Debpnition 2.11 (and making use of
an easy pro-Ztale descent to get rid of the assumptioQ’ , A), we obtain the following result.
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Proposition 2.12.  For any bxedb! GLn(Qp) and any p = (ky *ada*ky)! Z" with ky, * 0 as
before, the functor .

GrGL W Q =Gr GL .1 (VOSde Sdep
is canonically identiPed with the functor Perfd, /8, $ Setssending S to the set of isomorphism
classes of elective modibcationgF , u) of Ebs. along S of constant type . In particular, the latter
functor is a locally spatial diamond overSdep

Maintaining the notation and interpretation of Grg, W, provided by this proposition, let

E," adm .
Gral,m " GfeL, w @,

be the subfunctor debPned by the following condition: anS-point

$ &
(F,u)! GroL, w @, (S)

factors through an S-point of GrgbL"n"fﬂm if and only if the bundle Fy is semistable of slope zero at

every point x | S. Since all the data ofn, , b are Pxed, weOll sometimes abbrevia@rg; ™ to

Gra™ in what follows.

Theorem 2.13. The functor GrgbL"n"fﬂm is a locally spatial diamond overSpd@p, and is naturally
open and partially proper as a subdiamond o6Grg, W,

Proof. Let S be any perfectoid space over, and letf : S' $ GrGLn,pI 8, be any S-point of
GrGLn’u, 8, with (F,u) the associated modibcation off,s: along S. Let |S|29™ " | S| be the set

of points x ! | S| where Fy is semistable of slope zero. By Lemma 8.5.11 oK[15], |S|2™ "| S| is
open and partially proper, and hence corresponds to a partidy proper open immersion of perfectoid
spacesS2M " S, Putting this together with the debnition of Gr(E;bL fﬁm, we get a pullback square

(Sadm)! S!
g f
I I
E.," ad u n "
Grg. a“m GroL, w @,
of sheaves onPerffrsoe(;(tg Since S and f are arbitrary and v is open and patrtially proper, we
P

deduce that Grgt;_ fﬁm is an open subfunctor ofGrg W, and that u is a partially proper open
embedding. Finally, note that since Grg W, is a locally spatial diamond, any open subfunctor
U" Grg., w e, is alocally spatial diamond as well. O

Now let X be any perfectoid space. By Corollary 8.7.10 of{L15], the category Q,Loc(X) of
Qp-local systems onX is functorially equivalent to the category of vector bundles F on Xy with
the property that F, is Ztale at every pointx ! X. If F is a vector bundle with this property, let
V (F) denote the associated)-local system onX .

Proposition 2.14.  There is a rank n Qp-local system
_ $ .. &
aam
Vi Qploc Grg %
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characterized uniquely by the following universal property:dr any perfectoid spaceS over @p and
any S-point f : S' $ Grg; 2™, with (F,u) the associated (pointwise-Ztale) modiPcation 0, g:
along S, there is a canonical and functorial isomorphism

V(F) & f!vuniv
of Qp-local systems onS.

Proof. Choose some perfectoid space/ @p together with a surjective quasi-pro-Ztale mapg : X' $
Gra™ and let (F,u) be the associated Ouniversal® modibcation Bfy: along X. SinceF is
pointwise-Ztale by dePnition, we can form the associated r&k n Qp-local systemV (F) on X. Now
consider the pullback diagram

X ! CVOGradm X !
Iprl Ig
! 9 n adm
X Gr

of diamonds overG}p; note that X' %g,«m X' is representable. By the dePnition ofcrad™ it®s easy

to see that there is a canonical isomorphisnpr’ F & pryF which satisbes the usual cocycle condition,
so we get a descent datum foF relative to the quasi-pro-Ztale coverg. By the functoriality of V (( ),
this induces a descent datum forV (F) relative to g. Since Qp-local systems on diamonds satisfy
elective descent with respect to quasi-pro-Ztale covers his descent datum (unlike the one forF) is
elective, and we debneV """ as the associated descent of (F). The uniqueness and the claimed
properties of VU™ are then an easy veriPcation. O

At this point, weOre almost ready to constructShtg, | .wb . Before doing so, we quickly prove the
following result. Given any diamond D together with a rank n Qp-local systemV on D, let

Trivy,p : Perf,p $ Sets

be the functor on perfectoid spaces oveb sending anyf : T $D to the set
$ | &
Isomg , Loc(Ty Qp",fV

of trivializations of f'V.

Proposition 2.15.  The natural map Trivy,p $ D is surjective and pro-Ztale (so in particular,
Trivy,p is a diamond), and the natural GL,(Qp)-action on Trivy,;p makes it into a pro-Ztale
GLn(Qp)-torsor over D. If K " GLn(Qp) is any open compact subgroupTrivy,p/K_$ D is
separated and Ztale.

Proof. Note that if X is any adic space andV is any Qp-local system onX, then V admits a
Zp-lattice locally in the analytic topology on X ; more precisely, we can bnd a covering of by open
a'noids U; together with Z,-local systemsL; " V |y, such that V |y, / Li #z, Qp. This follows
immediately from Remark 8.4.5 and Corollary 8.4.7 in KL15]. o

Now, let T be any perfectoid space equipped with a rank Q,-local systemV . By construction,
Trivyr $ TisaGLn(Qp)-pretorsor, so it su“ces to prove that Trivy r is representable and that
Trivy s $ T is a pro-Ztale cover. These claims are local ofi, so we can assume thaT is a"noid
and that V admits a Zp-lattice Lo " V. As in [KL15], Remark 1.4.7, letLn(Lo) $ T be the
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functor parametrizing Zp-local systemsL " Lo#z, Qp = V such that p"Lo, L, p MLo. This
functor is representable by an a"noid perfectoid space and he mapLm(Lo) $ T is bnite Ztale and
surjective (since it has a section). Moreover, the natural nap L (Lo) $ Lm#(Lo) is an open and
closed immersion for anym + m’”. Let

Y = Laty =colimm g Lm(Lo)é1 T

be the functor parametrizing Z-lattices in V ; by our observations so far,Y is a countable disjoint
union of a"noid perfectoid spaces each Pnite Ztale oveiT, and the map h is surjective, so in
particular Y $ T is an Ztale cover. OverY we have a universalZ,-lattice LYV " h'V. Let

Triviww v :Perfy $ Sets
{gW$ Y} O$ |Somsz0C(W)(ﬁn,g!LuniV)

be the functor parametrizing trivializations of LU"V | so there is a natural equivariant isomorphism
Trivyr & Triv | wiv gy giveg by iending anX -point . : %" §f'v of Trivy r (lying over a given
f :X $ T)tothe lattice . Zz," " f'V together with its evident trivialization.

It thus su"ces to prove that for any Zp-local systemL on any perfectoid spaceY, the functor
Trivy,y is representable andTriv v $ Y is pro-(Pnite Ztale surjective). SetL/p! = L #2, Z/p!,
soL/pl is a sheaf ofZ/p! -modules onYproet Which is locally free of rankn, and L & Iim_ij L/pi.
Let

Trivpiyy - Perfy $  Sets
{f:T$ Y} 0$ 1S0myspioy(Z/p))",F'LIPY)

be the evident functor with its natural action of GL,(Z/p!). By debnition

Trivyy & |_||"? TriV(L/pj)/Y ,

so it su"ces to show that each Triv i),y Is representable by a Pnite Ztal&SL, (Z/p!)-torsor over
Y. This is trivial if L/p! is generated by global sections; sincky/p! is generated by global sections
Ztale-locally on Y, there is some Ztale covel¥ $ Y such that Trivipiyy $ Y pulls back to a

surjective Pnite Ztale map along¥ $ Y. We now conclude by the fact that Pnite Ztale maps of
perfectoid spaces satisfy elective descent with respect tdtale covers, cf. \Weil5, Lemma 4.2.4].

For the Pnal statement, we may assume thaK is contained inGL,(Zp), so the mapTrivy s /K_$
T factors over a map

q: TrivV,T IK.$T rivV,T / GLy (Zp) & Laty 1 .

It then su"ces to check that the map qis bnite Ztale, which again follows from elective descent of
Pnite Ztale maps with respect to Ztale covers. O

Proposition 2.16.  There is a natural GL,(Qp)-equivariant isomorphism

ShtGLn,}J,b & TI’IVV univ. / Gradm ,

of functors over Gr*™™ = Gr g’ ™.
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Proof. Given an S-point (F,u,#) of Shtg., up lying over an S-point f : S' $ Gradm we simply
apply V (( ) to the isomorphism
#:05, $F

of pointwise-Ztale vector bundles onXg:. SinceV (Oxsj )= Qp! QpLoc(S), this gives an isomor-
phism o

V#) :Qp"$ V(F) & vy,
and thus an S-point of Trivy wv ;gam . The map in the other direction is similar, taking into
account the universal property of V UV | O

Putting together this result with the remarks on Trivy,p directly preceding it and the conclu-
sions of Theorem2.13 we immediately deduce parts i.-iii. of Theorem1.2. Part iv. follows from
the fact that for minuscule y, the Bialynicki-Birula map Grg, $ F +!G " is an isomorphism BW17,

Prop. 19.4.2], so in particular Grg , is the diamond of a smooth rigid space over@r,. For any
smooth rigid spaceY, the functor (( )' on rigid spaces overY induces an equivalenceYy & Ye’t
[Sch17 Lemma 15.6], so combining this with part iii. shows that Shtg /K is in the essential
image of this functor, as desired.

2.4 Section and automorphism functors of a bundle

Debpnition 2.17. Choose anyn * 1 andb! GLn(@p), with B, the associated bundle. We debne
functors H(E,) and J,, as follows:

1. HY(&) : Perf, SpdFy $ Setsis the functor sending any perfectoid spaceS/F, to the set
HO(Xs, B,s)

2. Jp : Perf, SpdFy $ Setsis the functor sending any perfectoid spaceS/F, to the group

Aut( Bys).

Note that Jy, is a subfunctor of H°(E;, #Ey). Again, if b! GL,(Qp ) for somer * 1, then H(5,) and
Jp are more naturally dePned as functors orPerf; spq F, , and the results which follow all descend
to this smaller base; we will not spell this out, although we will take this perspective in some of
a4 3.

Proposition 2.18.  The functors H°(g,) and Jy, are pro-Ztale sheaves orerf, SpdFy-

Sketch. Any Xg: is preperfectoid; vector bundles and morphisms of vector budles on preperfectoid
spaces can be glued pro-Ztale-locally; and 8 $ T is pro-Ztale then so is the mapXs $X 1. [

Proposition 2.19.  For any b ! GLn(Qp), the structure maps H°(&,) $ SpdF, and Jp $
SpdF, are representable in locally spatial diamonds. In particular,the base c:hangeiﬁo(Eo)@p =
HO(R) %Spdﬁ SpdG}p and Jb,@p =Jy %5de Spd@p are locally spatial diamonds.

Proof. Arguing as in [BFH* 17, Prop. 3.3.6-3.3.7], one checks thatly is an open subfunctor of

HO(E, #Ep). It then su"ces to show that the map H°(E,) $ SpdF, is representable in locally
spatial diamonds. This follows from Proposition 4.7 below. O
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We note that for any S = Spa(A,A*) over Qp, the S-points of J ba, are just the group
' .
9! GLn(Béys(A)) |g=bS(g)b *°,
but we will not need this.

We now put ourselves in the situation of ©1.3. As in the discusion there, let dy,...,dx be
positive integers, and leth ! GLg (8,) be some elements with the property that the slopes of
B, are stéictly greater than the slopes off,,, foreveryl+ i<k. Setn = d; + 444 dg, and
let M & GLg, " GLn be the associated standard Levi. LetU be the unipotent radical of the
standard parabolic P associated withM . Let b! M (8,) " GL,(8) be the element debned by the
totality of the b Os in the obvious way, s&, s & 1sisk By s functorially for any S! Perf, Spd Fp -

Proposition 2.20. In this situation, the group sheafJ, decomposes canonically into the semidirect
product J ' $ 5,4 Jy’, where
/
‘]bNI =Jn, W%pdﬁééég{gdﬁ‘]bk = /Spdﬁ‘]bi
1$i$ k
is the group ofM -bundle automorphisms off, and where
y / o $ &
Jy = /SpdﬁH Ebi #Ep,
1$i<) $k

is the kernel of the natural mapJ, $J M. Via base change, we obtain an analogous decomposition
& gM . U
Jvap - Jb,@p $Sdep Jbvgp'

Proof. Since any automorphism ofF, preseves the slope Pbltration, this is clear. O

3 Canonical bltrations on an admissible modibcation

The main result in this section is the following theorem.

Theorem 3.1. Let S be a perfectoid space oveQ,, and let (E,F,u) be an admissible elective
modibcation alongS of constant typep = (ky * k. * ...). Let E* , E be a saturated subbundle
with the property that for every point x ! | S|, we have an equality

#
degE ) = ki.
1$i$ rank( Ex )

Then the sheafF* = F)E * debPnes a sub-vector bundle df, and the bundleF* is pointwise
semistable of slope zero.

We remind the reader that our strategy is to brst give a proof n the special case wheres =
Spa(K, Ok ) is a single point, i.e. we brst prove (a slightly more generaversion of) Theorem 1.5.
We then bootstrap from this situation to the case of a generalS. These two steps are realized in
a3.1 and ©3.2, respectively.
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3.1 The case of a point
The following lemma plays a key role in our argument.

Lemma 3.2. Let R be a DVR with uniformizer !, and let M be a Pnite torsion R-module, so
M /- 1gignRIN K with p(M) = (ks * 444 *k,) the elementary divisors ofM . Let N , M be an
R-submodule generated by elements. Then+N) + ky + aa# k;, and if equality holds thenN is a
direct summand.

Here and throughout, + denotesR-module length (whereR will always be a specibc DVR clear
from the context).

5’roof. For the brst claim, it clearly su'ces to show the complementary inequality {M/N ) *
i<i $n Ki- For this we use Fitting ideals. Recall that for any Pnite torsion moduleQ over R with

elementary divisors k;, we have an equality Fitt; (Q) = (! i« ki) for any j * 0; in particular,
Fitt( Q) = Fitt o(Q) = (! "(@), and Fitt ,(Q) = R if Q is generated by+ m elements. Returning to
the situation at hand, we have an inclusion

Fitt ; (N)Fitt MIN ), Fitt (M) = (1 =0 50 %)

(this is a special case ofl[an02, Prop. XII1.10.7]). But Fittj(N) = R sinceN is generated byj
elements, so we get

(1 "(MN Yy = Fitt( MIN ), Fittj(M):(!! i s Kiy,

and this immediately implies the desired inequality.

For the second claim, we argue by induction on ; the casej = 1 is easy and left to the reader.
For the induction step, choose a projectionf : M $ R/! k1 onto a maximal-length cyclic direct
summand of M, sokerf /- ogignR/! X, Let nq,..., n; be a set of elements generating\ . After
rearranging the n; Os, we may assume thdt(N) = f (C) whereC = Rn;, N, ie. that f(N) is
generated byf (n1). After then possibly replacing n; by n; ( ring forall 2+ i + j, we may assume
that kerf contains the submoduleN" generated by n,,...,n;. Note that we have inequalities
HC) + kg and {N") + ko + 444 k;, the former because! ¥ kills M and the latter by applying
the prst half of the lemmatoN", kerf. By assumption we have{N) = k; + 444 k;, so now the
chain of inequalities

HN)= HN"+ C) + {N')+ HC) + ki + &dd kj = {N)

forces the equalities{N") = k, + 44& k; and {C) = ki. SinceN" and C are generated by
j ( 1 elements andl element, respectively, they are both direct summands oM by the induction
hypothesis. Finally, the above chain of inequalities alsodrces the equality+N "+ C) = {N ")+ HC),
which implies that N*) C =0 inside M, soN & N*- C, M is a direct summand ofM . O

Theorem 3.3. Let K be any perfectoid beld oveQ,, and setS = Spa(K, Ok ). Let E be a rank n
vector bundle onXg:, and let (E, F,u) be an elective modipcation alongS of type (ky * &44a *ky).
Let E* , E be any saturated subbundle, and sé¢¥* = F)E *, so F* is a saturated subbundle of
F.

i. If F is semistable of slope zero, we have the inequality

#
degE") + K .
1$j$ rank( E*)
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ii. If F is semistable of slope zero and equality holds in the ineqitglof part i., then F* is also
semistable of slope zero, and furthermore

E'/F* [~ 1sisrank £ )Bar (K)/*
as submodules of
Q=FE/F/- 1sisnBir(K)*k,
S0 in particular E*/F* is a direct summand of Q.

Proof. Let Q* denote the image of the staIkE;'(%) in Q (here, as beforex(. )= i(S) !X g'). ItOs
easy to see the equality

degE") =deg(F ")+ HQ"),
where + denotes length as aB_ (K )-module. SinceF is semistable of slope zeroF * must have

degree+ 0, so droppingdeg(F *) from this equality gives deg(E" ) + {Q™). If r denotes the rank of
E", cIearB/ E)'(*(%) and then alsoQ™ are generated byr elements, so Lemmé3.2implies the inequality

HQ") + 14, ki. Combining these inequalities gives
#
degE") + Q") + ki,
1$i$r

so the Prst part of the theorem follows.
For the second part, we argue s follows. Putting together tle equality degE&* ) = deg(F*) +

HQ") with the inequality Q") + 144, ki, we get
#
degE") + deg(F ")+ ki,
1$iSr

so if degE") = 0 1sis Ki then F* has degree* 0. But F is semistable of slope zero, s& * has
degree+ 0. Therefore F* has degree zero. But therF* must be semistable of degree zero, since
otherwise it would have a positive-degree subbundle as a gtein its slope Ppltration, contradicting
the semistability of F. Finally, since deg(F*) =0 we get an equality

#
HQ") =deg(E") = ki,
1$i$r
so then Lemma3.2 immediately shows that Q* is a direct summand ofQ, and the maximality of

its length relative to its number of generators then forces i to have the claimed shape. O

3.2 The general case

Proof of Theorem 3.1. We argue at the level of B-pairs overA. Precisely, setQ = M iz (E)M 4 (F);
this is a B} (A)-module which is fpv overA by Theorem 2.9. Consider the B} (A)-submodule

Q" =im(Mg:(E") $ Q)

of Q; this is Pnitely generated and*-torsion. We are going to prove that Q" is fpv over A. Granted
this, Proposition 2.2 implies that

N =ker(Mir(E")$ Q)= M (E")) Mis(F)
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is a Pnite projective B} (A)-module. Then (M¢(E*),N) debnes a B-pair, and we obtairF* as the
associated vector bundle.
To show that Q* is fpv over A, we Prst note that it sits in a short exact sequence of Pnitely
generatedB; (A)-modules
0$ Q"$ Q% Q $ 0,

where

+ 3 + + + 4
Q- MdR(g)/ MdR(F)+ MdR(E )

coker Mgz (F)- Mgz(E")$ Mz (E) .

SinceQ is fpv over A, we see from Proposition2.2.ii that to prove Q™ is fpv over A, it su“ces to
show that Q- is fpv over A. WeOre going to check tha®" is fpv by applying the pointwise criterion
from Proposition 2.4.

Note that unlike Q* (at least a priori), Q and Q- interact well with specializing to arbitrary
points x ! | S|. In particular, for any x !| S| we have a commutative diagram ofB; (K x)-modules

0 0 0
! ! !

0 ——Mg(E)) Miz(Fx) Mg (ES) Tx 0
! ! !
OiMJR(Fx) MJR(EX) 7Q#BER (A) BER(KX) 0
! ! !

0 Sx MJR (E)M JR(E;) —Q #BgR (A) B;R (Kx) 0
! ! !

0 0 0

with exact rows and columns and with everything in the brst two columns Pnitely generated and free.
(Here Tx and Sy are debned by the commutativity of this diagram.) By hypothesjs, the elementary
divisors of Q# Bl (A) Br (Kx) are indeperjdent ofx and are simply given by thek; Os in the statement
of the theorem. By our assumptions, itOs easy to see that theubhdles E;, Fx and E; satisfy the
hypotheses of Theorem3.3.ii for any x ! | S|. Therefore, applying Theorem 3.3.ii, we deduce that
Tx is adirect summand of Q#g: (5 Bgr (Kx) with elementary divisors ki * 448 * Ky g for any
point x !'| S|. This immediately implies that Q- #BQR (A) Bjg (Kx) has elementary divisors

* *
krank( Ex )+1 I(ramk( Ex )+2

for any x ! | S|. In particular, since rank(E}) is locally constant, the elementary divisors of
Q- #Bg (A) Bir (Kx) are locally constant as functions ofx ! | S|. Thus Proposition 2.4 applies,
R

and soQ- is fpv over A. This completes the proof. O

Proof of Theorem 1.4.i. Immediate upon combining Theorem3.1 with the discussion in ©1.4. [
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4  Applications to moduli of shtukas

4.1 Surjectivity of the retraction

Fix all notation and assumptions as in the leadup to Theorem1.4. In this section we prove the
surjectivity portion of Theorem 1.4.ii., which we restate for the convenience of the reader.

Theorem 4.1. The natural action map

Ep" adm N U, E," adm
Gry O/OSpde begp $ Gre',
is pro-Ztale-locally surjective.

Ep" adm

Proof. We argue as follows. Pick any pointf : S = Spa(A,A*) $ Grg ,*™", with (F,u) the
corresponding admissible typeg modiPcation of B, g alongS. Let 0" F'* " 444 F'x = F be
the Hodge-Newton Rag inside= (where k = |[I| as before). Then applying the canonical retraction,
ie. looking at the point r* f : Spa(A,A*) $ Gry" ™, we get a collection (Fm,Um)1smsk Of
admissible type{l, modibcations of the summandsg, s:. The pointi' r' f then corresponds to
viewing (- 1smskFm,- 1smskUm) as a typeqt modiPcation of B, g1 = - 13mskE,, s - WeOre going
to (pro-Ztale-locally on S) bnd an elementj ! J bL,Jc;_p(S) which transports the point i ' r ' f to the

point f .

Now, the factthat f andi’ r' f have the same retraction translates into the following fact After
choosing compatible isomorphisms, : F1-F ,-444-F,, /F 'm (which we can do pro-Ztale-locally
on S), the compatible-in-m maps

&n tUlrin ' -m iF1-F 2-444-Fn $E'™ & - 555G,

and
Im:Ui-48&-Up :F1-F 2-444-Fpn $E'm & Em & 5190 E,

coincide after projection alongE'™ " E, . We are going to show that each&, ' /%, which is
initially only a meromorphic endomorphism ofE'™ , actually dePnes a global section ofE'™ ) #E'm
such that &, ' /;,* ( 1 dePnes a section of the subbundI¢E'm) #E'=: 1. To do this, note that
by an easy induction, each map/, ( &, : F'm $ E 'm' 1 has zeros of order* Kd, + as6d,,, , along
S" X g'. On the other hand, u,,! : &,, $F m has poles of order+ kg, + asad,,, ,+1 along S.2 Now,
formally, we have the identity

& ' Im' = &1 i1t & Up'

= &' /m11+(&m( I'm+1m)' u:nl

= &1 Lt (& () Ut Uyt

But (& ( /m)" u','n_1 B, $E '™ 1 is well-dePned by our previous remarks on zeros and poles, @n
Im' u'r'nl i B, $E '™ is just the canonical inclusion as a direct summand. Thus we et the desired

properties of &, ' /,,1 by induction, noting that & ' /1 1 = id. But this analysis shows that the
section

j= & /.1 H(Xs:, B #Ep)

81tOs easy to make these statements about poles and zeros predse; the point is that the ideal sheaf cutting out
S "X g is locally principal and generated by a non-zero-divisor.
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debnes an element o.'ﬂbU(g (S), and by construction it transports (- 1$mskFm,- 1$ms$kUm) 1O
&p

(F,u)/ (- 1.smskFm.,u" =),

so weOre done. O

4.2 The retraction at inbnite level

Proof of Theorem 1.7. We construct a two-sided inverse toay, . Let S! Perfd
Shtp v (S) be given. We need to construct a point
/

) spa@, @nd (F,u,#) !

(Gn Vm,.m) ! Shty b (S)
1$m$k

and an elementj !J bUc:;_ (S). The brst is easier to bnd: applying the retraction on perioddomains
<p
to (F,u)! Grg’,*™(S) gives a point

/ .
(9r(F),gr(u) = (Fm,um) ! Grg" 2™ (S).
1$m$k

Now by the debnition of Shtp ., itOs easy to see check thag@#)O gives a well-dePned sequence
of trivializations #n, : Oims! § F m, and this gives a point

/
(9r(F ), gr(u), gr(#)) = (Fm,Um,#m) ! Shtw ub(S)
1$ m$ k

as desired.
To construct j, recall from the proof of Theorem4.1 that after making any choices of compatible
isomorphisms-p, : F1-F 2-4daa-Fn /F '™ (1+ m+ k), the two maps
& :U' «:F1-F 2-444-Fy $Ep& - 15i5¢B
and
/k :ul—ééé-uk F1-F z-ééé-Fk$Eb§‘- 1$i$kEbi

have the property that & ' /|: ! debnes an element of . Now we simply observe that at inPnite
level, there is a canonical choice for the,, Os, as indicated by the diagram

* # dy+ aaad # e
Fi-F >-aaa-F Oy " Flm .
=2 M Ta8al * m X C |08 am g

In other words, we take
3,1 sas y 1t "1
-« = #' #,7-aaa-#, =#'or(#) -,
and then .
&'l t=ut i gr(u) = ut # gt ogr(u) T g (S)
is the unique element such that
j a((gr(F), gr(u), gr(#)) = (F,u,#),

as desired. O
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4.3 Consegences for cohomology

In order to apply our geometric results to calculations of cdvomology, we need some well-behaved
cohomological formalism for diamonds. Such a theory was rently developed by Scholze $ch17.
One of the key outcomes of this formalism is that many of the reults in HuberOs bookHub96] have
natural generalizations to morphisms of well-behaved diamands. In this subsection, we freely use
various notations, terminology and constructions from [Sch17, including the notions of locally spatial
diamonds, partially proper morphisms, and +~cohomologically smooth morphisms. For brevity, we
introduce the following conventions:

¥ A morphism f : X $ Y of small v-stacks isgood if (in the terminology of [Sch17) it is
compactibable, representable in locally spatial diamondsand of bnite dim.trg.

¥ A morphism f : X $ Y of small v-stacks issmooth if (in the terminology of [ Sch17) it is
+cohomologically smooth for all+% p.

Note that by convention, any smooth map is good, and any good rap is representable in locally
spatial diamonds.

Let # be a coe"cient ring killed by some integer n prime to p. For any small v-stack X, let
Det (X, #) denote the triangulated category debPned in$ch17. When X is a locally spatial diamond
this agrees with (the left completion of) the honest derivedcategory D (X ¢, #), but in general the
latter is not the correct object. The categories D¢ (X, #) support the expected Ofour functorsO
f',Rf,,(# F (, RH om ((,(), and these satisfy all expected compatibilities and adjuntions.
Less obviously, Scholze also proved that if : X $ Y is a good morphism of small v-stacks, there
is a well-behaved derived direct image functor with proper spports

Rf! . Det(xi #) $ Det(Y!#)

with all expected properties. In particular, Rf, satispes the proper base change theorem and the
projection formula, and admits a well-behaved right adjoint Rf '. When X and Y are the diamonds
associated with analytic adic spaces oveBpaZ, these constructions all agree with the constructions
in HuberOs book.

In what follows we adopt the following convention: if X is a locally spatial diamond which comes
with an evident structure map f : X $ SpdC for some complete algebraically closed bel@, and
moreoverf is good, then we set

R! ¢(X,F)= R!YSpd C,RfF)
forany F | D (X, #). Our main goal in this section is the calculation of the compatly supported
Ztale cohomology groupR! «(Jpc,Z/n Z), whereJ, c denotes the base change oIb'@p along any
complete algebraically closed extensioﬂ?_p $ C. Forgetting any possible Galois actions, it is not so

hard to show that this is the expected shift of Z/n Z. However, whenC = J@_; we would also like a
precise description of theWgq  -action, and this is signiPcantly harder. The key point is Proposition
4.8

Proposition 4.2  (KYnneth formula). Let

X %s Y Y
p R

[ ¢ !

X S



be a cartesian diagram of small v-stacks such thdt and g are good. Then for anyF ! D (X, #)
and G! De(Y,#), there is a natural isomorphism

3 4
Rh, p'F #} d G &Rf,F #- RgG.
In particular, if S =SpdC is a geometric point, then
Rl (X %s Y,pF #Fq G) & R! o(X,F)#}F R! (Y,G).

As usual, this follows formally from the proper base changetieorem [Sch17 Proposition 22.19]
and the projection formula [Sch17 Proposition 22.23].

Proposition 4.3.  Let

#

f
((( «

f

Y

g#

(

I
X

be a cartesian diagram of small v-stacks, where and g are good. Suppose moreover that one df
or g is smooth. Then there is a natural isomorphism

Rh'# & g"Rf '# # " Rg'#.
Proof. By symmetry, we can assumeg is smooth, sog” is as well. Then
Rh'# & Rg"Rf '#
& g'Rf'# #+ Rg'#
& g"Rf '# #- Rg'f ' #
& g'Rf'# #- " Rg'#.

Here the prst and third lines are trivial; the second line folows from [Sch17 Proposition 23.12.i],
and the fourth line follows from [Sch17 Proposition 23.12.iii]. O

WeOll also need the following results.

Proposition 4.4. Letf : X $ Y be any proper map of spatial diamonds, and lett be any
[a,b]

coe"cient ring killed by some integer prime to p. Then the functor Rf, carries D ""(X, #) into
DL?,b+2dim .trg f ](Y,#) )
Proof. This is implicit in the proof of [ Sch17 Theorem 22.5]. O

Proposition 4.5. Let X be a spatial diamond, and let# be a coe"cient ring killed by some
integer prime to p. Suppose that for some complete algebraically closed bPeld F, there is a
map f : X $ Spd(C,C)) with dim.trgf < . , or more generally that there exists an integer
N such that H'(Xe,F) = 0 for all i > N and all sheaves off-modules F on Xg. Then
D (Xet,#) is left-complete and compactly generated. In particular, thee is a natural equivalence
Dat(X, #) & D(Xet, #).
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Note that if such a mapf : X $ Spd(C,C)) exists, thenH' (X, F ) =0 for all i > 2dim.trgf
and all F , which justibpes the wording in the second sentence of the ppmsition. To see this, note
that by [ Sch17 Proposition 21.11],H'(Xe,F ) =0 for all F and all i > dim|X | +sup.q pSUpcd-X,
where x runs over the maximal points of X. Then

dim|X|=dimf + dim.trgf
by a straightforward computation, and
cd-x + dim.trgf
for all maximal points and all +% p by [Sch17 Proposition 21.16].

Proof. Letj : U $ X be any quasicompact separated Ztale map. BySch17 Remark 21.14],j et iS
an exact functor, SOH ' (Ug, F ) = H'(Xet,jen F ) for any abelian Ztale sheaF on U. Combining
this with the hypotheses of the theorem, we deduce the existece of an integerN such that for
any quasicompact separated Ztale map) $ X and any sheafF of #-modules onUg, the group
Hi(Ue, F ) vanishes for alli > N . Granted this, left-completeness ofD (X &, #) follows by arguing as
in [Stal7, Tag 0719]. The equivalenceD¢ (X, #) & D (X4, #) then follows from [Sch17 Proposition
14.15].

For compact generation, we leave it to the reader to check thavarying over all quasicompact
separated Ztale mapg : U $ X and alln! Z, the objectsj #[n] give a generating set of compact
objects in D (Xgt,#) . O

Proposition 4.6. Let S be a small v-sheaf, and lef": X $ S be a smooth map of small v-sheaves.
Suppose that¥ is equipped with a freeK -action for some pro4 group K , lying over the trivial action
onS. SetX = X/K_, and letf : X $ S be the natural map. Then:

i The natural map g: X $ X is a K -torsor, and the mapf : X $ S is smooth.

ii. Any choice of a#-valued Haar measure onK determines an isomorphism

Rf'#/ (qRfF#)K.

In particular, if S = Spd k for some nonarchimedean peld of residue characteristicp, and X arises
from a connected smooth adic spac¥ / Spak, then any choice of a Haar measure orK gives rise to
an isomorphism

Rf '# | #(d)[2d]

with d=dim Y.

Note that up to a shift, g Rf*# is concentrated in one degree, i.e. is a sheaf, so the grouptan
in part ii. makes sense with the OnaiveO interpretation.

Proof. The key tool here is Bch1l7 Proposition 24.2]. Part i. follows directly from this result
together with [Sch17 Lemma 10.13]. For part ii., recall from [Sch17 Proposition 24.2] that any
choice of a Haar measure oK determines a natural isomorphism of functors

d Rf ' & Rg'Rf ' = Rf*

(of course there is a canonical choice of Haar measure, gigrK total volume 1; however, in a later
argument weOll actually need the freedom of choosing a dilent Haar measure). In particular, if we
setOyx = Rf'# and 0, = Rf'#, then such a choice determines an isomorphisrg' Ox & Rq'0x =
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Oy . On the other hand, it is easy to see that for any shift of any akelian Ztale sheafF on X, the
natural map
F$ (adF)"

is an isomorphism? Putting these observations together, we compute that
Ox & (ad 0x)" & (q0y),

which proves the brst half of ii. Finally, if X arises from a connected smoothy/Spak as in the
proposition, then O & 0y & #(d)[2d] by the results in [Ber93, Hub96], so then(q 0, )K 1 #(d)[2d],
as desired. O

We now put ourselves in the following situation. Letb! GL,(Q;) be any element, so the bundle
B,s is well-dePned orXs for any perfectoid spaceS/ Fy, functorially in S. We may therefore consider
the functor H°(E,) sending anyS ! Perf to H%(Xs, B,s), with its structure map fp, : H(&) $
SpdF,.1° For C/F, any complete algebraically closed extension, writd,c : H(E)c $ SpdC for
the base change of the situation alond=, $ C.

Proposition 4.7. Let b! GL,(Qp) be any element such that the slopes &, are all positive, and
let f, and f,c be as above.

i. The structure map f, is partially proper, representable in locally spatial diamords and smooth.

ii. For any complete algebraically closed extensio€/F, there is an isomorphism Rf g,,c# /
#[2d], where d is the degree off,.

iii. For any complete algebraically closed extensio@/ Fp, the natural map

#$ Rfpci#
is an isomorphism.

Proof. First, we note that it su"ces to prove i. after base change to S = Spd C for C/F, any
complete algebraically closed PeldC. To see this, note that SpdC $ SpdF, is surjective as a map
of v-sheaves, so§ch17 Proposition 13.4.v] shows that iff , ¢ is separated and representable in locally
spatial diamonds, then so isf,. Moreover, +cohomological smoothness is a v-local property§chl7
Proposition 23.15], and being separated is v-local as wellSEh17 Proposition 10.11.ii]. Finally,
observe thatf,, automatically satisbPes the valuative portion of the debniton of partial properness
[Sch17 Debpnition 18.4], using the fact that

H O(Xspa(R,R ) E)=H O(XSpa(R,R %) 5 E)

for any characteristic p perfectoid Tate-Huber pair (R, R*) and any vector bundle E on Xgparg + -
Next, observe that H(Ey, -E v,) & HO(By,) %spar, H(En,), and that HO(&,) / H °(Ey) if band

b" are " -conjugate. With these isomorphisms in mind, an easy indudize argument together with

Proposition 4.3 shows that for i. and ii. it su"ces to treat the case where

1

I GLh(Qp)

4 XXX

" d
p
9Using the identibcation q o F = F #, q !, one reduces to the special case whereF =! , which is trivial.
10This is a slight change from the notation in ©2.4, so e.g. the f unctor dePned in DePnition 2.17.1 is the base change
of what we are presently notating by H?(E,) along the map SpdFp $ SpdFp.
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for some coprimeh, d, in which case we notatef, = O(d/h) as usual.

If d+ h then H°(O(d/h))c coincides with (the base change toC of) the universal cover of an
isoclinic p-divisible group G/ Fj, of height h and dimensiond, so by the calculations in FF15, SW13,
HO(O(d/h))c is representable by the perfectoid space

X = Spf(Oc[TXP ..., TY" mao.

In this case partial properness is clear, smoothness déf ¢ follows from [Schl7 Proposition 24.4],
and part ii. follows from classical calculations of Berkovch and Huber (and in fact the isomorphism
in part ii. is canonical in this case, being realized by a suidble trace map, cf. Ber93, Hub96]).

We may thus suppose thatd > h. We may choose a short exact sequence of vector bundles

0$0 ™ $0 (1)9$0 (d/h)$ 0
on Xspac, Which induces a short exact sequence @ ,-vector diamonds
0$H °(0M)c/ Qp $H °(01)%)c $H °(0(dh))c $ 0

over S. As in [FF15, SW13], the diamond H°(O(1)%)¢ is naturally representable by the perfectoid
space $ ) &
BY= sSpaOc[T,” ,....,T;" 1 Ny

and moreover this isomorphism identibes multiplication byp on H°(0O(1)9) with the relative Frobe-
nius $ : T; 03 T°. Choose a quasicompact open subgroupp " B9/ H °(0(1)%)c, and setAq =
Qp') Uo(C), where the intersection is taken inside theC-points of HO(O(1)%)¢. ThenAg / Zy, and
the Q' -action on H(O(1)%)¢ restricts to a compatible Ag-action on Up. Writing U, = p' "Up and
A, = p "Ay for their preimages under multiplication by p", we get a rising union of quasicompact
open subgroupsUg " Ui " U, " daéacovering H°(O(1)%) ¢, each of which is the perfection of a
closed rigid analytic disk over C, with compatible free actions of the group sheaves\o " A; "aaa
In particular, the U,Os are~cohomologically smooth overS, and writing i, : U, $ S for the
structure map, we have natural isomorphismsRf*, # & #[2d] compatible with varying n. By the
previous proposition, we deduce that the quotient diamondsV, = Un/A , "H °(O(d/h))c are spa-
tial and +cohomologically smooth overS, and that Rf \# / #[2d] for any n, wheref, : V, $ S
denotes the structure map. A careful examination of the prod of the previous proposition shows
that these isomorphisms may be chosen compatibly with varyig n*, in which case they glue into
an isomorphismRf | . # / #[2d].

For part iii. of the proposition, we return to the case of genaal b. Let s be the number of
distinct slopes of B,. On Xspac, choose an isomorphisnig, / - 1gigsE where eachf is semistable.
As in the previous paragraph, we may write eachH?(E) as a rising union2U,; /A i , where Uy
is thg perfection of a closed rigid disk andA,; / Z7'". (If § has slope+ 1, then one chooses the
An; Os to be trivial.) Taking the product of these presentationswe get an analogous presentation
of HO(R,)c as a rising union

6
HO(Eb)C / l-Jn/A_n

n

11 Recall that the natural isomorphisms debned in Proposition  24.2 of [Sch17] depend on a choice of Haar measure
on the group K ; in the present applica}tion, the key point is to bx the Haar me asure on Ag with p(Ap) =1 and then
choose the Haar measures on the A, Os compatibly with the inclusions Ag " An, so in particular the total measure of
Ap is p™ .
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2 .
whereU, = U, 1 %s 4448WUns and A, = Ay, Letf, Uy $ Sandf, 1V, = Uy/A, $ Sbe
the structure maps. We then have a natural isomorphism

Rfpci# & Rlim Rf o #,

cf. Lemma 3.9.2 of Hub96] and its proof. Using the Cartan-Leray spectral sequence fothe Galois
coverU, $ V,, we compute that

RI( An,#)
#.

IR0 IR0

Under these isomorphisms, it is trivial to check that the transition maps in the inverse system of
Rf 1 #Os are given by the identity map, s® lim. Rf, # & #, as desired. O

Proposition 4.8.  As in the previous proposition, letb! GL,(Qp) be any element such that the
slopes ofE, are all positive, and consider the functorH®(&,) with its structure map fp, : HO(R) $
SpdF,. Setd = degk, Then

i. The natural adjunction map Rf wRf ;# $ # is an isomorphism.

i. There is a natural isomorphism Rf # & #(d)[2d].

iii. There is a natural isomorphism Rf p# & #(( d)[( 2d].
In particular, if C is any algebraically closed peld, then

R! o(H(Bo)c, #) 1 #(( d( 2d].

Proof. The bnal point follows from iii. by proper base change. Next,note that iii. follows quickly
from i. and ii. Indeed, combining i. and ii. with the projecti on formula gives a chain of natural
isomorphisms

#(d)[2d] # | Rfn# & Rfp (#(d)[2d]) & RfyRf j# & #.

The result then following by tensoring both sides with #(( d)[( 2d].

Let C/F, be any complete algebraically closed extension, and let,c : H(B)c $ SpdC
be the base change along, $ C as before. For i., note that by a combination of smooth and
proper base change, it su"ces to prove that for some arbitrary choice ofC, the natural adjunction
Rf pciRf g,vc# $ # is an isomorphism in De (SpdC,#) & D(#). Next, observe that there are
natural isomorphisms

RfpciRfc# & RfpciRf L o (ZINZ #5,, , #)
& Rfpci(RfLZINZ#5, 5 #)
& (RfpciRf bcZINZ) #Y ) , #,

where the second line follows from $ch17 Theorem 1.10.i] and the third line follows from the
projection formula. This reduces us further to the case whee# = Z/n Z.

Let K denote the cone of the maRf , ciRf gvc# $ #,andletK- = RH om, (K, #) be its dual.
Dualizing the distinguished triangle

RfpciRfpc#$ #$ K,
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we see thatK - [1] is isomorphic to the cone of the dualized map
#$ RH om (Rf,ciRf|c#,#).
Next, observe that there are canonical isomorphisms
RH om (RfpciRfc#,#) & Rfpci RH omi (Rf ) o#,Rf{ #) & Rfpci#,

where the brst isomorphism follows from Verdier duality Sch17 Theorem 1.8.iv] and the second
follows from biduality [ Sch17 Theorem 1.12]. Moreover, the resulting map# $ Rf,ci# coincides
with the obvious adjunction map, which is an isomorphism by the previous Proposition. Therefore
K- is zero. But

RH om, (( ,#): D#) $ D#)

is conservative (using that# = Z/n Z), so then K is zero as well.
For ii., we again reduce via Proposition4.3 to the case where

1

I GLh(Qp)

o
1
R L

p" d

for some coprimeh,d * 1, so g, = O(d/h). In what follows, we only give full details in the case
where h = 1; the general case is very similar.

In the subsequent arguments, the following conventions areonvenient. For any small v-sheaiX ,
we say that X is absolutely good (resp. absolutely smooth) if the canonial map ! x : X $ SpdF,
is good (resp. smooth). IfX is absolutely good, we writeOx = R!{ #. If X is connected and
absolutely smooth, we write 1(X) for the unique integer such that Ox is concentrated in degree
( 1(X). For example, SpdQ, is connected and absolutely smooth, and(SpdQp) = 2.

For brevity, set Xg = H°(O(d)) for any d * 1, with structure map fq : Xq $ SpdF,. We
are trying to produce a reasonably canonical isomorphisn®dy , & #(d)[2d]. When d = 1, such an
isomorphism follows from work of Berkovich and Huber, as wel(explain below. The general case
is somewhat tricky. Before giving the argument, we introdue a plethora of spaces related toX 4
which weOll need.

Let Yg " Xg4 denote the open subfunctor with S-points parametrizing sections of O(d) which
donOt vanish identically on any bber ofXs| $ | S|, with structure map g4 : Ya $ SpdFp. There is
a continuousQ'p -action on X4 given by scaling sections, which restricts to a free action o Yy, and

we setDiv® = Y4/ Q, . By [Farl7, Proposition 2.18], the natural map g : (Div')4 $ Div® induces an

isomorphism (Div 1)"/S_d & DivY. Let Uy be the complement of all the partial diagonals in(Div )¢,
or equivalently the maximal open subfunctor of (Div 1) on which the Sy-action restricts to a free
action. Then Vy = Ug/Sgq is naturally an open subfunctor of DivY, and the map q restricts to a
Pnite ZtaleSq-coverq: Uy $ Vy. Finally, let Wy " Yqg be the preimage ofVy under the natural map
Ys $ Div?. Note that all of these functors are partially proper and abslutely good.

We now argue in a series of steps.

Step One. There is a natural isomorphism Op;, & #(1)[2].

Proof. Note that X, identibes with the functor on Perf sending any SpaR,R*) to R) . In
particular, it is an open subfunctor of the functor B sending any Spa(R,R*) to R*. By [Schl7
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Theorem 24.1], there is a canonical natural isomorphisn®g & #(1)[2], which then restricts to give
a natural isomorphism Oy, & #(1)[2]. SinceY; is open in X1, we also get a natural isomorphism
Oy, & #1)[2]. Let Y2 $ Div? be the natural Q'p -torsor, which can be factored canonically as

#
Y:$ T¢$ Div?

whereT = Y1/ (1+ pZp); here we use the usual canonical decompositio@, = p* %F, %(1+ pZp).

Note that 2 (resp. 2) is a 1 + pZp-torsor (resp. aZ %F'p -torsor); in particular, 2 is proper and
pro-Ztale, while 2" is separated and Ztale. Applying Proposition4.6.ii (with the canonical choice

of Haar measure givingl + pZ, volume one), the previous identiPcation ofOy, descends to an
isomorphism O & #(1)[2]. Next, setting G = Z %F, , we observe that sinceR2" = 2", there is a
natural adjunction map 2/2" $ id which induces a functorial isomorphism

(22"F ) &F

for any (shifted) Ztale sheaf of#-modulesF , where the subscript on the left-hand side denotes the
coinvariants for the natural G-action.*? Since

2" 0piy1 & 07 & #(1)[2] = 2" #(1)[2]

compatibly with the G-actions, this induces an isomorphismOp;, : & #(1)[2], as desired.

Step Two. There is a natural isomorphism O p;, 1) & #(d)[2d].

Proof. This follows immediately from Step One by repeated applicatons of Proposition 4.3.

Step Three. There is a natural isomorphism Oy, & #(d)[2d].

Proof. Since Uy is open in (Div 1), restricting the isomorphism exhibited in Step Two gives a
natural isomorphism Oy, & #(d)[2d]. Next, sinceq:Ug $ Vq is a bnite Ztale and GaloisSy-cover,
the natural map

F$ (gqF )%

is an isomorphism for any (shifted) Ztale sheaf of#t-modulesF on V4. Sinceq = Rq', we get
natural identibcations
q Oy, & Oy, & #(d)[2d] & o #(d)[2d]

compatible with the Sy-actions, so applying(q ( )S¢ gives the desired result.
Step Four. There is a natural isomorphism Oy, & #(d)[2d].

#
Proof. Since the mapWg $ Vq is aQ'p -torsor, we may factor it as Wy $ WJ $ Vy analogously
to the argument in Step One, where. isaZ %F'p -torsor and . “ is a1+ pZ,-torsor. Then

*1

Ows & R. "0y, & . "0y, & . "#(d)[2d] & #(d)[2d],

where the brst isomorphism is immediate, the second followfom Proposition 4.6, and the third
follows from Step Three.

2pProof. By the projection formula, """ F % F # "1, so we immediately reduce to the case F =! . Taking
stalks at some geometric point X $ Div®, one then concludes by observing that (") x identibes with the G-module
of locally constant compactly supported functions f :|T &p,, 1 X|$ ! . Since T &'Div 1 X is just a countably inPnite
number of copies of x permuted simply transitively by G, the coinvariants of (";!) x identify with | via the map
taking a compactly supported function on |T &p;, 1 X| to the sum of its values. Finally, one checks that the latter
map coincides with the coinvariants of the adjunction map in  question. $
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To conclude, observe that we now have a chain of isomorphisms
Ow, & R.'Ows & . 'Oywys & . ' #(d)[2d] & #(d)[2d],

where the brst and fourth are trivial, the second follows fran the identibcation R. ' = . ', and the
third follows from the previous paragraph.

Step Five. There is a natural isomorphism Ox & #( d)[2d].

Proof. Letjq:Wyg$ Xgq4 denote the natural open embedding, with closed complemerity : Z4 $
X 4. By Proposition 4.7, Ox, is a shifted local system concentrated in degre¢ 2d; in other words,
1(X4) = 2d. We also note that the structure map Zq $ SpdF, has dim.trg equal to d ( 1; this is
easy and left to the reader. Since

J40x, = Ow, & #(d)[2d] & j 4#(d)[2d]
by Step Four, the result now follows from the subsequent lemra. O

Lemma 4.9. Let X be a small v-sheaf which is connected and partially proper, andssume that
the structure map! : X $ SpdF, is smooth, soOx is concentrated in degree( 1(X) for some
integer 1(X ). Leti :Z $ X be a closed subfunctor such tha2dim.trg(Z/ SpdF,) +2 + 1(X). Set
#= Z/n Z for somen prime to p. Then the restriction functor

LocSys (X)$ LocSys (X # Z)

is fully faithful.

Here, for any small v-stack X, LocSys (X) denotes the category of sheaves &f-modules F
on X, such that F | / #™ for somem after pullback along some v-coverX $ X. Note that
any such sheaf is in fact trivial on some bnite Ztale cover oX : after pullback along X $ X, the
functor Isom(F ,#™) $ X parametrizing trivializations of F becomes a disjoint union of Pnitely
many copies ofX, solsom(F ,#™M) $ X is Pnite Ztale surjective by Bch17 Proposition 10.11.ii].

Proof. Letj : X # Z $ X be the evident open embedding. For any. ,M ! LocSys (X), we have
compatible isomorphisms

HomLoc:Sys1 (X)(L M )&' HO(R!( X, L #M))
and

HOMiocsys, (x1 z)('L Li'M )& HO(RI(X # Z,j' (L - # M)))
& HORI(XRjj' (L #M))
& HOMRIX,jrj' (L #M)).

In particular, it su"ces to show that for any F ! LocSys (X), the natural map F $ jij'F is

an isomorphism. SetS = Spd F((t)) and S = Spd Fapb((t)), s0oS $ SpdF, is a smooth v-cover
and S$ S is a probnite-Ztale Galois cover for some probnite grou. Let Xs, !'s, Fs, js, etc.
denote the obvious base changes of various objects 8, and likewise forS. It su"ces to check that
F $ jij'F is an isomorphism after pulling back along the v-coverXs $ X. By smooth base
change, the pullback of this map identiPes with the natural map F s $ jsij5F . Writing both sides
of this map as the G-invariants of their pullbacks to X, it su"ces to prove that the natural map
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Fs$ js-!j!S.F s is an isomorphism?® This map Pts into the long exact sequence of cohomology
sheaves associated with the habitual distinguished triante

i RiLtFs$ Fs$ RigjiFs$ .

It therefore su'"ces to show that Ri!S.G is concentrated in degrees® 2 for any G ! LocSys (Xg).
Passing to a bnite Ztale covelU $ X« if necessary, we can assume thaG|y / #/' ™ and that
R (#|u / #[UX)]. In particular, writing " : Z" $ U for the pullback of the closed immersion
Zs$ XgalongU $ Xg, there is are (noncanonical) isomorphisms

RigGly / Ri™' ™/ Ri"(REGH(1X)]u) ™/ Rg'#[( 1X) ™,

whereg:Z"$ $Sis the evident map. In particular, it su"ces to check that Rg'# is concentrated in
degrees|( 2dim.trg(Z/ SpdF), 0]: conditional on this concentration, we get that

RigGlu / Rg'#[( 1(X)' ™

is concentrated in degreeg1(X) ( 2dim.trg(Z/ SpdF;), 1(X)], and 1(X) ( 2dim.trg(Z/ SpdF;) * 2
by assumption.

To analyze Rg'#, note that the map g : Z" $ S is a partially proper map of locally spatial
diamonds, with target a rank one geometric point, and with

dim.trg(Z"/ S) = dim .trg(Zs/ S) + dim.trg(Z/ SpdFp) < . .
By Proposition 4.5, for any open spatial subdiamondzZ™ " Z" there is a natural equivalence
Det(Z”,#) & D(Zy.#), and in particular, we may naturally regard Rg'#|z# as an object of
D(Z.#). Making this observation, it now su"ces to show that the stal k of any cohomology sheaf
H '(Rg'#|z#) at any geometric pointz$ Z™" Z" vanishes for alli I [( 2dim.trg(Z/ SpdFp),0].
Any such stalk is naturally the colimit of H' (R!( W, u' Rg'#)) as one runs over (the cobltered system
of) all diagramsz$ W $ Z” whereu is a separated Ztale map from a gpatial diamond pver which
z $ Z' factors. Moreover, for any suchu, the cohomology groupH' R!( W,u'Rg'#) is given
explicitly as the #-linear dual of H" '(R(g' u)#), by an easy application of Verdier duality. 1tOs
thus enough to show that
R(g" u)#! De(S,#)= D(#)

is concentrated in degreed0, 2dim.trg(Z¢/ S)] for any such u. This follows from the subsequent

lemma, with W, Z*, and S playing (respectively) the roles of the objects denotedU, X, and S
below. O

Lemma 4.10. Let S be a spatial diamond, and letg : X $ S be any good map of locally spatial
diamonds, with canonical compactibcationg : x'° $ S. Suppose thatg is partially proper, or more

generally that the canonical compactibcationX” " s locally spatial. Letu: U $ X be any separated
Ztale map from a spatial diamond. ThenR(g"' u), carries DPI(U,#) into D2P*24™ 198l(g )
Proof. By [Sch17 Corollary 18.8.vii], the map u extends to a quasi-pro-Ztale mag : Vs $ X7
SinceX”® is locally spatial by assumption, we deduce thatU™ is also locally spatial by [Schl7

1310Om very grateful to Peter Scholze for suggesting this devic e.
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Corollary 11.28]. Moreover,U $ S is quasicompact, sou’® $ S is proper by [Sch17 Corollary

: . . —/S . . o
18.8.vi]. Putting these observations together, we see that) ® isin fact a spatial diamond.
By an easy inductive argument with truncation functors, itGs enough to prove that for any Ztale

sheafF of #-modules onU, the complex R(g' u)iF lies in D22 "99) (5 4) Letj :U $ [V
be the open embedding ol into its canonical compactibcation, so then

R(g' u)F / R@" U)jiF

by dePnition. Sinceg' U : Ve $ S is a proper map of spatial diamonds, Proposition4.4 shows
that the functor R'(g' U), is nonzero only in degrees

i + 2dim.trg(U’ /S) = 2dim .trg(U/S).
Sincedim.trg(U/S) + dim.trg(X/S ) = dim .trg g, the lemma follows. O

Incidentally, the proof of Lemma 4.9 also yields the following useful result, which seems hard to
prove by purely topological considerations.

Corollary 4.11. Let X be any small v-sheaf with a smooth partially proper map : X $ Spdk,
wherek is a beld which is either a complete nonarchimedean beld witksidue characteristic p, or a
discrete extension ofF,. Assume moreover thatX is equidimensional in the sense thaRf '# / #[1]
v-locally on X, for some (constant) integer 1. Then for any closed subfunctorZ " X such that
2dim.trg(Z/ Spdk) +2 + 1, the natural map

Lo(X #Z2)$ 1o(X)
is a bijection.
Proof. This is immediate from the bijectivity of

CO(1o(X), #) & Homyoesys, (x)(#,#) $ HOMiocsys, (x 1 2y (#,#) & CO1 o(X # Z),#).

We now return to the notation and setting of ©1.3-1.5.

Proposition 4.12.  The functor JbU(g is a locally spatial diamond, whose structure map] bU@ $
1< p 1< p

Spd(‘}p is partially proper and smooth. Moreover, for any complete algbraically closed extension

C/8,, we have
Rl c(Jpc.#) 1 #[( 2d)(( d),

whered = 34, 2% ( 3um , 2%

Here %y denotes the half-sum of the positive roots ofT occuring in the adjoint action of T on
Lie(M).

Proof. We brst show that #
d= (degB, ( degs ).

1$i<j $k
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Let % dengte the half-sum of positive roots ofT occuring in the adjoilbt action on Lie(U), so %=
% + % . ItOs an easy exgrcise from the depnition &y 1) to check that |5 g (degE, ( deds, )
coincides with &y ), 2% . Aftergome mild rearranging, one bnds that the Pnal claimedequality
holds if and only if &y 1 ( W, % = 0. But direct inspection shows that % dePnes an element of
X' (M), while on the other hand we have[b ]! B(M, ) by assumption, which guarantees that

& 1 (M Xi(T) M%),

7 8
SO &y 11 ( W, % =0 as desired.
By the assumptions laid out in ©1.3 together with Proposition 2.20, we have a natural isomor-
phism $ &
Jpg, $H® - 1sig suEy #Ep

p

of diamonds overSpd@_p. By the previous calculation, the bundle - 13 s kB, #Enp has degreed.
By assumption, the slopes off, are strictly greater than the slopes ofE,,, forall 1+ i<k, so the
bundle - 1s5iq s kEbi # Ep, has only positive slopes. Applying Proposition4.7 and Proposition 4.8,
the results follow. O

Theorem 4.13. There is a natural isomorphism

He (Shtp b Y%epq e SPAC,Z/+") & H 2Y(Shtw yp %syqw SPAC, Z/+")(( d)
compatible with all additional structures, whered = 34, 2% (3 v , 2%4-and C/ i denotes any complete
algebraically closed extension.

Proof. This follows immediately upon combining Theorem1.7, the KYnneth formula, and Proposi-
tion 4.12 O
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