The Gross-Zagier formula: a brief introduction

David Hansen

March 28, 2011

The point of this talk is to give enough background to state the Gross-Zagier formula, and describe its immediate applications. I will prove almost nothing; the goal here is for you to see the formula and all its ingredients precisely. Time permitting, I will make some comments on the proof, and on more recent generalizations.

Let $\mathfrak{H}=\{x+i y \in \mathbf{C}, y>0\}$ be the upper half-plane, and let $\Gamma_{0}(N)=\left\{\gamma \in \mathrm{SL}_{2}(\mathbf{Z}) \left\lvert\, \gamma \equiv\left(\begin{array}{cc}* & * \\ 0 & *\end{array}\right) \bmod N\right.\right\}$ act on the upper half-plane by linear fractional transformations. We may form the quotient $Y_{0}(N)=$ $\Gamma_{0}(N) \backslash \mathfrak{H}$, a Riemann surface with finitely many cusps. Compactifying gives a curve $X_{0}(N)$ which is in fact defined over \mathbf{Q}; the $\operatorname{map} z \rightarrow(j(z), j(N z)) \in \mathbf{A}_{\mathbf{C}}^{2}$ realizes $Y_{0}(N)$ as a (highly singular) plane curve with \mathbf{Q}-coefficients. Over a general field k of characteristic zero, the k-points of the curve $X_{0}(N)$ (away from the cusps) parametrize diagrams ($\phi: E \rightarrow E^{\prime}$) where $E / k, E^{\prime} / k$ are elliptic curves and $\phi: E \rightarrow E^{\prime}$ is a k-rational isogeny with $\operatorname{ker} \phi \simeq \mathbf{Z} / N \mathbf{Z}$ over \bar{k}. There is a canonical Q-rational involution $w_{N}: X_{0}(N) \rightarrow X_{0}(N)$ which sends the diagram $\left(\phi: E \rightarrow E^{\prime}\right)$ to the diagram $\left(\hat{\phi}: E^{\prime} \rightarrow E\right)$.

Over \mathbf{C}, elliptic curves are simply quotients \mathbf{C} / Λ for lattices $\Lambda=\omega_{1} \mathbf{Z}+\omega_{2} \mathbf{Z} \subset \mathbf{C}, \omega_{1} / \omega_{2} \notin \mathbf{R}$; the Weierstrass \wp-function

$$
\wp_{\Lambda}(z)=\frac{1}{z^{2}}+\sum_{v \in \Lambda \backslash\{0\}}\left(\frac{1}{(z-v)^{2}}-\frac{1}{v^{2}}\right)
$$

yields an explicit uniformization of the corresponding curve via the map $z \rightarrow\left(1: \wp_{\Lambda}^{\prime}(z): \wp_{\Lambda}(z)\right) \in$ $\mathbf{P}_{\mathrm{C}}^{2}$. Dilating ω_{1} and ω_{2} by a common scalar λ yields an isomorphic curve, since $\wp_{\lambda \Lambda}(z)=$ $\lambda^{-2} \wp_{\Lambda}\left(\lambda^{-1} z\right)$ so we may rescale by ω_{1}^{-1} and consider the lattices $\Lambda=\mathbf{Z}+\tau \mathbf{Z}$, assuming without any loss that $\operatorname{Im} \tau>0$. Finally, two distinct points $\tau, \tau^{\prime} \in \mathfrak{H}$ yield homothetic lattices if and only if one is a translate of the other by an element of $\mathrm{SL}_{2}(\mathbf{Z})$, so the space of elliptic curves over \mathbf{C} is simply the quotient $\mathrm{SL}_{2}(\mathbf{Z}) \backslash \mathfrak{H}=X_{0}(1)$. The \mathbf{C}-points of the covering $X_{0}(N) \rightarrow X_{0}(1)$ correspond to diagrams ($\operatorname{pr:~} \mathbf{C} / \Lambda^{\prime} \rightarrow \mathbf{C} / \Lambda$) for lattices $\Lambda^{\prime} \subset \Lambda$ with $\left[\Lambda: \Lambda^{\prime}\right]=N$, and the covering map is just the forgetful map $\left(\operatorname{pr}: \mathbf{C} /(\mathbf{Z}+\tau \mathbf{Z}) \rightarrow \mathbf{C} /\left(\frac{1}{N} \mathbf{Z}+\tau \mathbf{Z}\right)\right) \rightarrow \mathbf{C} /(\mathbf{Z}+\tau \mathbf{Z}), \tau \in \mathfrak{H}$. The involution w_{N} acts by $w_{N}(\tau)=\frac{-1}{N \tau}$.

There is a canonical construction of algebraic points on $X_{0}(N)$. Let $d<0$ be a quadratic discriminant, and let $K=\mathbf{Q}(\sqrt{d})$ be an imaginary quadratic field with Hilbert class field H_{K}; class field theory yields a canonical isomorphism $\operatorname{Art}_{K}: \mathrm{Cl}(K) \xrightarrow{\sim} \operatorname{Gal}\left(H_{K} / K\right)$ mapping $[\mathfrak{p}]$ to $\operatorname{Frob}_{\mathfrak{p}}$. Suppose furthermore that every prime dividing N is split in K (this is the ubiquitous Heegner hypothesis). Then we may find some $\mathfrak{n} \subset \mathscr{O}_{K}$ with $\mathcal{O}_{K} / \mathfrak{n} \simeq \mathbf{Z} / N \mathbf{Z}$; there are $2^{\omega(N)}$ such \mathfrak{n} 's, where $\omega(N)$ is the number of distinct prime divisors of N. Then for any ideal $\mathfrak{a} \subset \mathcal{O}_{K}$, the diagram
$\left(\mathrm{pr}: \mathbf{C} / \mathfrak{a} \rightarrow \mathbf{C} / \mathfrak{n}^{-1} \mathfrak{a}\right)$ gives a point on $X_{0}(N)(\mathbf{C})$. Dilating \mathfrak{a} by anything in K^{\times}gives the same elliptic curve, so this construction only depends on the image of \mathfrak{a} in the ideal class group $\mathrm{Cl}(K)$ of K. Hence we get a map

$$
\begin{aligned}
\gamma_{\mathfrak{n}}: \mathrm{Cl}(K) & \rightarrow X_{0}(N)(\mathbf{C}) \\
{[\mathfrak{a}] } & \mapsto\left(\operatorname{pr}: \mathbf{C} / \mathfrak{a} \rightarrow \mathbf{C} / \mathfrak{n}^{-1} \mathfrak{a}\right) .
\end{aligned}
$$

These points are actually defined over H_{K} and satisfy the Galois-equivariance property $\operatorname{Art}_{K}(\mathfrak{p})$. $\gamma_{\mathfrak{n}}([\mathfrak{a}])=\gamma_{\mathfrak{n}}([\mathfrak{p a}])$ for all \mathfrak{p}. These are the Heegner points. We can be even more explicit. When $N=1$ the Heegner hypothesis is always satisfied, and we get the usual points $\gamma(\mathfrak{a})=\frac{-b+\sqrt{d}}{2 a} \in X_{0}(1)$ with $-a<b \leq a$ and $b^{2}-4 a c=d$ for some $c \geq a$. The choices of \mathfrak{n} biject with the solutions $\beta \bmod 2 N$ of $\beta^{2} \equiv d \bmod 4 N$ (exercise), and given β there is a unique $\Gamma_{0}(N)$-orbit of $\gamma(\mathfrak{a})$ containing a point $\frac{-B+\sqrt{d}}{2 A}$ with $N \mid A$ and $B \equiv \beta \bmod 2 N$. This is $\gamma_{\mathfrak{n}}(\mathfrak{a})$.

Now, let E / \mathbf{Q} be an elliptic curve of conductor N, say $E: y^{2}=x^{3}+a x+b$ for some $a, b \in \mathbf{Z}$; the conductor is just some integer dividing the discriminant $\Delta=16\left(4 a^{3}+27 b^{2}\right)$, which measures bad reduction in a "slightly more refined way" than Δ does (e.g. it only depemds on the isogeny class of $E)$. The version of modularity which people prove is an isomorphism between two ℓ-adic Galois representations; more relevantly for us, modularity means there is a (unique) modular form $f_{E}(z)=\sum_{n=1}^{\infty} a_{E}(n) e^{2 \pi i n z}$ of weight 2 and level N, such that $\left|E\left(\mathbf{F}_{p}\right)\right|=p+1-a_{E}(p)$ for all primes p. Set

$$
\left\|f_{E}\right\|^{2}=\int_{\Gamma_{0}(N) \backslash \mathfrak{H}} y^{2}\left|f_{E}(z)\right|^{2} d \mu=\int_{\Gamma_{0}(N) \backslash \mathfrak{H}}|f(z)|^{2} d x d y
$$

for later use; note that this is well-defined because $f(\gamma z)=(c z+d)^{2}$ and $\operatorname{Im}(\gamma z)=\frac{\operatorname{Im} z}{|c z+d|^{2}}$, and positive because f_{E} is holomorphic and thus can only vanish on a countable set. Being modular also implies there is a modular parametrization of E, a dominant morphism $\phi_{E}: X_{0}(N) \rightarrow E$ defined over \mathbf{Q}. This is very deep; it comes from the embedding $X_{0}(N) \rightarrow \operatorname{Jac}\left(X_{0}(N)\right)$, a construction of Shimura which yields a modular elliptic curve E^{\prime} as a quotient of $\operatorname{Jac}\left(X_{0}(N)\right)$ which is modular and with $f_{E^{\prime}}=f_{E}$, and Faltings's isogeny theorem. There are several choices of ϕ_{E}, but it becomes unique if we demand that $\phi_{E}(\infty)=0$ and $\phi_{E}^{*}(d \omega)=2 \pi i c f_{E}(z) d z$ for some $c>0$, where $d \omega=\frac{d x}{2 y}$ is a translation-invariant 1-form. In fact, ϕ_{E} is given under these stipulations explicitly via

$$
\phi_{E}(z)=-2 \pi i c \int_{z}^{i \infty} f_{E}(\tau) d \tau
$$

Now, remember we have those Heegner points $\gamma_{\mathfrak{n}}(\mathfrak{a}) \in X_{0}(N)\left(H_{K}\right)$ parametrized by the ideal class group of K. Composing with the modular parametrization gives a point $P_{[\mathfrak{a}], \mathfrak{n}}:=\phi_{E}\left(\gamma_{\mathfrak{n}}([\mathfrak{a}])\right) \in$ $E\left(H_{K}\right)$. It turns out that changing \mathfrak{n} changes all the $P_{[\mathfrak{a}], \mathfrak{n}}$'s by either nothing or by inversion, so I will henceforth fix \mathfrak{n} permanently and drop it from my notation. Adding up over [a] with respect to the group law gives a point

$$
P_{K}=\sum_{[\mathfrak{a}] \in \mathrm{Cl}(K)} P_{[\mathfrak{a}]}
$$

which is contained in $E(K)$; indeed, for any $\sigma \in \operatorname{Gal}\left(H_{K} / K\right)$, the action $P_{[\mathfrak{a}]} \rightarrow \sigma P_{[\mathfrak{a}]}=P_{\operatorname{Art}_{K}^{-1}(\sigma)[\mathfrak{a}]}$ simply permutes the ideal classes in the summation. The Gross-Zagier theorem describes the height of this point, in terms of an L-function.

The L-function of E / \mathbf{Q} is

$$
L\left(s, E_{/ \mathbf{Q}}\right):=\prod_{p \nmid N} \frac{1}{1-a_{E}(p) p^{-s}+p^{1-2 s}} \prod_{p \mid N} \frac{1}{1-a_{E}(p) p^{-s}}=\sum_{n=1}^{\infty} a_{E}(n) n^{-s} .
$$

Modularity implies that this is holomorphic and that $\Lambda\left(s, E_{/ \mathbf{Q}}\right):=(2 \pi)^{-s} N^{s / 2} \Gamma(s) L\left(s, E_{/ \mathbf{Q}}\right)$ satisfies $\Lambda\left(s, E_{/ \mathbf{Q}}\right)= \pm \Lambda\left(2-s, E_{/ \mathbf{Q}}\right)$. This ± 1 is the root number $\varepsilon\left(E_{/ \mathbf{Q}}\right)$. More generally, given K / \mathbf{Q} as before, there is a unique quadratic Dirichlet character χ_{d} of period $|d|$ with $\zeta_{K}(s)=\zeta_{\mathbf{Q}}(s) L\left(s, \chi_{d}\right)$, and we define the twisted L-function

$$
L\left(s, E_{/ \mathbf{Q}}^{d}\right)=\sum_{n=1}^{\infty} a_{E}(n) \chi_{d}(n) n^{-s}=\prod_{p \nmid N} \frac{1}{1-a_{E}(p) \chi_{d}(p) p^{-s}+\chi_{d}(p)^{2} p^{1-2 s}} \prod_{p \mid N} \frac{1}{1-a_{E}(p) \chi_{d}(p) p^{-s}} .
$$

The notation is justified by the fact that this is the L-function of the curve $E^{d}: d y^{2}=x^{3}+a x+b$. This satisfies the same functional equation, with N replaced by $N d^{2}$, but with a different root number, namely $\varepsilon\left(E_{/ \mathbf{Q}}^{d}\right)=\varepsilon\left(E_{/ \mathbf{Q}}\right) \chi_{d}(-N)$. Now set

$$
L\left(s, E_{/ K}\right):=L\left(s, E_{/ \mathbf{Q}}\right) L\left(s, E_{/ \mathbf{Q}}^{d}\right)
$$

The notation is again justified by the fact that

$$
L\left(s, E_{/ K}\right)=\prod_{\mathfrak{p} \subset \mathscr{O}_{K}, \mathfrak{p} \nmid N \mathrm{disc} K} \frac{1}{1-a_{E}(\mathfrak{p}) \mathbf{N p}^{-s}+\mathbf{N p}^{1-2 s}} \prod_{\mathfrak{p} \mid N \mathrm{disc} K} \ldots,
$$

where $a_{E}(\mathfrak{p})=\mathbf{N p}+1-\left|E\left(\mathscr{O}_{K} / \mathfrak{p}\right)\right|$. What is the root number of this L-function? We compute

$$
\begin{aligned}
\varepsilon\left(E_{/ \mathbf{Q}}\right) \varepsilon\left(E_{/ \mathbf{Q}}^{d}\right) & =\varepsilon\left(E_{/ \mathbf{Q}}\right)^{2} \chi_{d}(-N) \\
& =\chi_{d}(-N) \\
& =\chi_{d}(-1) \chi_{d}(N) \\
& =-1,
\end{aligned}
$$

since $d<0$ and all the primes dividing N are split in K. This forces $L\left(1, E_{/ K}\right)=0$, and the Gross-Zagier formula computes $L^{\prime}\left(1, E_{/ K}\right)$ as the value of a height function.

Given a finite extension k / \mathbf{Q}, let M_{k} be the set of all places of k and let $|\cdot|_{v}$ be the corresponding normalized valuation on k_{v}, i.e. $|x|_{v}=q_{v}^{-\operatorname{val}_{v}(x)}$ where q_{v} is the cardinality of the residue field of k_{v}, and $\operatorname{val}_{v}\left(\varpi_{v}\right)=1$ on a uniformizer. We have the product formula $\prod_{v \in M_{k}}|x|_{v}=1 \forall x \in k$. For a point $x=\left(x_{0}: x_{1}: x_{2}\right) \in \mathbf{P}^{2}(k)$, define the height

$$
h_{k}(x)=\frac{1}{[k: \mathbf{Q}]} \log \left(\prod_{v \in M_{k}} \max \left\{\left|x_{0}\right|_{v},\left|x_{1}\right|_{v},\left|x_{2}\right|_{v}\right\}\right) .
$$

Note that this is well-defined on projective space (by the product formula) and is nonnegative; the second property follows from $\prod_{i} \max \left\{a_{i}, b_{i}, \ldots\right\} \geq \max \left\{\prod_{i} a_{i}, \prod_{i} b_{i}, \ldots\right\}$ and the product formula. Note also that $h_{k^{\prime}}(x)=h_{k}(x)$ if $k \subset k^{\prime}$, so the "direct limit"

$$
h(x)=\lim _{\vec{k}} h_{k}(x)
$$

is well-defined on $\mathbf{P}^{2}(\bar{k})$. Given an elliptic curve $E \subset \mathbf{P}^{2}$ defined over k, and a point $P \in E(\bar{k})$, define the canonical height

$$
h_{E}(P)=\lim _{n \rightarrow \infty} \frac{h(n \cdot P)}{n^{2}} .
$$

Neron and Tate showed that this limit is well-defined, that $h_{E}(P)$ is a quadratic form on $E(\bar{k})$, and that $h_{E}(P)=0$ if and only if $P \in E(\bar{k})_{\text {tors }}$.

Theorem (Gross and Zagier). With the above notation and assumptions, we have

$$
L^{\prime}\left(1, E_{/ K}\right)=\frac{32 \pi^{2}\left\|f_{E}\right\|^{2}}{\left|\mathscr{O}_{K}^{\times}\right|^{2} \sqrt{|d|} \operatorname{deg} \phi_{E}} h_{E}\left(P_{K}\right)
$$

In particular,

$$
L^{\prime}\left(1, E_{/ K}\right)=0 \Longleftrightarrow P_{K} \text { is torsion in } E(K)
$$

(Note that $\frac{h_{E}(x)}{\operatorname{deg} \phi_{E}}$ is an isogeny invariant.) Gross and Zagier deduce several amazing corollaries from this. Let's start with the best one.

Corollary A. If E / \mathbf{Q} is an elliptic curve with root number $\varepsilon=\varepsilon\left(E_{/ \mathbf{Q}}\right)=-1$, and $L^{\prime}\left(1, E_{/ \mathbf{Q}}\right) \neq$ 0 , then $E(\mathbf{Q})$ contains elements of infinite order.

Proof sketch. This is not explained very well anywhere, so let me try. First, by a deep theorem of Waldspurger, we may find some K satisfying the Heegner hypothesis with $L\left(1, E_{/ \mathbf{Q}}^{d}\right) \neq 0$. Thus $L^{\prime}\left(1, E_{/ K}\right)=L^{\prime}\left(1, E_{/ \mathbf{Q}}\right) L\left(1, E_{/ \mathbf{Q}}^{d}\right) \neq 0$, so $P_{K} \in E(K)$ is nontorsion. Next, we need to understand the action of complex conjugation on the individual $P_{[a]}$'s. We shall do this by using the relations $w_{N} \cdot \gamma_{\mathfrak{n}}(\mathfrak{a})=\gamma_{\overline{\mathfrak{n}}}\left(\mathfrak{a n}^{-1}\right)$ and $\overline{\gamma_{\mathfrak{n}}(\mathfrak{a})}=\gamma_{\overline{\mathfrak{n}}}(\overline{\mathfrak{a}})$ on $X_{0}(N)$ together with the following lemma.

Lemma A.1. If E / \mathbf{Q} has root number ε, then for any $z \in X_{0}(N)(\mathbf{C})$, the point $\phi_{E}(z)+$ $\varepsilon \phi_{E}\left(w_{N} \cdot z\right)$ is independent of z, and is torsion in $E(\mathbf{C})$.

Proof. Let $f=f_{E}$ be the newform corresponding to E, and write $\omega_{f}=2 \pi i c f(z) d z$ where c is the Manin constant. By the Manin-Drinfeld theorem, the point

$$
\phi_{E}(0)=-\int_{0}^{i \infty} \omega_{f}
$$

is torsion. On the other hand, we compute

$$
\begin{aligned}
\int_{0}^{i \infty} \omega_{f} & =\int_{z}^{i \infty} \omega_{f}+\int_{0}^{z} \omega_{f} \\
& =\int_{z}^{i \infty} \omega_{f}+\int_{w_{N} 0}^{w_{N} z} w_{N} \omega_{f} \\
& =\int_{z}^{i \infty} \omega_{f}-\int_{w_{N} z}^{i \infty} w_{N} \omega_{f}
\end{aligned}
$$

By newform theory, we know that $f(-1 / N z)=-\varepsilon z^{2} N f(z)$, and $d(-1 / N z) / d z=N^{-1} z^{-2}$, so $w_{N} \omega_{f}=-\varepsilon \omega_{f}$. Thus $\phi_{E}(0)=\phi_{E}(z)+\varepsilon \phi_{E}\left(w_{N} z\right)$ for all $z \in X_{0}(N)(\mathbf{C})$.

Applying the lemma with $z=\gamma_{\overline{\mathfrak{n}}}(\overline{\mathfrak{a}})$, and noting further that $\phi_{E}(\bar{z})=\overline{\phi_{E}(z)}$, we compute

$$
\begin{aligned}
\text { tors. } & =\overline{\phi_{E}\left(\gamma_{\mathfrak{n}}(\mathfrak{a})\right)}+\varepsilon \phi_{E}\left(w_{N} \cdot \gamma_{\overline{\mathfrak{n}}}(\overline{\mathfrak{a}})\right) \\
& =\overline{\phi_{E}\left(\gamma_{\mathfrak{n}}(\mathfrak{a})\right)}+\varepsilon \phi_{E}\left(\gamma_{\mathfrak{n}}\left(\overline{\mathfrak{a} \mathfrak{n}^{-1}}\right)\right) \\
& =\overline{P_{[\mathfrak{a}]}}+\varepsilon P_{\left[\mathfrak{a}^{-1} \mathfrak{n}\right]} \\
& =\overline{P_{[\mathfrak{a}]}}+\varepsilon \operatorname{Art}_{K}\left(\mathfrak{a}^{-2} \mathfrak{n}\right) \cdot P_{[\mathfrak{a}]} .
\end{aligned}
$$

Since \mathfrak{a} was arbitrary, we conclude that if $\widetilde{\tau} \in \operatorname{Gal}\left(H_{K} / \mathbf{Q}\right)=\operatorname{Gal}\left(H_{K} / K\right) \rtimes \operatorname{Gal}(K / \mathbf{Q})$ acts on K nontrivially, then for any fixed \mathfrak{a}, there is some $\sigma \in \operatorname{Gal}(H / K)$ (depending on \mathfrak{a} and $\widetilde{\tau}$!) such that $\widetilde{\tau} P_{[\mathfrak{a}]}+\varepsilon \sigma P_{[\mathfrak{a}]}$ is torsion. Adding up the $\operatorname{Gal}(H / K)$-translates of this, we find that

$$
\begin{aligned}
\sum_{\rho \in \operatorname{Gal}(H / K)} \rho \widetilde{\tau} P_{[\mathfrak{a}]}+\varepsilon \rho \sigma P_{[\mathfrak{a}]} & =\sum_{\rho \in \operatorname{Gal}(H / K)} \widetilde{\tau} P_{\operatorname{Art}_{K}(\rho)[\mathfrak{a}]}+\varepsilon P_{\operatorname{Art}_{K}(\sigma \rho)[\mathfrak{a}]} \\
& =\overline{P_{K}}+\varepsilon P_{K}
\end{aligned}
$$

is torsion. By the parallelogram law for quadratic forms,

$$
\begin{aligned}
h_{E}\left(\overline{P_{K}}-\varepsilon P_{K}\right)+h_{E}\left(\overline{P_{K}}+\varepsilon P_{K}\right) & =2 h_{E}\left(P_{K}\right)+2 h_{E}\left(\overline{P_{K}}\right) \\
& =4 h_{E}\left(P_{K}\right) \\
& >0
\end{aligned}
$$

so $\overline{P_{K}}-\varepsilon P_{K} \in E(K)$ is nontorsion and is defined over \mathbf{Q} iff $\varepsilon=-1$.
Corollary B. If $L\left(1, E_{/ \mathbf{Q}}\right) \neq 0$ and P_{K} is torsion for some K, then $L\left(s, E_{/ \mathbf{Q}}^{d}\right)$ vanishes to order at least 3 at $s=1$.

For example, this happens for the curve $E: y^{2}=x^{3}+10 x^{2}-20 x+8$ (of conductor 37) and $d=-139$. In this particular case, E^{-139} provably has algebraic rank 3 , and $L\left(s, E_{/ K}\right)$ provably vanishes to order exactly 3 at $s=1$.

Corollary C (Goldfeld). There is an effective, computable constant $c>0$ such that the class number of an imaginary quadratic field $\mathbf{Q}(\sqrt{-d})$ satisfies

$$
\begin{aligned}
|\mathrm{Cl}(\mathbf{Q}(\sqrt{-d}))| & >c \log d \cdot \exp (-21 \sqrt{\log \log d}) \\
& >\varepsilon \quad(\log d)^{1-\varepsilon}
\end{aligned}
$$

By the way, how did Heegner's name get attached to these points? He used a proto-version of them to show, among other things, that the curve

$$
p y^{2}=x^{3}-x
$$

has rational points of infinite order when p is a prime with $p \equiv 5$ or $7 \bmod 8$.

