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The point of this talk is to give enough background to state the Gross-Zagier formula, and
describe its immediate applications. I will prove almost nothing; the goal here is for you to see the
formula and all its ingredients precisely. Time permitting, I will make some comments on the proof,
and on more recent generalizations.

Let $ = {z+iy € C,y > 0} be the upper half-plane, and let To(N) = {”y € SLy(Z)|y = < ; : )
act on the upper half-plane by linear fractional transformations. We may form the quotient Yy(N) =
To(N)\9, a Riemann surface with finitely many cusps. Compactifying gives a curve X (V) which is
in fact defined over Q; the map z — (j(2),/(Nz)) € AZ realizes Yy(N) as a (highly singular) plane
curve with Q-coefficients. Over a general field k of characteristic zero, the k-points of the curve
Xo(N) (away from the cusps) parametrize diagrams (¢ : E — E’) where E/k, E'/k are elliptic
curves and ¢ : E — E’ is a k-rational isogeny with ker¢ ~ Z/NZ over k. There is a canonical
Q-rational involution wy : Xo(N) — Xo(N) which sends the diagram (¢ : E — E’) to the diagram
((E :E' — E).

Over C, elliptic curves are simply quotients C/A for lattices A = w1Z + woZ C C, wy/ws ¢ R;
the Weierstrass p-function

pA(Z):%‘F Z <ﬁ—vi2>
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yields an explicit uniformization of the corresponding curve via the map z — (1: @/ (2) : pa(2)) €
PZ. Dilating w; and wy by a common scalar A yields an isomorphic curve, since pxa(z) =
A2pA(A"12) so we may rescale by wl_l and consider the lattices A = Z + 77, assuming with-
out any loss that Im7 > 0. Finally, two distinct points 7, 7" € §) yield homothetic lattices if and only
if one is a translate of the other by an element of SLo(Z), so the space of elliptic curves over C is
simply the quotient SL2(Z)\$) = X((1). The C-points of the covering Xo(N) — Xo(1) correspond
to diagrams (pr : C/A" — C/A) for lattices A’ C A with [A : A’] = N, and the covering map is just
the forgetful map (pr: C/(Z+7Z) — C/(xZ+7Z)) — C/(Z+7Z), 7 € $. The involution wy
acts by wn (1) = 5.

There is a canonical construction of algebraic points on Xo(N). Let d < 0 be a quadratic
discriminant, and let K = Q(v/d) be an imaginary quadratic field with Hilbert class field Hg; class
field theory yields a canonical isomorphism Artx : CI(K) = Gal(Hy/K) mapping [p] to Froby.
Suppose furthermore that every prime dividing N is split in K (this is the ubiquitous Heegner
hypothesis). Then we may find some n C Ok with Og/n ~ Z/NZ; there are 2¢N) such n’s,
where w(N) is the number of distinct prime divisors of N. Then for any ideal a C O, the diagram
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(pr: C/a — C/n"'a) gives a point on X(N)(C). Dilating a by anything in K* gives the same
elliptic curve, so this construction only depends on the image of a in the ideal class group CI(K) of
K. Hence we get a map

T CIK) — Xo(N)(C)
[a] — (pr:C/a— C/n'a).

These points are actually defined over Hy and satisfy the Galois-equivariance property Artg (p) -
Y ([a]) = n([pa]) for all p. These are the Heegner points. We can be even more explicit. When

N =1 the Heegner hypothesis is always satisfied, and we get the usual points y(a) = %ﬁ € Xo(1)
with —a < b < a and b?>—4ac = d for some ¢ > a. The choices of n biject with the solutions S mod 2N
of 32 = dmod 4N (exercise), and given 3 there is a unique I'g(/N)-orbit of v(a) containing a point
=BiVd with N|A and B = fmod 2N. This is 7 (a).

Now, let E/Q be an elliptic curve of conductor N, say E : y*> = 2° + ax + b for some a,b € Z;
the conductor is just some integer dividing the discriminant A = 16(4a® + 27b%), which measures
bad reduction in a “slightly more refined way” than A does (e.g. it only depemds on the isogeny
class of E). The version of modularity which people prove is an isomorphism between two ¢-adic
Galois representations; more relevantly for us, modularity means there is a (unique) modular form
TE(2) =507 ag(n)e*™ " of weight 2 and level N, such that |[E(F,)| = p+1—ag(p) for all primes
p. Set
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for later use; note that this is well-defined because f(vz) = (cz + d)? and Im(yz) = IC?HTZIQ, and
positive because fg is holomorphic and thus can only vanish on a countable set. Being modular also
implies there is a modular parametrization of E, a dominant morphism ¢g : Xo(IN) — F defined
over Q. This is very deep; it comes from the embedding Xo(N) — Jac(Xo(NN)), a construction of

Shimura which yields a modular elliptic curve E’ as a quotient of Jac(Xo(N)) which is modular and

with fg = fg, and Faltings’s isogeny theorem. There are several choices of ¢, but it becomes
unique if we demand that ¢p(co) = 0 and ¢} (dw) = 27wicfr(z)dz for some ¢ > 0, where dw = 121_2 is

a translation-invariant 1-form. In fact, ¢ is given under these stipulations explicitly via
100
op(z) = —2mic fe(r)dr.
z
Now, remember we have those Heegner points v, (a) € Xo(IV)(Hg ) parametrized by the ideal class
group of K. Composing with the modular parametrization gives a point P 1= ¢r(([a])) €
E(Hg). It turns out that changing n changes all the Py ’s by either nothing or by inversion, so I
will henceforth fiz n permanently and drop it from my notation. Adding up over [a] with respect to
the group law gives a point
Pe= >, P

[a]€eCI(K)

which is contained in E(K); indeed, for any o € Gal(Hf /K), the action P — 0Pq = Pare (o)l
simply permutes the ideal classes in the summation. The Gross-Zagier theorem describes the height
of this point, in terms of an L-function.



The L-function of £/Q is
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Modularity implies that this is holomorphic and that A(s, E/q) := (2m)~*N*/2T(s)L(s, E/q) satisfies
A(s, E)q) = £A(2 — s, E/q). This &1 is the root number £(E,q). More generally, given K/Q as
before, there is a unique quadratic Dirichlet character x4 of period |d| with (x(s) = (q(s)L(s, xa),
and we define the twisted L-function

1 1

p~° + xa(p)?p' pl;[V 1 —ap(p)xa(p)p™
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The notation is justified by the fact that this is the L-function of the curve E% : dy? = 2 + ax + b.
This satisfies the same functional equation, with N replaced by Nd?, but with a different root
number, namely E(E;lQ) =¢e(E/qQ)xa(—=N). Now set

L(s, E/x) := L(s, E;qQ) L(s, Efq).

The notation is again justified by the fact that

1
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pCOK, ptNdiscK 1—ap(p)Np~* + Np p| NdiscK

where ag(p) = Np + 1 — |E(Ok /p)|. What is the root number of this L-function? We compute

e(E/Q)e(Elq) = (E/Q)*xa(—N)
= xa(—=N)
= xa(=1)xa(N)
= -1,

since d < 0 and all the primes dividing N are split in K. This forces L(1, E/x) = 0, and the
Gross-Zagier formula computes L'(1, E k) as the value of a height function.

Given a finite extension k/Q, let M}, be the set of all places of k and let |- |, be the corresponding
normalized valuation on k,, i.e. |z|, = q_le @) where ¢y 1s the cardinality of the residue field of
ky, and val,(w,) = 1 on a uniformizer. We have the product formula [[,c,, [z|, = 1Vz € k. For a

point & = (x¢ : 21 : z2) € P?(k), define the height

1
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Note that this is well-defined on projective space (by the product formula) and is nonnegative; the
second property follows from [[, max{a;,b;,...} > max{[], a;,[], bs,...} and the product formula.
Note also that hy (x) = hi(z) if k& C &/, so the “direct limit”

h(z) = lim hy(z)
k



is well-defined on P?(k). Given an elliptic curve E C P? defined over k, and a point P € F(k),
define the canonical height

he(P) = lim A P)

n— o0 n

Neron and Tate showed that this limit is well-defined, that hg(P) is a quadratic form on E(k), and

that hg(P) =0 if and only if P € E(k)tors-
Theorem (Gross and Zagier). With the above notation and assumptions, we have

322 | 1o
L'(1E ) = h(Pr).
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In particular,
L'(1,E/k) =0 <= Py istorsionin E(K).

(Note that (;LCE(””; is an isogeny invariant.) Gross and Zagier deduce several amazing corollaries
from this. Let’s start with the best one.

Corollary A. If E/Q is an elliptic curve with root number ¢ = e(E/q) = —1, and L'(1, E,q) #
0, then E(Q) contains elements of infinite order.

Proof sketch. This is not explained very well anywhere, so let me try. First, by a deep theorem
of Waldspurger, we may find some K satisfying the Heegner hypothesis with L(1, E;IQ) # 0. Thus
L'(1,E/k) = L’(l,E/Q)L(l,E;lQ) # 0, so Pk € E(K) is nontorsion. Next, we need to understand
the action of complex conjugation on the individual Pg;’s. We shall do this by using the relations

wy - Yn(a) = yg(an™1) and v, (a) = vx(a) on Xo(N) together with the following lemma.

Lemma A.1. If E/Q has root number €, then for any z € Xo(N)(C), the point ¢g(z) +
epp(wy - z) is independent of z, and is torsion in E(C).

Proof. Let f = fg be the newform corresponding to F, and write wy = 2micf(z)dz where c is
the Manin constant. By the Manin-Drinfeld theorem, the point

o) =~ [ T

is torsion. On the other hand, we compute

100
[ -
0

wg — WNWF.
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By newform theory, we know that f(—1/Nz) = —e22Nf(z), and d(—1/Nz)/dz = N~'272 so
wywy = —ewy. Thus ¢g(0) = ¢p(2) + edpr(wnz) for all z € Xy(N)(C).



Applying the lemma with z = v3(@), and noting further that ¢ (Z) = ¢g(z), we compute

tors. = ¢p((a))+cop(wy - (@)
= ¢p((a) +edp(ym(an—))
= P[a] + EP[a—ln]
= m + aArtK(a_2n) . P[a]-
Since a was arbitrary, we conclude that if 7 € Gal(Hg /Q) = Gal(Hg /K) x Gal(K/Q) acts on K

nontrivially, then for any fized a, there is some o € Gal(H/K) (depending on a and 7!) such that
TPq) + €0 Py is torsion. Adding up the Gal(H/K)-translates of this, we find that

> pFPatepoPa = > FParts(pla] + EPartx(on)la)
peGal(H/K) peGal(H/K)
= Pg+ePx

is torsion. By the parallelogram law for quadratic forms,

hE(E—EPK)-FhE(E-FEPK) = QhE(PK)+2hE(E)
— 4hp(Py)
> 0

so P — ePy € E(K) is nontorsion and is defined over Q iff ¢ = —1.

Corollary B. If L(1,E,q) # 0 and P is torsion for some K, then L(s, E;lQ) vanishes to order
at least 3 at s = 1.

For example, this happens for the curve E : y? = 2% + 1022 — 20z + 8 (of conductor 37) and
d = —139. In this particular case, E~'3% provably has algebraic rank 3, and L(s, E/) provably
vanishes to order exactly 3 at s = 1.

Corollary C (Goldfeld). There is an effective, computable constant ¢ > 0 such that the class
number of an imaginary quadratic field Q(v/—d) satisfies

ICI(Q(V—=d))| > clogd-exp(—21y/loglogd)
>. (logd)' =,

By the way, how did Heegner’s name get attached to these points? He used a proto-version of
them to show, among other things, that the curve

pyt=a—ux

has rational points of infinite order when p is a prime with p = 5 or 7 mod 8.



