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The point of this talk is to give enough background to state the Gross-Zagier formula, and
describe its immediate applications. I will prove almost nothing; the goal here is for you to see the
formula and all its ingredients precisely. Time permitting, I will make some comments on the proof,
and on more recent generalizations.

Let H = {x+iy ∈ C, y > 0} be the upper half-plane, and let Γ0(N) =

{
γ ∈ SL2(Z)|γ ≡

(
∗ ∗
0 ∗

)
modN

}

act on the upper half-plane by linear fractional transformations. We may form the quotient Y0(N) =
Γ0(N)\H, a Riemann surface with finitely many cusps. Compactifying gives a curve X0(N) which is
in fact defined over Q; the map z → (j(z), j(Nz)) ∈ A2

C realizes Y0(N) as a (highly singular) plane
curve with Q-coefficients. Over a general field k of characteristic zero, the k-points of the curve
X0(N) (away from the cusps) parametrize diagrams (φ : E → E′) where E/k, E′/k are elliptic
curves and φ : E → E′ is a k-rational isogeny with kerφ % Z/NZ over k. There is a canonical
Q-rational involution wN : X0(N) → X0(N) which sends the diagram (φ : E → E′) to the diagram

(φ̂ : E′ → E).
Over C, elliptic curves are simply quotients C/Λ for lattices Λ = ω1Z + ω2Z ⊂ C, ω1/ω2 /∈ R;

the Weierstrass ℘-function

℘Λ(z) =
1

z2
+

∑

v∈Λ!{0}

(
1

(z − v)2
−

1

v2

)

yields an explicit uniformization of the corresponding curve via the map z → (1 : ℘′
Λ(z) : ℘Λ(z)) ∈

P2
C. Dilating ω1 and ω2 by a common scalar λ yields an isomorphic curve, since ℘λΛ(z) =

λ−2℘Λ(λ−1z) so we may rescale by ω−1
1 and consider the lattices Λ = Z + τZ, assuming with-

out any loss that Imτ > 0. Finally, two distinct points τ, τ ′ ∈ H yield homothetic lattices if and only
if one is a translate of the other by an element of SL2(Z), so the space of elliptic curves over C is
simply the quotient SL2(Z)\H = X0(1). The C-points of the covering X0(N) → X0(1) correspond
to diagrams (pr : C/Λ′ → C/Λ) for lattices Λ′ ⊂ Λ with [Λ : Λ′] = N , and the covering map is just
the forgetful map

(
pr : C/(Z + τZ) → C/( 1

N Z + τZ)
)
→ C/(Z + τZ), τ ∈ H. The involution wN

acts by wN (τ) = −1
Nτ .

There is a canonical construction of algebraic points on X0(N). Let d < 0 be a quadratic
discriminant, and let K = Q(

√
d) be an imaginary quadratic field with Hilbert class field HK ; class

field theory yields a canonical isomorphism ArtK : Cl(K)
∼→ Gal(HK/K) mapping [p] to Frobp.

Suppose furthermore that every prime dividing N is split in K (this is the ubiquitous Heegner
hypothesis). Then we may find some n ⊂ OK with OK/n % Z/NZ; there are 2ω(N) such n’s,
where ω(N) is the number of distinct prime divisors of N . Then for any ideal a ⊂ OK , the diagram
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(
pr : C/a → C/n−1a

)
gives a point on X0(N)(C). Dilating a by anything in K× gives the same

elliptic curve, so this construction only depends on the image of a in the ideal class group Cl(K) of
K. Hence we get a map

γn : Cl(K) → X0(N)(C)

[a] )→
(
pr : C/a → C/n−1a

)
.

These points are actually defined over HK and satisfy the Galois-equivariance property ArtK(p) ·
γn([a]) = γn([pa]) for all p. These are the Heegner points. We can be even more explicit. When

N = 1 the Heegner hypothesis is always satisfied, and we get the usual points γ(a) = −b+
√

d
2a ∈ X0(1)

with −a < b ≤ a and b2−4ac = d for some c ≥ a. The choices of n biject with the solutions βmod 2N
of β2 ≡ d mod 4N (exercise), and given β there is a unique Γ0(N)-orbit of γ(a) containing a point
−B+

√
d

2A with N |A and B ≡ βmod 2N . This is γn(a).
Now, let E/Q be an elliptic curve of conductor N , say E : y2 = x3 + ax + b for some a, b ∈ Z;

the conductor is just some integer dividing the discriminant ∆ = 16(4a3 + 27b2), which measures
bad reduction in a “slightly more refined way” than ∆ does (e.g. it only depemds on the isogeny
class of E). The version of modularity which people prove is an isomorphism between two (-adic
Galois representations; more relevantly for us, modularity means there is a (unique) modular form
fE(z) =

∑∞
n=1 aE(n)e2πinz of weight 2 and level N , such that |E(Fp)| = p+1−aE(p) for all primes

p. Set

‖fE‖2 =

∫

Γ0(N)\H

y2|fE(z)|2dµ =

∫

Γ0(N)\H

|f(z)|2dxdy

for later use; note that this is well-defined because f(γz) = (cz + d)2 and Im(γz) = Imz
|cz+d|2 , and

positive because fE is holomorphic and thus can only vanish on a countable set. Being modular also
implies there is a modular parametrization of E, a dominant morphism φE : X0(N) → E defined
over Q. This is very deep; it comes from the embedding X0(N) → Jac(X0(N)), a construction of
Shimura which yields a modular elliptic curve E′ as a quotient of Jac(X0(N)) which is modular and
with fE′ = fE , and Faltings’s isogeny theorem. There are several choices of φE , but it becomes
unique if we demand that φE(∞) = 0 and φ∗

E(dω) = 2πicfE(z)dz for some c > 0, where dω = dx
2y is

a translation-invariant 1-form. In fact, φE is given under these stipulations explicitly via

φE(z) = −2πic

∫ i∞

z
fE(τ)dτ.

Now, remember we have those Heegner points γn(a) ∈ X0(N)(HK) parametrized by the ideal class
group of K. Composing with the modular parametrization gives a point P[a],n := φE(γn([a])) ∈
E(HK). It turns out that changing n changes all the P[a],n’s by either nothing or by inversion, so I
will henceforth fix n permanently and drop it from my notation. Adding up over [a] with respect to
the group law gives a point

PK =
∑

[a]∈Cl(K)

P[a]

which is contained in E(K); indeed, for any σ ∈ Gal(HK/K), the action P[a] → σP[a] = PArt−1

K
(σ)[a]

simply permutes the ideal classes in the summation. The Gross-Zagier theorem describes the height
of this point, in terms of an L-function.
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The L-function of E/Q is

L(s, E/Q) :=
∏

p"N

1

1 − aE(p)p−s + p1−2s

∏

p|N

1

1 − aE(p)p−s
=

∞∑

n=1

aE(n)n−s.

Modularity implies that this is holomorphic and that Λ(s, E/Q) := (2π)−sNs/2Γ(s)L(s, E/Q) satisfies
Λ(s, E/Q) = ±Λ(2 − s, E/Q). This ±1 is the root number ε(E/Q). More generally, given K/Q as
before, there is a unique quadratic Dirichlet character χd of period |d| with ζK(s) = ζQ(s)L(s, χd),
and we define the twisted L-function

L(s, Ed
/Q) =

∞∑

n=1

aE(n)χd(n)n−s =
∏

p"N

1

1 − aE(p)χd(p)p−s + χd(p)2p1−2s

∏

p|N

1

1 − aE(p)χd(p)p−s
.

The notation is justified by the fact that this is the L-function of the curve Ed : dy2 = x3 + ax + b.
This satisfies the same functional equation, with N replaced by Nd2, but with a different root
number, namely ε(Ed

/Q) = ε(E/Q)χd(−N). Now set

L(s, E/K) := L(s, E/Q)L(s, Ed
/Q).

The notation is again justified by the fact that

L(s, E/K) =
∏

p⊂OK , p"NdiscK

1

1 − aE(p)Np−s + Np1−2s

∏

p|NdiscK

. . . ,

where aE(p) = Np + 1 − |E(OK/p)|. What is the root number of this L-function? We compute

ε(E/Q)ε(Ed
/Q) = ε(E/Q)2χd(−N)

= χd(−N)

= χd(−1)χd(N)

= −1,

since d < 0 and all the primes dividing N are split in K. This forces L(1, E/K) = 0, and the
Gross-Zagier formula computes L′(1, E/K) as the value of a height function.

Given a finite extension k/Q, let Mk be the set of all places of k and let | · |v be the corresponding

normalized valuation on kv, i.e. |x|v = q−valv(x)
v where qv is the cardinality of the residue field of

kv, and valv(.v) = 1 on a uniformizer. We have the product formula
∏

v∈Mk
|x|v = 1 ∀x ∈ k. For a

point x = (x0 : x1 : x2) ∈ P2(k), define the height

hk(x) =
1

[k : Q]
log

(
∏

v∈Mk

max {|x0|v, |x1|v, |x2|v}

)

.

Note that this is well-defined on projective space (by the product formula) and is nonnegative; the
second property follows from

∏
i max{ai, bi, . . . } ≥ max{

∏
i ai,

∏
i bi, . . . } and the product formula.

Note also that hk′ (x) = hk(x) if k ⊂ k′, so the “direct limit”

h(x) = lim→
k

hk(x)
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is well-defined on P2(k). Given an elliptic curve E ⊂ P2 defined over k, and a point P ∈ E(k),
define the canonical height

hE(P ) = lim
n→∞

h(n · P )

n2
.

Neron and Tate showed that this limit is well-defined, that hE(P ) is a quadratic form on E(k), and
that hE(P ) = 0 if and only if P ∈ E(k)tors.

Theorem (Gross and Zagier). With the above notation and assumptions, we have

L′(1, E/K) =
32π2 ‖fE‖2

|O×
K |2

√
|d| deg φE

hE(PK).

In particular,
L′(1, E/K) = 0 ⇐⇒ PK is torsion inE(K).

(Note that hE(x)
deg φE

is an isogeny invariant.) Gross and Zagier deduce several amazing corollaries
from this. Let’s start with the best one.

Corollary A. If E/Q is an elliptic curve with root number ε = ε(E/Q) = −1, and L′(1, E/Q) 1=
0, then E(Q) contains elements of infinite order.

Proof sketch. This is not explained very well anywhere, so let me try. First, by a deep theorem
of Waldspurger, we may find some K satisfying the Heegner hypothesis with L(1, Ed

/Q) 1= 0. Thus

L′(1, E/K) = L′(1, E/Q)L(1, Ed
/Q) 1= 0, so PK ∈ E(K) is nontorsion. Next, we need to understand

the action of complex conjugation on the individual P[a]’s. We shall do this by using the relations

wN · γn(a) = γn(an−1) and γn(a) = γn(a) on X0(N) together with the following lemma.
Lemma A.1. If E/Q has root number ε, then for any z ∈ X0(N)(C), the point φE(z) +

εφE(wN · z) is independent of z, and is torsion in E(C).
Proof. Let f = fE be the newform corresponding to E, and write ωf = 2πicf(z)dz where c is

the Manin constant. By the Manin-Drinfeld theorem, the point

φE(0) = −
∫ i∞

0
ωf

is torsion. On the other hand, we compute

∫ i∞

0
ωf =

∫ i∞

z
ωf +

∫ z

0
ωf

=

∫ i∞

z
ωf +

∫ wN z

wN 0
wNωf

=

∫ i∞

z
ωf −

∫ i∞

wN z
wNωf .

By newform theory, we know that f(−1/Nz) = −εz2Nf(z), and d(−1/Nz)/dz = N−1z−2, so
wNωf = −εωf . Thus φE(0) = φE(z) + εφE(wNz) for all z ∈ X0(N)(C).
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Applying the lemma with z = γn(a), and noting further that φE(z) = φE(z), we compute

tors. = φE(γn(a)) + εφE(wN · γn(a))

= φE(γn(a)) + εφE(γn(an−1))

= P[a] + εP[a−1n]

= P[a] + εArtK(a−2n) · P[a].

Since a was arbitrary, we conclude that if τ̃ ∈ Gal(HK/Q) = Gal(HK/K) ! Gal(K/Q) acts on K
nontrivially, then for any fixed a, there is some σ ∈ Gal(H/K) (depending on a and τ̃ !) such that
τ̃P[a] + εσP[a] is torsion. Adding up the Gal(H/K)-translates of this, we find that

∑

ρ∈Gal(H/K)

ρτ̃P[a] + ερσP[a] =
∑

ρ∈Gal(H/K)

τ̃PArtK(ρ)[a] + εPArtK(σρ)[a]

= PK + εPK

is torsion. By the parallelogram law for quadratic forms,

hE(PK − εPK) + hE(PK + εPK) = 2hE(PK) + 2hE(PK)

= 4hE(PK)

> 0

so PK − εPK ∈ E(K) is nontorsion and is defined over Q iff ε = −1.
Corollary B. If L(1, E/Q) 1= 0 and PK is torsion for some K, then L(s, Ed

/Q) vanishes to order
at least 3 at s = 1.

For example, this happens for the curve E : y2 = x3 + 10x2 − 20x + 8 (of conductor 37) and
d = −139. In this particular case, E−139 provably has algebraic rank 3, and L(s, E/K) provably
vanishes to order exactly 3 at s = 1.

Corollary C (Goldfeld). There is an effective, computable constant c > 0 such that the class
number of an imaginary quadratic field Q(

√
−d) satisfies

|Cl(Q(
√
−d))| > c log d · exp(−21

√
log log d)

2ε (log d)1−ε.

By the way, how did Heegner’s name get attached to these points? He used a proto-version of
them to show, among other things, that the curve

py2 = x3 − x

has rational points of infinite order when p is a prime with p ≡ 5 or 7 mod8.
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