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Abstract
This article extends the six functor formalism for diamonds [Sch17] to a very general class

of stacky morphisms between v-stacks, using ∞-categorical techniques developed by Liu-Zheng
[LZ12a].
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1 Introduction

1.1 Context and motivation
Grothendieck’s six functors refer to the operations f∗, Rf∗, Rf!, Rf

!, ⊗, and internal Hom in
a suitable derived category of sheaves on some category of geometric objects. In the original
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context, the category was schemes, but for some applications one may wish to extend the
formalism to Artin stacks. Considerable problems arise in defining Rf! when f is a stacky
morphism, owing to issues of homotopy coherence. These problems were overcome in the work
of Liu-Zheng [LZ12a], which applies ∞-categorical techniques to extend the full formalism to
Artin stacks.

This article solves the analogous problem in the setting of perfectoid spaces and diamonds.
Fix a prime p and a ring Λ killed by some integer prime to p. In a very important paper [Sch17],
Scholze laid foundations for the six functor formalism in the étale cohomology of diamonds. In
particular, he defined a triangulated category of étale sheaves Dét(X,Λ) for any small v-stack
X, agreeing with the left-completion of D(Xét,Λ) when e.g. X is an analytic adic space,
and equipped with the usual ⊗ and RH om operations. Moreover, for any morphism f :
X → Y he constructed a pair of adjoint functors f∗ and Rf∗, and for morphisms f which
are compactifiable, representable in locally spatial diamonds, and locally of finite dim.trg he
constructed the exceptional pushforward and pullback functors Rf! and Rf ! with all their
expected properties: composability, base change, the projection formula, etc. Finally, he showed
that there is a reasonable notion of “cohomologically smooth” morphisms, for which Rf ! is an
invertible twist of f∗.

For applications it is important to extend Scholze’s construction of Rf! and Rf ! to some f
which are stacky (i.e., not representable).1 In particular, the results on the Kottwitz conjecture
proved in [HKW21] make crucial use of the !-functor formalism with its expected properties for
certain stacky maps of Artin v-stacks.2 In the present paper, we extend the !-functor formalism
of [Sch17] to a specific class of stacky maps, as required by [HKW21]. We expect this extended
formalism to have many other applications.

1.2 Main results
In this section we give a precise statement of our main result. We first define the category of
geometric objects to which our formalism applies.

Definition 1.1. A small v-stack X is decent if it satisfies the following two conditions:

(1) For any locally separated locally spatial diamond T with a map T → X×X, the pullback
T ×X×X,∆ X is a locally separated locally spatial diamond.

(2) There exists a locally separated locally spatial diamond U together with a map f : U → X
which is strictly surjective (Definition 4.1), representable in locally spatial diamonds, and
which locally on U is separated and cohomologically smooth.

Any choice of f : U → X as in (2) will be called a chart of X.

Remark 1.2. i. In (1) it is enough to quantify over all separated spatial T . Moreover, (1)
implies that for any locally separated locally spatial diamonds T, S with maps T → X ← S, the
fiber product T ×X S is a locally separated locally spatial diamond. Indeed, this fiber product
can be written as (T × S)×X×X,∆ X, so the claim follows by observing that T × S is a locally
separated locally spatial diamond.

ii. In (2), we can assume without loss of generality that U is a separated locally spatial
diamond and that f is separated and cohomologically smooth, for instance by replacing a given
chart f by the composition

∐
Ui → U

f→ X for some open cover U =
⋃
Ui by separated locally

spatial diamonds such that all restrictions f |Ui are separated and cohomologically smooth. If
these conditions hold, we say f : U → X is a clean chart.

1A simple example is the structure map f : [∗/G(Qp)] → ∗, where G/Qp is a linear algebraic group. Here one
expects Rf! to be group homology (whereas Rf∗ is group cohomology). See [HKW21, Example 4.2.7].

2In fact, despite numerous attempts, DH and JW were never able to arrange the arguments in [HKW21] in such
a way as to avoid the use of a stacky !-functor formalism.
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We will see (Proposition 4.6) that decent v-stacks are Artin v-stacks in the sense of [FS21,
Definition IV.1.1]. Generally, the condition of being decent is a very mild restriction. For
instance, all locally separated locally spatial diamonds are decent; in particular, for any analytic
adic space X over Spa Zp, the associated diamond X♦ is decent. More generally, if X is any
locally separated v-sheaf such that there exists a separated locally spatial diamond U with a
strictly surjective cohomologically smooth map U → X, then X is decent. This applies, for
instance, to X = Spd Zp and X = Div1. Neither of these is a locally spatial diamond, but in
both cases, U = X × Spd Fp((t

1/p∞)) is representable by an analytic adic space over Zp (and is
thus a locally spatial diamond), and U → X is strictly surjective, separated, representable in
locally spatial diamonds, and cohomologically smooth.

Continuing this line of thought, one can check that all Artin v-stacks appearing in [FS21]
and [HKW21] are decent, and in fact it takes some work to find an example of an Artin v-stack
which is not decent.

Next, we define the class of morphisms for which we can construct the !-functors.

Definition 1.3. i. A morphism f : X → Y between decent v-stacks is fine if there exists a
commutative diagram

W

b

��

g // V

a

��
X

f
// Y

where the vertical maps are charts and g is locally on W compactifiable of finite dim.trg.
ii. A morphism f : X → Y between decent v-stacks is `-cohomologically smooth if there

exists a commutative diagram

W

b

��

g // V

a

��
X

f
// Y

(1.1)

where the vertical maps are charts and g is locally on W compactifiable of finite dim.trg. and
`-cohomologically smooth in the sense of [Sch17].

We will see that these classes of morphisms are quite reasonable: they are stable under
composition and base change, membership can be tested smooth-locally on the source and
target, etc. We note that the name “fine” is chosen to hint at the idea of being “locally of finite
type”, and also because these morphisms are “good enough” for all practical purposes.

The main result of this paper is the following theorem.

Theorem 1.4. Let Λ be a ring killed by some integer n prime to p. If f : X → Y is any
fine map of decent v-stacks, there is natural functor Rf! : Dét(X,Λ)→ Dét(Y,Λ) satisfying the
following properties:

(1) When f is separated and representable in locally spatial diamonds, Rf! coincides with the
functor constructed in [Sch17].

(2) There is a natural isomorphism of functors R(f ◦g)!
∼= Rf! ◦Rg! whenever fine morphisms

f and g are composable. More precisely, the assignments X 7→ Dét(X,Λ) and f 7→ Rf!

upgrade to a pseudo-functor from the 2-category of decent v-stacks with fine morphisms to
the 2-category of categories.

(3) The projection formula: there is a natural isomorphism Rf!(A ⊗ f∗B) ∼= Rf!A ⊗ B for
A ∈ Dét(X,Λ) and B ∈ Dét(Y,Λ).
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(4) Proper base change: For a cartesian square of decent v-stacks

X ′
g̃ //

f ′

��

X

f

��
Y ′

g
// Y

with f fine, there is a proper base change isomorphism g∗Rf!
∼= Rf ′! g̃

∗.

(5) Rf! admits a right adjoint Rf !.

A heuristic for the construction of Rf! involves cohomological codescent. To explain the
idea, let f : X → Y be a fine map between decent v-stacks, and let g : U → X be a chart. Set

gn : Un = U ×X U · · · ×X U︸ ︷︷ ︸
n+1

→ X,

so Un is a locally separated locally spatial diamond, and gn and f ◦ gn are all fine and 0-
truncated. Suppose that we already have access to Rh! for fine 0-truncated maps h. We would
then like to define Rf! by the formula

Rf!A = colimn∈∆R(f ◦ gn)!Rg
!
nA. (1.2)

where ∆ is the simplex category. One can deduce formally from (1.2) that proper base change
and the projection formula hold for Rf!. For instance, to establish the projection formula:

Rf!(A⊗ f∗B) ∼= colimn∈∆R(f ◦ gn)!Rg
!
n(A⊗ f∗B)

∼= colimn∈∆R(f ◦ gn)!(Rg
!
nA⊗Rg∗nf∗B) (smoothness of gn)

∼= colimn∈∆R(f ◦ gn)!Rg
!
nA⊗B (projection formula)

∼=Rf!A⊗B (⊗ is closed)

The heuristic (1.2) follows formally from the expectation that the map

colimn∈∆Rgn!Rg
!
nA→ A (1.3)

should be an isomorphism, i.e. that “cohomological codescent for surjective smooth maps”
should hold. To see the implication, apply Rf! to the equivalence in (1.3) to obtain

Rf!A ' Rf!colimn∈∆Rgn!Rg
!
nA

' colimn∈∆Rf!Rgn!Rg
!
nA

' colimn∈∆R(f ◦ gn)!Rg
!
nA,

using the fact that Rf! is a left adjoint to pass it across the colimit.
There are two main difficulties with making sense of this heuristic. First and foremost, the

colimit in (1.2) is not guaranteed to exist, let alone behave naturally as in Theorem 1.4(2), since
colimits in triangulated categories are generally ill-behaved.

The other main difficulty is that even if g as above was chosen to be separated (which is
always possible), gn and f ◦ gn will only be locally separated in general, so the formalism in
[Sch17] does not apply to construct R(f ◦ gn)! and Rg!

n.
The remedy for the first difficulty is to upgrade the functors R(f ◦ gn)! and Rg!

n to an
∞-categorical setting where colimits are well-behaved. This will be accomplished using the
machinery of enhanced operation maps developed in [LZ12a, LZ12b] in the context of schemes.
We will review this machinery in a more detail in 2.1, but for the moment we present a brief
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outline of how enhanced operations were used to produce the six functor formalism for Artin
stacks.

Let C be a category of geometric objects (e.g., schemes or Artin stacks) equipped with some
marked classes of morphisms E1, . . . ,En, and a subset I ⊂ {1, . . . , n}. An enhanced operation
map for (C,E1, . . . ,En, I) associates to each object X ∈ C a symmetric monoidal ∞-category
D(X), and it also associates to each morphism X → Y in Ei a functor D(X) → D(Y ) (if
i 6∈ I) or a functor D(Y ) → D(X) (if i ∈ I). This must be done in such a way that is (a)
compatible with cartesian diagrams built out of morphisms in the Ei and (b) compatible with
the symmetric monoidal structure on D(X).

The main theorem of [LZ12a] asserts the existence of an enhanced operation map for (Artin
stacks, locally finite type morphisms, all morphisms, {2}), which encodes the operations f∗ and
Rf!. The compatibilities inherent in the enhanced operation map imply both (a) proper base
change and (b) the projection formula for these functors, in a homotopy coherent way. The
required enhanced operation map is built in stages.

(1) In the first stage it is observed that an enhanced operation map (EOM) exists for (schemes,
all morphisms, {1}). This is essentially just the statement that pullbacks f∗ : D(Y ) →
D(X) preserve symmetric monoidal structure. It is a special case of a general theorem on
enhanced operations for ringed topoi [LZ12a, §2.2]. We restrict this to an EOM for (qc
separated schemes, locally finite type morphisms, {1})

(2) In the next stage, we apply the fact that every morphism of qc separated schemes f : X →
Y which is locally of finite type can be factored as p ◦ j, where j is an open immersion
and p is proper. A gluing technique [LZ12b, Theorem 5.4] allows us to extend the EOM
for (schemes, locally finite type morphisms, {1}) to (qc separated schemes, proper mor-
phisms, local isomorphisms,{1, 2}) and even to (qc separated schemes, proper morphisms,
local isomorphisms, all morphisms, {1, 2, 3}). So far we are still only encoding struc-
tures associated to the pullback functor f∗, but in a way that “remembers” all possible
factorizations of f as p ◦ j.

(3) Heuristically, if f = p ◦ j as above then Rf! should be defined as Rp∗ ◦Rj!, where Rp∗ is
right adjoint to p∗ and Rj! is left adjoint to j∗. [LZ12b, Proposition 1.4.4] is the abstract
input required to pass from an EOM on (qc separated schemes, proper morphisms, local
isomorphisms, all, {1, 2, 3}) to an EOM on (qc separated schemes, proper morphisms,
local isomorphisms, all, {3}), i.e., the arrows have been reversed for the first two classes
of morphisms.

(4) The same gluing technique as in (2) applied in reverse allows us to transfer the EOM
to (qc separated schemes, locally finite type morphisms, all, {2}). By now, we have an
∞-categorical enhancement of Rf! for f a morphism of coproducts of qcqs schemes which
is locally of finite type.

(5) The “DESCENT” program developed in [LZ12a] is a means of extending an EOM from
one marked category C to a marked overcategory C̃. The input requires that for every
object X ∈ C̃, there exists a marked morphism Y → X with Y in C. It is also required
that the marked morphisms be of “universal descent” with respect to the EOM.
Repeated calls to DESCENT allow us to extend our EOM to the following domains:

(a) From qc separated schemes to qs schemes,
(b) From qs schemes to algebraic spaces,
(c) From algebraic spaces to Artin stacks.

The final output is the desired EOM on (Artin stacks, locally finite type morphisms, all
morphisms, {2}).

Our main result follows a similar strategy. We highlight the major differences:
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(1) In the first stage we have an EOM for (small coproducts of qcqs v-sheaves, all morphisms,
{1}).

(2) In the second stage, we start with the observation that if f : X → Y is a morphism of qcqs
v-sheaves which is representable in locally spatial diamonds and compactifiable of locally
finite dim.trg, then there is a factorization f = p ◦ j, where j is an open immersion and p
is proper. In fact there is a canonical compactification j : X → X

/Y [Sch17, Proposition
18.6]. We encounter a substantial problem here: we have little control over X/Y , and
in fact p is not necessarily representable in locally spatial diamonds. We resolve this
issue by introducing a larger auxiliary class of prespatial diamonds, which is preserved
under passing to the canonical compactification rather by design. The result is an EOM
on (small coproducts of qcqs v-sheaves, proper morphisms representable in prespatial
diamonds, separated local isomorphisms, {1, 2}). Let us emphasize that in this step, we
make heavy use of the main cohomological results in [Sch17].

(3)-(4) These steps are similar to those in the scheme setting. The result is an EOM on (small
coproducts of qcqs v-sheaves, morphisms representable in locally spatial diamonds and
compactifiable of locally finite dim.trg, {2}).

(5) The DESCENT program is applied repeatedly to extend the EOM to the following do-
mains:

(a) From small coproducts of separated spatial diamonds to quasiseparated locally sepa-
rated locally spatial diamonds,

(b) From quasiseparated locally separated locally spatial diamonds to locally separated
locally spatial diamonds.

(c) From locally separated locally spatial diamonds to decent v-stacks (with fine mor-
phisms).

The final output is the EOM which encodes the operation Rf! for fine morphisms between
v-stacks; this is what is necessary to prove Theorem 1.4.

1.3 Comments and conventions
Most readers of this article should simply take Theorem 1.4 as a black box. However, for the
scrupulous reader, we recommend having [LZ12a] and [LZ12b] close at hand. Not only will
we heavily use the machinery introduced there, but we will borrow much notation from these
papers, sometimes without comment.

We need to heavily use ∞-categorical techniques. As in [LZ12a, LZ12b], we use Lurie’s
model: an ∞-category is a simplicial set satisfying the weak Kan condition. We often conflate
ordinary categories with∞-categories by identifying a category C with its nerve N(C). Likewise,
we often conflate (2,1)-categories with ∞-categories by identifying a (2, 1)-category C with its
Duskin nerve, which we again denote N(C) (see [Lur21, Tag 009P] for some discussion of this
notion). We will usually omit the nerve functor from our notation (in a departure from the
convention in [LZ12a]).

1.4 Acknowledgments
DH would like to thank Johan de Jong, Yifeng Liu, Jacob Lurie, Lucas Mann, Peter Scholze,
and Weizhe Zheng for some extremely helpful conversations related to this material. DH is also
very grateful to his wife for her exceptional patience during several unusually intense periods
of work on this project.
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2 Statement of main result

2.1 The notion of an enhanced operation map
A marked ∞-category is a pair (C,F), where C is a geometric ∞-category [LZ12a, Definition
4.1.3], and F is a set of morphisms of C stable under composition, arbitrary pullback, and small
coproducts. The reader should imagine that C is (the nerve of) some ordinary category of
geometric significance: the category of small coproducts of quasicompact separated schemes,
the category of locally spatial diamonds, etc. Consider the following scenario, which is typical
of what one sees in a six-functor formalism.

Scenario 2.1. Let (C,F) be a marked ∞-category.

(1) For all objects X ∈ C, we have an associated closed symmetric monoidal stable∞-category
D(X), which the reader should imagine as the derived (∞-)category of sheaves on some
ringed site associated with X. Moreover, we have an internal hom bifunctor RH om(−,−)
such that RH om(B,−) is right-adjoint to −⊗B for all B ∈ D(X).

(2) For any morphism f : X → Y we have a symmetric monoidal pullback functor f∗ :
D(Y )→ D(X).

(3) For any morphism p : X → Y with p ∈ F we have an exceptional pushforward functor
p! : D(X)→ D(Y ).

(4) The functors f∗ and p! commute with all direct sums, and therefore admit right adjoints
f∗ resp. p!.

(5) For any cartesian square

X ′
g //

q

��

X

p

��
Y ′

f
// Y

(2.1)

with p ∈ F, there is a proper base change isomorphism f∗p! ' q!g∗.
(6) There is a projection formula isomorphism p!A ⊗ B ' p!(A ⊗ p∗B) for A ∈ D(X), B ∈

D(Y ).

We now consider the following problem:

Problem 2.2. Give a sensible way of cleanly encoding all of the structures in Scenario 2.1,
together with all of their expected higher coherences with respect to composition.

In this section we spell out one solution to this problem, closely following the ideas of
[LZ12a], namely the notion of an enhanced operation map. Before making a formal definition, we
recall two ∞-categorical constructions from [Lur16] and [LZ12b]. The first involves symmetric
monoidal structures on general ∞-categories, and the second has to do with the way we will
encode base change isomorphisms on the ∞-categorical level.

Construction 2.3 (Symmetric monoidal∞-categories and commutative algebra objects). We
review the definition of symmetric monoidal∞-category [Lur16, Definition 2.0.0.7]. Let Fin∗ be
the category of pointed finite sets, with objects 〈n〉 = {∗, 1, . . . , n}, and where the morphisms
〈m〉 → 〈n〉 are those functions which preserve ∗. (Equivalently, Fin∗ is the category of finite
sets where the morphisms are partially defined functions.)

A symmetric monoidal ∞-category is a coCartesian fibration of simplicial sets p : C⊗ →
N(Fin∗), satisfying a certain condition (∗). For i = 1, . . . , n, let ρi : 〈n〉 → 〈1〉 be the unique
morphism with (ρi)−1(1) = {i}. Since p is a coCartesian fibration, ρi induces a functor
ρi! : C⊗〈n〉 → C⊗〈1〉. The condition (∗) is that the product of the ρi! is an equivalence C⊗〈n〉 → (C⊗〈1〉)

n
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for all n. We write C = C⊗〈1〉 and call it the underlying ∞-category of C⊗. We may sometimes
start with an ∞-category C, and say that C⊗ constitutes a symmetric monoidal structure on C,
the map p : C⊗ → N(Fin∗) being understood.

In this situation we have a functor ⊗ : C× C ∼= C⊗〈2〉 → C, where the last map is induced
from the unique active map α : 〈2〉 → 〈1〉; this is the composition law for C. The rest of the
structure of C⊗ furnishes isomorphisms witnessing the fact that ⊗ is unital, commutative, and
associative, and it also encodes all higher coherences among those isomorphisms.

A commutative algebra object of a symmetric monoidal∞-category C⊗ is a section s : N(Fin∗)→
C⊗ to the functor p. Let X = s(〈1〉); then the unique active map α : 〈2〉 → 〈1〉 induces a com-
position law m : X ⊗X → X. Once again, the rest of the structure of s furnishes isomorphisms
encoding the fact that m is unital, commutative, and associative. The commutative algebra
objects of C⊗ form an ∞-category CAlg(C) [Lur16, Definition 2.1.3.1].

If C is any ∞-category admitting finite products (resp., coproducts), then C admits a
canonical symmetric monoidal structure C× (resp., Cq) for which the composition law is the
product (resp., the coproduct), see [Lur16, Construction 2.4.1.4] (resp. [Lur16, Construction
2.4.3.1]). For instance, the objects of Cq〈n〉 are n-tuples (X1, . . . , Xn) of objects of C, and a
1-morphism (X1, . . . , Xm)→ (Y1, . . . , Yn) in Cq consists of a morphism α : 〈m〉 → 〈n〉 together
with a 1-morphism Xi → Yα(i) for each 1 ≤ i ≤ m with α(i) 6= ∗. In particular this forces
X1 ⊗X2

∼= X1

∐
X2.

If C is an∞-category admitting finite products, we write CAlg(C) = CAlg(C×). In particular
CAlg(Cat∞) is the ∞-category of symmetric monoidal ∞-categories.

There is a canonical functor C→ CAlg(Cq) which assigns to an object A the commutative
algebra structure for which the composition law is the obvious map A

∐
A→ A. In fact Cq is

the universal symmetric monoidal∞-category D admitting a functor C→ CAlg(D), see [Lur16,
Theorem 2.4.3.18]. That is, for any such D, there is an equivalence betwen monoidal functors
T : C

∐
→ D and functors T⊗ : C→ CAlg(D).

In our desired application, C is (the nerve of) some category of geometric objects, and we
wish to assign to each object X of C a symmetric monoidal category ∞-category D(X) in a
coherent manner, such that morphisms X → Y induce functors D(Y ) → D(X). This may be
accomplished by constructing a functor Cop → CAlg(Cat∞), which is equivalent to constructing
a monoidal functor Cop,q → Cat∞.

Construction 2.4. Let C be a category, let k ≥ 2 be an integer, let I ⊂ {1, . . . , k} be a subset,
and let E1, . . . ,Ek be sets of morphisms of C, each containing every identity morphism in C. The
restricted multisimplicial nerve δ∗k,I N(C)cart

E1,...,Ek
is a simplicial set constructed in [LZ12a]. For

the moment we will only need it in the case k = 2, I = {2}. The 0-simplices of δ∗2,{2}N(C)E1,E2

are simply the objects of C. The 1-simplices are cartesian squares

c01

��

// c00

��
c11

// c10

(2.2)

where the vertical (resp., horizontal) arrows lie in E1 (resp., E2); the vertices of this edge are
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c00 and c11.3 The 2-simplices of δ∗2,{2}N(C)E1,E2 are diagrams

c02

��

// c01

��

// c00

��
c12

��

// c11

��

// c10

��
c22

// c21
// c20

(2.3)

where each square is cartesian, and where once again the vertical (resp., horizontal) arrows lie
in E1 (resp., E2). The three edges of this 2-simplex are given by the upper-right square, the
lower-left square, and the outer square in (2.3), respectively. Given a 1-simplex corresponding
to the diagram in (2.2), its degenerate 2-simplices are obtained by placing it in the upper-right
or lower-left of a diagram like in (2.3), and “filling in” the rest of the diagram using identity
morphisms. Higher simplices, face maps and degeneracy maps are definted similarly.

We can now describe the machinery of enhanced operation maps built in [LZ12b]. Suppose
given a marked ∞-category (C,F) as in the beginning of 2.1. We then have an ∞-category
Cq = (Cop,q)op equipped with a map of simplicial sets Cq → N(Fin∗)

op [Lur16, p. 297].
An object of Cq is a pair 〈n〉 ∈ Fin∗ together with a sequence (X1, . . . , Xn) of objects in
C. A morphism f in Cq from (X1, . . . , Xn) to (Y1, . . . , Ym) consists of a map of pointed sets
α : 〈m〉 → 〈n〉 together with a sequence of morphisms

{
Xα(i) → Yi

}
i∈α−1〈n〉◦ in C. Note that

F induces a marking on Cq by taking those morphisms for which α : 〈m〉 → 〈m〉 is the identity
map and all the associated morphisms {Xi → Yi}1≤i≤m lie in F. In the terminology of [LZ12a],
these are the edges of Cq which statically belong to F. By abuse of notation, we will also denote
this marking by F. Note that the fiber of Cq over 〈1〉 is just C, on which the marking of Cq
restricts to the original marking F, so this abuse should cause no confusion.

Now, as in [LZ12b] we can form the simplicial set δ∗2,{2}(Cq)cart
F,all. A 0-simplex is just an

object (X1, . . . , Xn) of Cq. If C admits finite products, then a 1-simplex consists of a map of
pointed sets α : 〈m〉 → 〈n〉 together with a diagram

(X ′1, . . . , X
′
n) //

��

(Y ′1 , . . . , Y
′
m)

��
(X1, . . . , Xn) // (Y1, . . . , Ym)

where the vertical edges statically belong to F, the horizontal edges are morphisms in Cq lying
over α, and for all j ∈ 〈n〉◦ the induced diagrams

X ′j //

��

∏
i∈α−1(j) Y

′
i

��
Xj // ∏

i∈α−1(j) Yi

are cartesian.
Given this setup, an enhanced operation map is a functor

CEO : δ∗2,{2}(Cq)cart
F,all → Cat∞

3The subscript {2} in δ∗
2,{2} controls the shape of the diagram in (2.2), which resembles the diagram in (2.1). If

instead I = ∅ the columns of (2.2) would be transposed.
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satisfying various properties. To state these properties, we introduce some notation attached
to such a functor.

• Any object X ∈ C defines a 0-simplex of δ∗2,{2}(Cq)cart
F,all lying over 〈1〉 ∈ Fin∗, and we set

D(X) := CEO(X).

• Restriction to the “all” direction defines a functor

CEOI : Cop,q → Cat∞,

and further restriction to the fiber over 〈1〉 defines a functor

CEO∗ : Cop → Cat∞.

Given any morphism f : X → Y in C, we write f∗ : D(Y ) → D(X) for the functor given
by the image of f under CEO∗.

• Restriction of CEO to the fiber over 〈1〉 defines a functor

CEO∗! : δ∗2,{2}(C
cart
F,all)→ Cat∞,

and further restriction to the F direction defines a functor

CEO! : CF → Cat∞.

Given any morphism p : X → Y in C with p ∈ F, we write p! : D(X) → D(Y ) for the
functor given by the image of p under CEO!.

Definition 2.5. Notation as above, the functor

CEO : δ∗2,{2}(Cq)cart
F,all → Cat∞

is an enhanced operation map if the following two conditions are satisfied.

1. The functor CEOI is a weak Cartesian structure [Lur16, Definition 2.4.1.1], and the induced
functor (see Construction 2.3)4(

CEOI
)⊗

: Cop → CAlg(Cat∞)

factors through CAlg(Cat∞)L
pr,st,cl and sends small products in Cop (i.e. small coproducts

in C) to products. Here CAlg(Cat∞)Lpr,st,cl is the category appearing in [LZ12a, Definition
1.5.2]. It is the subcategory of CAlg(Cat∞) whose objects are symmetric monoidal ∞-
categories which are:

• presentable [Lur09, Definition 5.5.0.1],
• stable [Lur16, Definition 1.1.1.9], and
• closed [Lur16, Definition 4.1.1.17],

and for which the morphisms C⊗ → D⊗ are left adjoints.

2. The functor CEO∗! : δ∗2,{2}(C
cart
F,all) → Cat∞ factors through PrL

st. Here, PrL
st ⊂ Cat∞ is the

subcategory whose objects are presentable stable∞-categories, and whose morphisms are
left adjoint functors.

An enhanced operation map is an extremely dense piece of structure, and the full content
of this structure is probably opaque at first glance. However, we claim this notion gives a
reasonable solution to Problem 2.1. This claim is justified as follows:

4See [LZ12a, Remark 1.5.6] for this notation.
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• Condition (1) in Definition 2.5 has the following consequences. For all X ∈ C we have a
presentable stable closed symmetric monoidal ∞-category D(X) := (CEOI)⊗(X). Let us
note here that C EO(X,X) = D(X)×D(X), and that evaluating C EO on the 1-simplex

X //

��

(X,X)

��
X // (X,X)

defines a functor D(X)×D(X)→ D(X), which is none other than the symmetric monoidal
structure on D(X). Since the symmetric monoidal structure on D(X) is closed, the functor
A 7→ A ⊗ B commutes with all colimits and therefore admits a right adjoint, giving the
desired internal hom. This verifies item (1) of Scenario 2.1. The construction of f∗ and
p! we have given above verifies items (2) and (3).

• Condition (2) in Definition 2.5 implies that f∗ (for arbitrary morphisms f) and p! (for
morphisms p ∈ F) are morphisms in PrL

st, and therefore admit right adjoints. This verifies
item (4) of Scenario 2.1.

• Applying CEO∗! to a 1-simplex

X ′
g //

q

��

X

p

��
Y ′

f
// Y

of δ∗2,{2}C
cart
F,all defines a functor F : D(X)→ D(Y ′). Now the 2-simplices

X ′ //

��

X //

��

X

��
Y ′ //

��

Y //

��

Y

��
Y ′ // Y // Y

and X ′ //

��

X ′ //

��

X

��
X ′ //

��

X ′ //

��

X

��
Y ′ // Y ′ // Y

witness isomorphisms F ∼= f∗p! and F ∼= q!g
∗, respectively. In particular, we get a proper

base change equivalence f∗p! ' q!g∗, verifying item (5) of Scenario 2.1.

• Suppose C admits finite products. Then for any morphism p : X → Y in F, there is a
1-simplex

(X) //

p

��

(X,Y )

(p,id)

��
(Y ) // (Y, Y )

of δ∗2,{2}(Cq)cart
F,all lying over the unique active map α : 〈2〉 → 〈1〉, and applying CEO to
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this 1-simplex defines a functor G : D(X)×D(Y )→ D(Y ). The 2-simplices

X //

��

(X,X) //

��

(X,Y )

��
Y //

��

(Y, Y ) //

��

(X,Y )

��
Y // (Y, Y ) // (Y, Y )

and X //

��

X //

��

(X,Y )

��
X //

��

X //

��

(X,Y )

��
Y // Y // (Y, Y )

witness isomorphisms G(A,B) ∼= p!A ⊗ B and G(A,B) ∼= p!(A ⊗ p∗B), respectively. In
particular, we get the projection formula, verifying item (6) of Scenario 2.1.

2.2 The main theorem
Using the language and notation of the previous section, we can now state the main technical
theorem proved in this paper.

Theorem 2.6. Consider the marked∞-category (Vstkdct,F) where Vstkdct denotes the category
of decent v-stacks, and F is the class of fine morphisms. Fix a ring Λ killed by some integer
prime to p. Then there is an enhanced operation map

VstkdctEO : δ∗2,{2}(Vstkdct
q )cart

F,all → Cat∞

such that:

1. D(X) = Dét(X,Λ) with its natural symmetric monoidal structure for all X ∈ Vstkdct.

2. f∗ coincides with the pullback functor on Dét constructed in [Sch17] for all morphisms f .

3. For morphisms f ∈ F which are separated and representable in locally spatial diamonds,
f! coincides with the functor Rf! constructed in [Sch17].

Theorem 2.6 implies Theorem 1.4. The functors Rf! required by Theorem 1.4 are obtained
from the functors f! coming from the enhanced operation functor by passing from Dét(X,Λ) to
its homotopy category Dét(X,Λ). In light of the discussion in the previous section, Rf! satisfies
the projection formula and proper base change. Since C EO∗! takes values in PrL

st, the functor
Rf! is a left adjoint.

3 Enhanced operations for qcqs v-sheaves

3.1 Prespatial diamonds
In the theory of [Sch17], (locally) spatial diamonds play a central role. There are several
justifications for this centrality: they capture most diamonds of practical interest, they have
excellent categorical properties, and their étale cohomology admits some a priori control in terms
of simple “dimensional” invariants. However, from the perspective of this paper, they suffer one
serious defect: spatial diamonds are not known to be stable under the formation of canonical
compactifications. In particular, if f : X → Y is a map which is compactifiable and representable
in spatial diamonds, it is not known whether f admits a factorization X j→ X

p→ Y where j is
an open immersion and p is proper and representable in spatial diamonds. This lacuna in our
knowledge is a serious obstacle to implementing the categorical gluing arguments from [LZ12b].

In this section, we overcome this difficulty by slightly enlarging the category of (locally)
spatial diamonds. More precisely, we introduce a notion of (locally) prespatial diamonds. On

12



one hand, we will see that these gadgets enjoy all the same good properties as (locally) spatial
diamonds, including the same crucial a priori control on étale cohomology. On the other hand,
they are stable under passing to canonical compactifications, essentially by design.5

We now turn to the key definitions.

Definition 3.1. A qcqs diamond X is prespatial if there exists a spatial subdiamond X0 ⊂ X
such that X0(K,OK) = X(K,OK) for all perfectoid fields K.

A diamond X is locally prespatial if there exists a locally spatial subdiamond X0 ⊂ X such
that the inclusion map X0 → X is quasicompact and X0(K,OK) = X(K,OK) for all perfectoid
fields K.

A pair (X0, X) satisfying the above conditions will be called a (locally) prespatial pair.

Note that in the prespatial case, the inclusion X0 → X is automatically qcqs. However,
we do not impose any further conditions on the map X0 → X. Note also that X0 is far from
unique in general: if X ′0 ⊂ X and X ′′0 ⊂ X both verify the definition of a (locally) prespatial
diamond, then so does X ′0 ×X X ′′0 . More generally, the following lemma holds.

Lemma 3.2. Let (X0, X) be a (locally) prespatial pair, let (Y0, Y ) be a locally prespatial pair,
and let f : X → Y be a morphism of diamonds. Then (X0×Y Y0, X) is also a (locally) prespatial
pair.

Proof. Since Y0 → Y is a qc injection, its base change X0 ×Y Y0 → X0 is also a qc injection,
so X0 ×Y Y0 is locally spatial by [Sch17, Proposition 11.20]. Moreover, X0 ×Y Y0 → X is
qc since it factors as X0 ×Y Y0 → X0 → X where both maps are qc. If moreover X0 is
spatial, then X0 ×Y Y0 is qcqs, hence spatial. It is clear that for any perfectoid field K,
(X0 ×Y Y0)(K,OK) = X0(K,OK) = X(K,OK). This gives the result.

Definition 3.3. Let f : X → Y be a map of v-stacks. Say f is representable in (locally)
prespatial diamonds if f is 0-truncated and for all maps W → Y with W a (locally) prespatial
diamond, X ×Y W is a (locally) prespatial diamond.

Lemma 3.4 (Sanity Checks). (i) A diamond X is prespatial iff it is locally prespatial and
qcqs.

(ii) Any open subdiamond of a locally prespatial diamond is locally prespatial.

(iii) Any (locally) spatial diamond is (locally) prespatial.

(iv) If f is representable in (locally) spatial diamonds, it is representable in (locally) prespatial
diamonds.

(v) Any fiber product of (locally) prespatial diamonds is a (locally) prespatial diamond.

(vi) Morphisms which are representable in (locally) prespatial diamonds are stable under com-
position and base change.

Proof.

(i) Suppose that (X0, X) is a prespatial pair. Then X0 → X is qc since X0 is qc and X is qs.
So X is also locally prespatial.
Conversely, suppose that (X0, X) is a locally prespatial pair and X is qcqs. Then X0 is
qcqs since X is qcqs and X0 ↪→ X is a qc injection. So X0 is spatial.

(ii) If (X0, X) is a locally prespatial pair and U is an open subdiamond of X, then U ×X X0

is locally spatial by [Sch17, Proposition 11.19(ii)] (or Lemma 3.2). Since base change
preserves the property of being a qc injection, (U ×X X0, U) is a locally prespatial pair.

5Finding the “right” generalization of locally spatial diamonds with all of these properties involved several years
of trial and error, and turned out to be the main bottleneck in the completion of this project. In the end, we arrived
at the definition presented here through extended meditation on the proof of [Sch17, Theorem 22.5]. We will revisit
that proof in the argument for Proposition 3.7 below.

13



(iii) If X is (locally) spatial, then (X,X) is a (locally) prespatial pair.
(iv) Let f : X → Y be a morphism that is representable in locally spatial diamonds, let

(Z0, Z) be a locally prespatial pair, and suppose that we are given a map Z → Y . Then
(Z0 ×Y X,Z ×Y X) is a prespatial pair. Suppose f is representable in spatial diamonds
and (Z0, Z) is a prespatial pair. Then f , Z0, and Z are qcqs, so Z0 ×Y X is qcqs, hence
spatial, and Z ×Y X is also qcqs.

(v) Suppose we have (locally) prespatial pairs (X0, X), (Y0, Y ), (Z0, Z), and a fiber product
X×Z Y . Then X0×Z Z0 and Y0×Z Z0 are (locally) spatial by Lemma 3.2. Hence (X0×Z
Z0)×Z0 (Y0×Z Z0) = X0×Z Y0×Z Z0 is (locally) spatial, and (X0×Z Y0×Z Z0, X ×Z Y )
is a (locally) spatial pair.

(vi) This is clear from the definition.

Warning 3.5. If X is a diamond, it is not clear whether the property of being locally prespatial
can be checked locally on an open cover of X. In light of this, the name is perhaps slightly
misleading.
Proposition 3.6. If f : X → Y is separated and representable in prespatial diamonds, then
f
/Y

: X
/Y → Y is proper and representable in prespatial diamonds.

Proof. We can assume that X and Y are prespatial diamonds. Then X/Y → Y is proper by
[Sch17, Prop. 18.7.(vii)]. In particular, X/Y admits a separated map to a quasiseparated target
and thus is quasiseparated. Quasicompacity of X/Y is clear. Finally, taking any X0 ⊂ X as in
the definition of a prespatial diamond, we have X/Y

(K,OK) = X(K,OK) = X0(K,OK) by the
definition of X/Y , so X/Y is prespatial.

Proposition 3.7. If f : X → Y is proper and representable in prespatial diamonds, then
Rf∗ : Dét(X,Λ)→ Dét(Y,Λ) has cohomological amplitude ≤ 3dim.trgf .

Proof. We follow the proof of [Sch17, Theorem 22.5] closely. Arguing as in that proof, we
can assume that Y = Spd(C,C+), X is a separated prespatial diamond proper over Y , and
A ∈ Dét(X,Λ) is concentrated in degree zero with j∗A = 0. Here j : f−1(U)→ X is the natural
open immersion, where U ⊂ Y is the complement of the unique closed point.

Let |X|h be the maximal Hausdorff quotient of |X|, or equivalently the maximal Hausdorff
quotient of |X×Spd(C,C+) Spd(C,OC)|. As in loc. cit., we factor f as g : X → |X|h×Y followed
by h : |X|h × Y → Y . As in loc. cit., g is proper and representable in spatial diamonds, and
thus Rg∗ has cohomological amplitude ≤ 2dim.trgf .

It remains to check that if B ∈ Dét(|X|h × Y,Λ) is concentrated in degree zero and trivial
on |X|h × U , then Rih∗B = 0 for all i > dim.trgf . As in loc. cit., we can identify

Rih∗B ∼= Hi(|X|h × Y,B) ∼= Hi(|X|h, B||X|h×s)

(where we implicitly appeal to [Sch17, Proposition 22.7]). Thus it remains to control the
cohomology of abelian sheaves on |X|h. The key observation now is that for any choice of
X0 ⊂ X as in the definition of a prespatial diamond, we get an induced homeomorphism

|X0 ×Spd(C,C+) Spd(C,OC)|h ∼= |X|h.

This follows from the general observation that if i : U → V is any injection of qcqs diamonds
which induces a bijection on (K,OK)-points for all perfectoid fields K, then i induces a homeo-
morphism |U |h ∼= |V |h.6 Since X0 is spatial, the Krull dimension of |X0×Spd(C,C+) Spd(C,OC)|

6To verify this, observe that |U |h → |V |h is a continuous bijection by the assumption on (K,OK)-points. But any
continuous bijection from a compact space to a Hausdorff space is a homeomorphism.
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is bounded above by

dim.trgX0 ×Spd(C,C+) Spd(C,OC)/Spd(C,OC) ≤ dim.trgX0/Spd(C,C+)

≤ dim.trgf.

The desired bound on the cohomological dimension of |X|h now follows from the next lemma.

Lemma 3.8. Let X be a separated spatial diamond, and let d be the Krull dimension of the
spectral space |X|. Then the cohomological dimension of the compact Hausdorff space |X|h is
≤ d.

Proof. Note that the set of generizations of any point in |X| forms a totally ordered chain, as
this is true for any locally spatial diamond. Now, let S be any spectral space in which the
generizations of any point form a chain, and let q : S → Sh be the natural map to the maximal
Hausdorff quotient. We claim that in fact RΓ(Sh,F) ∼= RΓ(S, q∗F) for any abelian sheaf F on
Sh. In the case of interest to us, S = |X| has cohomological dimension ≤ d by Scheiderer’s
theorem [Sch92], so this implies the desired result.

It’s clearly enough to prove that F ∼= Rq∗q
∗F. Let x ∈ Sh be any point, and let x̃ ∈ S

be the unique maximal point in the fiber q−1(x), so q−1(x) = {x̃}. Let P be the cofiltered set
of all open neighborhoods of x in Sh, and let N be the cofiltered set of all quasicompact open
neighborhoods of q−1(x) in S. By [Hub96, Lemma 8.1.5], each of the collections {V ⊂ S}V ∈N
and {q−1(U) ⊂ S}U∈P is a fundamental system of neighborhoods of q−1(x) in S, and moreover

q−1(x) = ∩V ∈NV = ∩U∈Pq−1(U).

Then

(Riq∗q
∗
F)x ∼=colimU∈PH

i(q−1(U), q∗F)

∼=colimV ∈NH
i(V, q∗F)

∼=Hi(q−1(x), q∗F).

Since q∗F is constant on the fiber q−1(x), we’re reduced to showing that RΓ(q−1(x), A) ∼= A
for any constant sheaf of abelian groups A on q−1(x). This is an easy exercise, using the fact
that q−1(x) is a spectral space with a unique maximal point in which the generalizations of any
point form a chain. (Precisely: If T is a such a spectral space, and j : η → T is the inclusion of
the unique maximal point, then A ∼→ Rj∗A for any constant sheaf of abelian groups A.)

Corollary 3.9. If f : X → Y is separated and representable in prespatial diamonds with
dim.trgf <∞, then Rf∗ has cohomological amplitude ≤ 3dim.trgf . If moreover f is compacti-
fiable, then Rf! has cohomological amplitude ≤ 3dim.trgf .

Proof. Factor f as f
/Y ◦ j, where j : X → X

/Y is the natural quasicompact injection. By
Proposition 3.6, f

/Y
is proper and representable in prespatial diamonds with dim.trgf

/Y
=

dim.trgf , so Rf
/Y

∗ has cohomological amplitude ≤ 3dim.trgf by Proposition 3.7. Since Rf! =

Rf
/Y

∗ ◦ j!, this implies the claim for Rf!. Similarly, writing Rf∗ = Rf
/Y

∗ ◦ Rj∗, the desired
bound for Rf∗ follows from the observation that Rj∗ has cohomological amplitude zero, which
is a special case of the next lemma.

Lemma 3.10. If j : X → Y is a quasicompact injection of small v-stacks, then Rj∗ has
cohomological amplitude zero.

Proof. By the first half of [Sch17, Prop. 17.6], we can assume that Y is a spatial diamond, in
which case X is also a spatial diamond. This reduces us to [Sch17, Lemma 21.13].
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With these results on the books, we now make another definition.

Definition 3.11. Let f : X → Y be a morphism of small v-stacks. We say f is strongly
compactifiable if it is compactifiable, representable in prespatial diamonds, and locally of finite
dim.trg. We say f is weakly compactifiable if it is compactifiable, representable in locally
prespatial diamonds, and X admits an open cover X = ∪Xi with each Xi → Y strongly
compactifiable.

Recall that by definition, a compactifiable morphism is necessarily 0-truncated and sepa-
rated.

Lemma 3.12. (i) The property of being strongly resp. weakly compactifiable is stable under
composition and base change.

(ii) A morphism f is strongly compactifiable iff it is weakly compactifiable and quasicompact.

(iii) A morphism is proper and weakly compactifiable iff it is proper and strongly compactifiable.

(iv) Any strongly compactifiable morphism f can be factored as f ◦ j where j is a quasicompact
open immersion and f is proper and strongly compactifiable.

(v) If f : X → Y is strongly compactifiable, then Rf∗ and Rf
/Y

∗ satisfy base change on
unbounded complexes and commute with all colimits. Moreover, Rf! = Rf

/Y

∗ ◦ j! satisfies
composability, base change, and the projection formula, and commutes with all colimits.

Proof. Parts (i)-(iv) are easy and left to the reader. Part (v) follows from the same arguments
used in [Sch17] for the case where f is representable in spatial diamonds, using the cohomological
dimension bounds from Corollary 3.9.

Note that in [Sch17], Rf! and Rf ! are constructed exactly for morphisms f which are weakly
compactifiable and representable in locally spatial diamonds. We now have the following basic
claim.

Scholium 3.13. All constructions and results involving Rf! and Rf ! established in [Sch17,
§22-24] extend to the setting of weakly compactifiable morphisms.

One simply repeats all arguments in [Sch17] with extremely minor changes; we will not need
the full generality of this claim, so we omit the details. However, let us analyze one particular
case of this more general Rf! construction, which will be encoded in the enhanced operation
map constructed in the next section. Suppose f : X → Y is a weakly compactifiable map, and
that X and Y are coproducts of qcqs v-sheaves, say with X =

∐
i∈I Xi where all Xi are qcqs.

There is a naturally associated diagram

X =
∐
i∈I Xi

j //

f

��

∐
i∈I Xi

/Y

p

��
Y

∐
i∈I Yh

oo

where p is proper and strongly compactifiable, j is an open immersion, and h is a local isomor-
phism. In this notation, we have a natural identification Rf!

∼= h! ◦Rp∗ ◦ j!.

3.2 Enhanced operations for qcqs v-sheaves
The main goal of this section is the following theorem.
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Theorem 3.14. Let Vshqcqs denote the category spanned by small coproducts of qcqs v-sheaves,
and let W denote the class of weakly compactifiable maps. Fix a ring Λ killed by some integer
prime to p. Then there is an enhanced operations map

VshqcqsEO : δ∗2,{2}(Vshqcqs
q )cart

W,all → Cat∞

with the following properties.
i. D(X) = Dét(X,Λ) with its natural symmetric monoidal structure for all X ∈ Vshqcqs.
ii. f∗ coincides with the pullback functor on Dét constructed in [Sch17] for all morphisms

f .
iii. For morphisms g ∈ W , g! coincides with the functor Rg! constructed in Scholium 3.13

and the discussion immediately afterwards.

Our construction of VshqcqsEO closely follows the arguments in [LZ12a, pp. 37-39], where an
analogous map is constructed in the setting of quasicompact separated schemes. The key input
is the following “categorical gluing” result, which is the analogue of [LZ12b, Corollary 0.4] in
our setup.

Proposition 3.15. Let Vshqcqs denote the category of small coproducts of qcqs v-sheaves. Let
S ⊂ W be the classes of strongly compactifiable and weakly compactifiable maps, respectively.
Let P be the class of proper weakly compactifiable maps, let I be the class of separated local
isomorphisms, and let Iqc ⊂ I be the class of quasicompact separated local isomorphisms. Then
P and I are admissible subsets, in the terminology of [LZ12b], and every strongly compactifiable
morphism f in Vshqcqs can be factored as f = p ◦ q for some p ∈ P and q ∈ Iqc.

In this notation, the natural map

δ∗2(Vshqcqs)cart
P,I → Vshqcqs

W

is a categorical equivalence. Similarly, the natural map

δ∗3,{3}(Vshqcqs)cart
P,I,all → δ∗2,{2}(Vshqcqs)cart

W,all

is a categorical equivalence. Finally, analogous claims hold with Vshqcqs replaced by Vshqcqs
q .

Proof. All claims in the first paragraph follow immediately from the definitions. For the admis-
sibility claims in particular, use the criterion in [LZ12b, Remark 3.19]. For the first categorical
equivalence, argue exactly as in the proof of Corollary 0.4 in [LZ12b], with the square

δ∗3(Vshqcqs)cart
P,Iqc,I

��

// δ∗2(Vshqcqs)cart
S,I

��
δ∗2(Vshqcqs)cart

P,I
// Vshqcqs

W

playing the role of the square in loc. cit. The argument for the second categorical equivalence is
completely analogous. For the final claim, note that the passage from Vshqcqs to Vshqcqs

q poses
no additional complications, since by convention the various markings ? on Vshqcqs induce
markings on Vshqcqs

q by consideration of those edges which statically belong to ?.

Returning to the problem at hand, consider the composite map

δ∗3,{1,2,3}(Vshqcqs
q )cart

P,I,all → (Vshqcqs)op,q EOI

−→ Cat∞ (3.1)

where the first arrow is the evident diagonal map, and EOI is the map encoding the association
X 7→ Dét(X,Λ) together with its symmetric monoidal ∗-pullback functoriality.7

7This map exists by general nonsense, as in [LZ12a, Section 2] and the discussion on [Sch17, p. 133].
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To construct the desired enhanced operation map, we will encode !-pushfowards by arguing
as in [LZ12a, pp. 37-39]: in the source of the map ??, we will pass to right adjoints in direction
1, and left adjoints in direction 2.

To pass to right adjoints in direction 1, we apply the dual of [LZ12a, Proposition 1.4.4]. To
apply this proposition, we need to check the relevant adjointability in directions (1,2) and (1,3).
The former is a special case of the latter. For the latter, adjointability follows from proper
base change and the projection formula as in [LZ12a, Lemma 3.2.5], both of which hold in the
present situation by Lemma 3.12.(v). Therefore, passing to right adjoints in direction 1, we get
a map

δ∗3,{2,3}(Vshqcqs
q )cart

P,I,all → Cat∞.

By another application of [LZ12a, Proposition 1.4.4], we now pass to left adjoints in direction
2. Here the necessary adjointability in direction (2,1) follows from the adjunction f! ` f∗ for
f ∈ I, and the adjointability in direction (2,3) follows from étale base change and the projection
formula for j! with j ∈ I, which is trivial. Passing to left adjoints in direction 2, we get a map

EO′ : δ∗3,{3}(Vshqcqs
q )cart

P,I,all → Cat∞.

Finally, by the final claim in Proposition 3.15, the map

δ∗3,{3}(Vshqcqs
q )cart

P,I,all → δ∗2,{2}(Vshqcqs
q )cart

W,all

is a categorical equivalence of simplicial sets, so the induced functor

f : Fun
(
δ∗2,{2}(Vshqcqs

q )cart
W,all,Cat∞

)
→ Fun

(
δ∗3,{3}(Vshqcqs

q )cart
P,I,all,Cat∞

)
is a categorical equivalence of∞-categories by [Lur09, Proposition 1.2.7.3]. Therefore, choosing
any x in the source of f such that f(x) ' EO′, we obtain the desired map

VshqcqsEO : δ∗2,{2}(Vshqcqs
q )cart

W,all → Cat∞.

This completes the proof of Proposition 3.14.

3.3 Descent and codescent
In this section we prove some descent and codescent properties satisfied by the enhanced opera-
tion map constructed in the previous section. These will be crucial inputs for the first iteration
of the DESCENT algorithm.

Consider the enhanced operation map

VshqcqsEO : δ∗2,{2}(Vshqcqs
q )cart

W,all → Cat∞

constructed in the previous section. By restriction and passing to suitable adjoints, we obtain
from this the following functors (with notation as in Section 2.1):

1. A functor
(VshqcqsEOI)⊗ : (Vshqcqs)op → CAlg(Cat∞)L

pr,st,cl

encoding the assignment X 7→ Dét(X,Λ) and all ∗-pullbacks together with their symmetric
monoidal structures, with all higher coherences.

2. A functor
VshqcqsEO! : (Vshqcqs)W → PrL

st

encoding the assignment X 7→ Dét(X,Λ) together with all !-pushforwards for weakly compact-
ifiable maps, with all higher coherences.

2’. A functor
VshqcqsEO! : (Vshqcqs)op

W → PrR
st

encoding the assignment X 7→ Dét(X,Λ) together with all !-pullbacks for weakly compactifiable
maps, with all higher coherences.
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Proposition 3.16. Let f : X → Y be any surjective map in Vshqcqs.

1. f is of universal (VshqcqsEOI)⊗-descent.

2. If f is weakly compactifiable, representable in locally spatial diamonds, and cohomologically
smooth, then f is of universal VshqcqsEO!-codescent.

Here the terminology follows [LZ12a, Definition 3.1.1].

Proof. Part 1. amounts to the claim that Dét(−,Λ) is a v-sheaf of closed symmetric monoidal
stable ∞-categories, which is clear from its construction.

For 2., arguing as in Lemma 1.3.3 of [Gai12], it is equivalent to prove that f is of universal
VshqcqsEO!-descent. In other words, if f0 : X = X0 → Y = X−1 is any map as in 2., with Cech
nerve f• : X• → Y , we need to prove that

Dét(Y,Λ) ' lim
n∈∆

Dét(Xn,Λ)

where the transition maps are given by !-pullback.
Quite generally, when computing the limit of a cosimplicial ∞-category, it is equivalent

to compute the limit of the associated semi-cosimplicial ∞-category, by (the dual of) Lemma
6.5.3.7 and the subsequent remarks in [Lur09]. Thus, let C• : N(∆s) → Cat∞ be the (aug-
mented) semi-cosimplicial ∞-category with Cn = Dét(Xn,Λ) and with the transition maps
given by !-pullback. We need to prove that

Dét(Y,Λ) ' lim
n∈∆s

C
n.

LetD• : N(∆s)→ Cat∞ be the (augmented) semi-cosimplicial∞-category withDn = Dét(Xn,Λ)
and with the transition maps given by ∗-pullback. Then we have a natural equivalence τ : D•

∼→
C• sending An ∈ Dét(Xn,Λ) to An ⊗ Rf !

nΛ, and this equivalence is compatible with the aug-
mentations. Thus

Dét(Y,Λ) ' lim
n∈∆s

D
n ∼→ lim

n∈∆s

C
n,

where the first isomorphism follows from part 1 and the second isomorphism is induced by τ .
This gives the desired result.

4 Running DESCENT

4.1 Decent v-stacks and fine morphisms
Recall that in the introduction, we have defined decent v-stacks and fine morphisms between
them. In this section we study this notion in detail.

To streamline the discussion, it will be convenient to introduce a few auxiliary definitions.

Definition 4.1. A map of small v-stacks f : X → Y is strictly surjective if f admits a section
after pullback along any map T → Y with T a strictly totally disconnected perfectoid space.

Proposition 4.2. i. Any strictly surjective map is surjective as a map of small v-stacks.
ii. Strictly surjective maps are stable under composition and base change.
iii. Surjective étale maps are strictly surjective, and the property of being strictly surjective

is étale-local on the source and target.
iv. If f : X → Y is a smooth surjective map of analytic adic spaces over Spa Zp, then f♦ is

strictly surjective.
v. If f : X → Y is a surjective map of small v-stacks which is formally smooth in the sense

of [FS21, Definition IV.3.1], then f is strictly surjective.
vi. If f : X → Y is a G-torsor for some locally profinite group G, then f is strictly surjective.
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Proof. Parts i. and ii. are clear. Part iii. follows from the fact that any étale cover of a
strictly totally disconnected space admits a section. Part iv. follows from iii. together with
the fact that any smooth map of analytic adic spaces can be factored locally (on the source) as
the composition of an étale map and the projection from a relative ball. Part v. follows from
[FS21, Proposition IV.3.5], and part vi. is clear.

Definition 4.3. A map of small v-stacks f : X → Y is representable in locally separated locally
spatial diamonds if for all locally separated locally spatial diamonds T with a map T → Y , the
fiber product X ×Y T is a locally separated locally spatial diamond.

Note that it is enough to quantify over all separated spatial T . In this language, condition 1.
in Definition 1.1 is exactly the condition that the diagonal be representable in locally separated
locally spatial diamonds.
Warning 4.4. One must be slightly careful when using this definition. In particular, it is
not clear to us whether f : X → Y being representable in locally separated locally spatial
diamonds implies that f is representable in locally spatial diamonds, although see Proposition
4.5.i below for a partial result. Even if this were true, it is still not clear whether f : X →
Y being representable in locally separated locally spatial diamonds is equivalent to f being
locally separated and representable in locally spatial diamonds. It seems plausible that such an
equivalence is actually false, since the condition of f being locally separated can be phrased as
a quantification over open subsets of |X|, and in general |X| can have very few open subsets.
Proposition 4.5. i. Suppose f : X → Y is representable in locally separated locally spatial dia-
monds. Then f is representable in diamonds. If also f is quasiseparated, then f is representable
in locally spatial diamonds.

ii. The property of being representable in locally separated locally spatial diamonds is stable
under composition and base change.

iii. Quasicompact injections are representable in locally separated locally spatial diamonds.
iv. If f : X → Y and g : Y → Z are maps of small v-stacks such that g ◦ f is representable

in locally separated locally spatial diamonds, and g is 0-truncated and quasiseparated, then f is
representable in locally separated locally spatial diamonds.

Proof. We show the first claim in i. Quite generally, to show that a map f : X → Y is
representable in diamonds, it suffices to show that for any map T → Y with T affinoid perfectoid,
the fiber productX×Y T is a diamond. Since affinoid perfectoids are separated spatial diamonds,
the hypothesis in i. implies that X×Y T is a (locally separated locally spatial) diamond, giving
the first claim. The second claim in i. is left as a slightly tricky exercise for the reader (since
we make no use of it in this paper).

Part ii. is clear, and iii. follows from [Sch17, Proposition 11.20]. For iv., let T be any locally
separated locally spatial diamond with a map T → Y . Then we have a cartesian diagram

X ×Y T

��

// X ×Z T

��
Y // Y ×Z Y

of small v-stacks, and we need to see that X×Y T is a locally separated locally spatial diamond.
Since g ◦ f is representable in locally separated locally spatial diamonds, X ×Z T is a locally
separated locally spatial diamond. Then since g is 0-truncated and quasiseparated, Y → Y ×ZY
is a quasicompact injection, so X ×Y T → X ×Z T is a quasicompact injection. The claim now
follows from iii.

Proposition 4.6. Decent v-stacks are Artin v-stacks in the sense of [FS21, Definition IV.1.1].
In particular, the diagonal of any decent v-stack is quasiseparated and representable in locally
spatial diamonds.
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Proof. Suppose X is decent, so ∆ : X → X × X is representable in locally separated locally
spatial diamonds. First we show that ∆ is quasiseparated and representable in locally spatial
diamonds. Pick any chart f : U → X. Then [FS21, Remark IV.1.4.ii] implies that ∆ : X →
X×X is quasiseparated, and reduces us to checking that ∆ is representable in diamonds. Since
X is decent, this follows from the first part of Proposition 4.5.i.

Refining any given chart for X as in Remark 1.2.ii, we get a surjective separated cohomo-
logically smooth map U ′ → X from a locally spatial diamond. Hence X is Artin.

Proposition 4.7. If X2 → X1 ← X3 is any diagram of decent v-stacks, then X2 ×X1 X3 is a
decent v-stack.

Proof. Pick charts fi : Ui → Xi. Then U2×X1 U3 is a locally separated locally spatial diamond,
by Remark 1.2.i applied to X1. One now verifies that U2 ×X1 U3 → X2 ×X1 X3 is a chart, by
factoring it as the composition of maps

U2 ×X1 U3
g2→ X2 ×X1 U3

g3→ X2 ×X1 X3

where gi is a base change of fi.
For the condition on the diagonal, let u : X2 ×X1 X3 → X2 × X3 be the pullback of

∆X1 : X1 → X1 × X1 along X2 × X3 → X1 × X1, so u is representable in locally separated
locally spatial diamonds by the decency of X1 and quasiseparated by Proposition 4.6. Now
consider the commutative diagram

X2 ×X1 X3

u

��

∆X2×X1
X3 // (X2 ×X1 X3)× (X2 ×X1 X3)

u×u

��
X2 ×X3

∆X2×X3 // (X2 ×X3)× (X2 ×X3)

of small v-stacks. Using the decency of X2 and X3, one sees by repeated applications of
Proposition 4.5.ii that ∆X2×X3 and then also ∆X2×X3 ◦ u are both representable in locally
separated locally spatial diamonds. Now going around the diagram via the upper right, we also
get that

(u× u) ◦∆X2×X1
X3 ' ∆X2×X3 ◦ u

is representable in locally separated locally spatial diamonds. Since u is 0-truncated and qua-
siseparated, it is formal that u × u is 0-truncated and quasiseparated, by factoring it as a
composition of pullbacks of u and using Proposition 4.5.ii again. Therefore, applying Proposi-
tion 4.5.iv with f = ∆X2×X1

X3 and g = u × u, we deduce that ∆X2×X1
X3 is representable in

locally separated locally spatial diamonds, as desired.

We now turn to the study of fine morphisms. We begin with some remarks on the definition.

Remark 4.8. Let f be a fine morphism, with

W

b

��

g // V

a

��
X

f // Y

a commutative diagram witnessing the fineness of f . Successively refining V and W as in
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Remark 1.2.ii, we can extend this to a commutative diagram

W ′

β

��

g′ // V ′

α

��
W

b

��

g // V

a

��
X

f // Y

where V ′ and W ′ are separated locally spatial diamonds, α and β are surjective separated
local isomorphisms, and a ◦ α and b ◦ β are clean charts. Using [Sch17, Proposition 22.3],
the condition that g is locally on W compactifiable of finite dim.trg is then equivalent to the
analogous condition for g′. However, g′ is a map between separated v-sheaves, thus is separated
itself, so using [Sch17, Proposition 22.3] again, one sees that the condition on g′ boils down to
the condition that g′ is compactifiable of locally finite dim.trg. Summarizing this discussion,
we conclude that a given morphism f is fine if and only if there is a commutative diagram

W ′

b′

��

g′ // V ′

a′

��
X

f // Y

where a′ and b′ are clean charts and g′ is compactifiable of locally finite dim.trg.
Similar arguments show that if f : X → Y is any map of decent v-stacks, then f is `-

cohomologically smooth in the sense of Definition 1.3.ii if and only if it is `-cohomologically
smooth in the sense of [FS21, Definition IV.1.11].

Remark 4.9. In the definition of a fine morphism, one might instead ask for an a priori stronger
condition, namely the existence of a commutative diagram

W ′

b′

��

g′

  
U

ã

��

// V

a

��
X

f // Y

where a is a chart for Y , the square is cartesian, b′ is a chart for U , and g′ is locally on W ′

compactifiable of finite dim.trg. The existence of such a diagram certainly implies that f is
fine, since ã ◦ b′ : W ′ → X is a chart for X. In fact, these two conditions are equivalent.

To see this, pick a commutative square as in the definition of a fine morphism. Set U =
X ×Y V , so we get a commutative diagram

W
i //

b

  

U
h //

ã

��

V

a

��
X

f // Y
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where a and b are charts, the square is cartesian, and g = h◦ i. Then setting W ′ = W ×b,X,ãU ,
this diagram extends to a diagram

W ′

˜̃a

��

b′

!!
W

i //

b

!!

U
h //

ã

��

V

a

��
X

f // Y

where the trapezoid is cartesian. (Warning! The triangle spanned by ˜̃a, b′, i is typically not
commutative.) Using the alternative presentation W ′ = W ×Y V , decency of Y implies by
Remark 1.2.i that W ′ is a locally separated locally spatial diamond. One then sees (using that
b is a chart) that b′ is a chart.

To conclude, it is enough to see that g′ := h ◦ b′ is locally on W ′ compactifiable of finite
dim.trg. For this, observe that by our assumptions on g = h ◦ i and a, a ◦ g = a ◦ h ◦ i = f ◦ b is
representable in locally spatial diamonds and is locally on W compactifiable of finite dim.trg.
Indeed, the claimed properties are true for g and a separately by assumption; to get it for the
composition, refine the chart a as in Remark 1.2.ii if necessary. Then h ◦ b′ is the base change
of f ◦ b along a, which gives the desired conclusion.

Proposition 4.10. o. If f : X → Y is fine, then for any commutative diagram

W

��

// V

��
X // Y

where the vertical maps are charts, the map W → V is locally on W compactifiable of finite
dim.trg.

i. Fine morphisms are stable under composition.
ii. If

X̃
f̃ //

��

Ỹ

��
X

f // Y

is any Cartesian diagram of decent v-stacks, and f is fine, then also f̃ is fine.
iii. If

Y

g

��
X

h //

f

>>

Z

is any commutative diagram of decent v-stacks, and h and g are fine, then so is f .
iv. If f : X → Y is a map of decent v-stacks which is separated and representable in locally

spatial diamonds, then f is fine if and only if f is compactifiable of locally finite dim.trg.

Proof. o. By Remark 4.8, it suffices to show that if f : X → Y is a fine morphism, there are
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commutative squares

W

b

��

g // V

a

��
X

f // Y

and

W ′

b′

��

g′ // V ′

a′

��
X

f // Y

,

where the vertical maps are clean charts, and g′ is compactifiable of locally finite dim.trg, then
g is also compactifiable of locally finite dim.trg.

We apply various parts of [Sch17, Proposition 22.3] to show that the following maps are
compactifiable: W ×X W ′ → W ′ by (ii), W ×X W ′ → V ×Y W ′ by (viii), W ×X W ′ → V by
(iv), and finally, g : W → V by (vii).

Let w ∈ W , let w′ ∈ W ′ satisfy b′(w′) = b(w), and choose open neighborhoods U 3 w,
U ′ 3 w′ so that b|U and (a′ ◦ g′)|U′ = (f ◦ b′)|U′ are of finite dim.trg. By [Sch17, Proposition
23.11], b′ is universally open. So after possibly replacing U by a smaller open neighborhood,
we may assume that the projection U ×X U ′ → U is surjective. Using a chain of maps similar
to the one in the previous paragraph, we see that U ×X U ′ → V is of finite dim.trg. Then g|U
has finite dim.trg. Since w was chosen arbitrarily, g is of locally finite dim.trg.

i. Suppose X1 → X2 and X2 → X3 are fine maps of decent v-stacks. Pick commutative
squares

U

��

// V

��
X1

// X2

and
V ′

��

// W

��
X2

// X3

witnessing the fineness of these maps. Set T = V ×X2 V
′. Then we get a commutative diagram

U ×V T

{{

// T

!!zz
U

##

// V

$$

V ′

}}

// W

~~
X1

// X2
// X3

and throwing away most of it we get a diagram

U ×V T //

��

W

��
X1

// X3

witnessing the fineness of X1 → X3.
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ii. Pick a diagram

W

b

��

g // V

a

��
X

f // Y

witnessing the fineness of f . Let U → Ỹ be a chart for Ỹ . Then we get a commutative diagram

W //

��

V

��

W̃ //

��

>>

Ṽ

��

??

W̃U
//

��

>>

ṼU

��

??

X // Y

X̃ //

>>

Ỹ

??

X̃U //

>>

U

??

where all vertical arrows are locally separated smooth etc. and the parallelograms involving
slanted arrows are all cartesian. Pick a chart T → X̃U . Then we get a commutative square

T ×X̃U
W̃U

��

// ṼU

��
X̃ // Ỹ

which I claim witnesses the fineness of X̃ → Ỹ .
iii. We can find commutative diagrams

V

��

// U1

��
Y

g // Z

and

W

��

// U2

��
X

h // Z

,

where the vertical arrows are clean charts and the horizontal arrows are compactifiable of locally
finite dim.trg. Then

V ×Y W //

��

V ×Z U2
//

��

U1 ×Z U2

��
X

f // Y
g // Z

is also a commutative diagram where the vertical arrows are clean charts, and V ×Y W →
U1 ×Z U2 and V ×Z U2 → U1 ×Z U2 are compactifiable of locally finite dim.trg. by o. Then
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V ×Y W → V ×Z U2 is compactifiable by [Sch17, Proposition 22.3(viii)], and it has locally finite
dim.trg.

iv. Choose a commutative diagram

W

b

��

g // V

a

��
X

f // Y

such that the vertical arrows are clean charts. By o., f is fine if and only if g is compactifiable
of locally finite dim.trg. By [Sch17, Proposition 22.3(iv,vii,viii)], g is compactifiable iff f is
compactifable. By an argument similar to that of the proof of o., b is universally open, and g
is locally on W of finite dim.trg. iff f is locally on X of finite dim.trg.

In practice, the following permanence result is very useful in checking that various small
v-stacks are decent.

Proposition 4.11. Let Y be a decent v-stack, and let f : X → Y be a morphism of small
v-stacks which is representable in locally spatial diamonds and locally compactifiable of finite
dim.trg. Then X is decent and f is fine.

Proof. To check the condition on ∆X : X → X × X, factor ∆X as the composition X →
X ×Y X → X ×X. Then X ×Y X → X ×X is the pullback of ∆Y along X ×X → Y × Y ,
and ∆Y is representable in locally separated locally spatial diamonds by assumption, so then
also X ×Y X → X × X is representable in locally separated locally spatial diamonds. Since
X → Y is locally compactifiable, it is locally separated, so X → X ×Y X is locally on X a
closed immersion, hence representable in locally separated locally spatial diamonds. We deduce
that ∆X is representable in locally separated locally spatial diamonds.

If U → Y is a chart, it now follows easily that U ×Y X is a locally separated locally spatial
diamond, and that U ×Y X → X is a chart. This implies that X is decent. Moreover, it is clear
that U ×Y X → U is locally compactifiable of finite dim.trg, so f is fine.

4.2 A fragment of DESCENT
In this section we describe the fragment of Liu-Zheng’s DESCENT algorithm we will need. The
strange numberings below are chosen to match the numbering in [LZ12a].

Input 0. Suppose given a 4-marked ∞-category (C̃, Ẽs, Ẽ
′, Ẽ′′, F̃) together with a full sub-

category C ⊂ C̃. Write Es = Ẽs ∩ C, and likewise E′, E′′, F. They are assumed to satisfy:
1. C̃ is geometric, C ⊆ C̃ is stable under finite limits, and for all small coproducts X =

∐
iXi

in C̃, X belongs to C if and only if all Xi belong to C.
3. Ẽs, Ẽ′, Ẽ′′, F̃ are stable under composition, pullback and small coproducts, and Ẽ′ ⊆ Ẽ′′ ⊆

F̃.
4. For every object X of C̃, there exists an edge f : Y → X in Ẽs ∩ Ẽ′ with Y in C. Such an

edge is called an atlas for X.
5. For every pullback square

W

��

// Z

��
Y

f // X

with X ∈ C̃, Y ∈ C and Z ∈ C, and f an atlas, then also W ∈ C. Intuitively, “atlas maps are
representable in C”.
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Input I. Suppose given an enhanced operation map

CEO : δ∗2,{2}(Cq)cart
F,all → Cat∞

satisfying the following properties.
P0-P2.8 The functor

CEOI : Cop,q → Cat∞

induced by restriction to the “all” direction is a weak Cartesian structure, and the induced
functor (CEOI)⊗ factors through CAlg(Cat∞)L

pr,st,cl and sends small coproducts to products.
As in section 2.1, from CEO we obtain a map

CEO∗! : δ∗2,{2}C
cart
F,all → PrL

st,

which restricts further to maps

CEO∗ : Cop → PrL
st and CEO! : CF → PrL

st.

As before we write D(X) for the image of a 0-cell X ∈ C under either of these maps, and f∗

resp. f! for the image of a 1-cell f : Y → X under the first resp. second map. Now we can
state the remaining properties we impose.

P3. If f : Y → X is an edge in Es, then f∗ : D(X)→ D(Y ) is conservative.
P4. If f is an edge in Es ∩ E′′, then f is of universal CEO⊗-descent and of universal

CEO!-codescent.
P5. Let

W
g //

q

��

Z

p

��
Y

f // X

be a cartesian diagram in C, with f in E′. Then:
1) The square

D(Z)
p∗ //

g∗

��

D(X)

f∗

��
D(W )

q∗ // D(Y )

is right-adjointable, with a right adjoint a square in PrR
st.

2) If p is also in E′, then the square

D(X)
f! //

p∗

��

D(Y )

q∗

��
D(Z)

g! // D(W )

is right-adjointable.
P5bis. Same as P5 but with E′ replaced by E′′.
Output I. This consists of an enhanced operation map

C̃EO : δ∗2,{2}(C̃q)cart
F̃,all → Cat∞

8This is of course redundant, since it is exactly condition 1. in the definition of an enhanced operation map. We
have written it out nonetheless to aid the reader in comparing with [LZ12a, Section 4.1], where the notion of an
enhanced operation map is not explicitly formalized and so P0-P2 have actual content.
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extending Input I, and satisfying the obvious analogues of P0-P5bis with C̃, Ẽs, Ẽ
′, Ẽ′′, F̃ in

place of C,Es,E′,E′′,F.
We now have the following key theorem, which is the fragment of DESCENT we will need.

Theorem 4.12. Fix an Input 0. Then every Input I can be extended to an Output I in an
essentially unique way.

Proof. This is a special case of (the proof of) [LZ12a, Theorem 4.1.8.(1)].

4.3 First iteration of DESCENT
We begin by running DESCENT with the following inputs.

For Input 0, we make the following choices.

• C̃ = Diaqs.lsep.lspat where Diaqs.lsep.lspat is the category of quasiseparated locally separated
locally spatial diamonds.

• C = Diasep.spat where Diasep.spat ⊂ Diaqs.lsep.lspat is the full subcategory spanned by small
coproducts of separated spatial diamonds.

• Ẽs is the set of morphisms which are surjective as maps of v-sheaves.

• Ẽ′ is the set of (locally separated) étale morphisms in Diaqs.lsep.lspat.

• Ẽ′′ is the set of (locally separated) cohomologically smooth morphisms in Diaqs.lsep.lspat.

• F̃ is the set of fine morphisms.

It is easy to see that these choices satisfy the conditions required of an Input 0. The only point
which isn’t immediate is condition 5., which follows from the next lemma.

Lemma 4.13. Let
W //

��

Y

g

��
X

f // Z

be a cartesian diagram of v-sheaves, where X and Y are separated spatial diamonds, and Z is a
quasiseparated locally separated locally spatial diamond. Then W is a separated spatial diamond.

Proof. Since W = X ×Z Y is a subfunctor of X × Y , and X × Y is separated, we immediately
get that W is separated. Local spatiality of W is clear, so it remains to see that W is qcqs.
Since X and Y are quasicompact and Z is quasiseparated, the maps f, g are quasicompact. In
particular, |f | and |g| have quasicompact images in |Z|. By local spatiality of Z, we may pick
some sufficiently large quasicompact open subfunctor U ⊂ Z such that |U | ⊃ (im|f | ∪ im|g|).
Then since Z is quasiseparated, U is automatically qcqs, so W = X ×Z Y = X ×U Y is a fiber
product of qcqs objects, and therefore is qcqs as desired.

As Input I, we take the enhanced operation map constructed in section 3.2 for a specific
choice of coefficient ring Λ, restricted from Vshqcqs to Diasep.spat, noting that in Diasep.spat

weakly compactifiable maps exactly coincide with fine maps. P0-P2 and P3 are clear. P4
follows from Proposition 3.16. P5 and P5bis follow from a combination of smooth and proper
base change.

Theorem 4.12 now applies, yielding an enhanced operation map on C̃, and in particular a
functor

Diaqs.lsep.lspatEO : δ∗2,{2}(Diaqs.lsep.lspat
q )cart

F,all → Cat∞

where F denotes the set of fine morphisms.
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4.4 Second iteration of DESCENT
We run DESCENT with the following input.

For Input 0, we make the following choices.

• C̃ = Dialsep.lspat where Dialsep.lspat is the category of locally separated locally spatial
diamonds.

• C = Diaqs.lsep.lspat where Diaqs.lsep.lspat ⊂ Dialsep.lspat is the category of quasiseparated
locally separated locally spatial diamonds.

• Ẽs is the set of surjective morphisms of v-sheaves.

• Ẽ′ is the set of (locally separated) étale morphisms in Dialsep.lspat.

• Ẽ′′ is the set of (locally separated) cohomologically smooth morphisms in Dialsep.lspat.

• F̃ is the set of fine morphisms in Dialsep.lspat.

It is easy to see that these choices satisfy the conditions required of an Input 0. The only point
which isn’t immediate is condition 5., which follows from the next lemma.

Lemma 4.14. Let
W //

��

Y

g

��
X

f // Z

be a cartesian diagram of small v-sheaves, where X and Y are quasiseparated locally separated
locally spatial diamonds, and Z is a locally separated locally spatial diamond. Then W is a
quasiseparated locally separated locally spatial diamond.

Proof. It is clear that W is a locally separated locally spatial diamond. We need to see that W
is quasiseparated. SinceW = X×ZY ⊂ X×Y is a subfunctor of X×Y , and quasiseparatedness
passes to subfunctors, it’s enough to see that X × Y is quasiseparated. But small v-sheaves
form an algebraic topos by [Sch17, Proposition 8.3], so for any quasiseparated objects X and
Y , also X × Y is quasiseparated by [SGA72, VI, Proposition 2.2.(ii)].

As Input I, we take the enhanced operation map constructed as Output I of the first iteration.
P0-P5bis are automatic, since they hold for any Output I.

Theorem 4.12 now applies again, yielding an enhanced operation map on C̃, and in particular
a functor

Dialsep.lspatEO : δ∗2,{2}(Dialsep.lspat
q )cart

F,all → Cat∞

where F denotes the set of fine morphisms.

4.5 Third iteration of DESCENT
We run DESCENT with the following input.

For Input 0, we make the following choices.

• C̃ = Vstkdct where Vstkdct is the category of decent v-stacks.

• C = Dialsep.lspat where Dialsep.lspat ⊂ Vstkdct is the category of locally separated locally
spatial diamonds.

• Ẽs is the set of strictly surjective morphisms of v-stacks.

• Ẽ′ = Ẽ′′ is the set of cohomologically smooth morphisms in Vstkdct.

• F̃ is the set of fine morphisms in Vstkdct.
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It is easy to see that these choices satisfy the conditions required of an Input 0. As Input I,
we take the enhanced operation map constructed as Output I of the second iteration. P0-P5bis
are automatic, since they hold for any Output I.

Theorem 4.12 now applies again, yielding an enhanced operation map on C̃, and in particular
a functor

VstkdctEO : δ∗2,{2}(Vstkdct
q )cart

F,all → Cat∞

where F denotes the set of fine morphisms.

4.6 Endgame
In this section we complete the proof of Theorem 2.6.

Let
VstkdctEO : δ∗2,{2}(Vstkdct

q )cart
F,all → Cat∞ (4.1)

be the enhanced operation map obtained as the output of the third iteration of DESCENT
in the previous section. We freely use the notation from section 2.1 for various subordinate
structures obtained from this map.

Proposition 4.15. For any X ∈ Vstkdct, we have D(X) ∼= Dét(X,Λ) compatibly with the
symmetric monoidal structures and with all ∗-pullbacks.

Proof. For this we need to dig into the proof of Theorem 4.12. For the moment, let C ⊂ C̃

be as in the general setup for DESCENT. The proof of Theorem 4.12 extends the association
X  D(X) from C to C̃ as follows. For any X ∈ C̃, let X0 → X be a choice of atlas, with
Cech nerve X• → X. By the general properties of any Input 0, we have Xn ∈ C for all
n ≥ 0. Then D(X) with its symmetric monoidal structure is constructed as the limit of the
cosimplicial ∞-category n ∈ ∆ 7→ D(Xn), where the transition maps are given by ∗-pullback.
(Of course, the proof of Theorem 4.12 also accounts for the ambiguity arising from the choice
of a particular atlas, roughly by taking a further limit over all possible atlases, and also handles
the ∗-pullbacks.)

Returning to the situation at hand, we already know that Dét(−,Λ) is a v-sheaf of sym-
metric monoidal ∞-categories on the category of all small v-stacks. Moreover, the enhanced
operation map constructed in Theorem 3.14 satisfies D(X) ∼= Dét(X,Λ) for all X ∈ Diasep.spat

by design, compatibly with the symmetric monoidal structure and with ∗-pullbacks. Since
in each of our three iterations of DESCENT the atlas maps were chosen to be v-covers, it
is now clear by the argument in the previous paragraph that the enhanced operation map
obtained at the output of each successive iteration still satisfies C̃EO(X) ∼= Dét(X,Λ) (for
C̃ ∈ {Diaqs.lsep.lspat,Dialsep.lspat,Vstkdct}) compatibly with the symmetric monoidal structures
and with ∗-pullbacks. This gives the result.

Proposition 4.16. Let g : X → Y be a map of decent v-stacks which is representable in locally
spatial diamonds and compactifiable of locally finite dim.trg, so in particular g is fine. Then the
functor g! obtained from (2) coincides with the functor Rg! constructed in [Sch17, Section 22].

Taken together, Propositions 4.15 and 4.16 complete the proof of Theorem 2.6.

Proof. Let A ∈ Dét(X,Λ) be some object. Let Y• → Y be a v-hypercover by small coproducts
of separated spatial diamonds, so we get a pullback square

X•
g• //

v•

��

Y•

u•

��
X

g // Y
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of small v-stacks. There is a natural equivalenceDét(Y,Λ) ' Dét,cart(Y•,Λ), identifying g!A with
the coCartesian section n ∈ ∆ 7→ gn!v

∗
nA ∈ Dét(Yn,Λ), functorially in A. This identification

is an immediate consequence of the proper base change isomorphism u∗ng! ' gn!v
∗
n. Comparing

this with the discussion on p. 133-134 of [Sch17], we are reduced to showing that gn! ' Rgn!

for all n ≥ 0. In other words, after resetting the notation, we’ve reduced the general case of the
proposition to the special case where Y is a small coproduct of separated spatial diamonds.

We immediately reduce further to the case where Y is a separated spatial diamond, so X
is a separated and quasiseparated locally spatial diamond and g : X → Y is compactifiable
of locally finite dim.trg. In particular, g is a fine morphism in the category Diaqs.lsep.lspat, so
the relevant g! functor is already obtained from Output I of our first iteration of DESCENT.
If moreover g is quasicompact, then g is a fine morphism of separated spatial diamonds, so we
are actually in the setting of Input I of our first iteration, in which case we already know that
g! ' Rg! by Theorem 3.14.

Otherwise, let U be the (filtered) collection of all quasicompact open subdiamonds U ⊂ X;
note that each U is automatically separated and spatial. For each U ∈ U, let jU : U → X be
the evident map, and set gU = g ◦ jU , so in particular gU is a fine morphism of separated spatial
diamonds. Now, on one hand it is completely formal to see that

g!A ' g!colimU∈UjU !j
∗
UA

' colimU∈Ug!jU !j
∗
UA

' colimU∈UgU !j
∗
UA.

Here the first and third lines are trivial, and the second line follows from the fact that g!

commutes with all colimits. On the other hand, in [Sch17] Rg!A is defined as colimU∈URgU !j
∗
UA,

cf. [Sch17, Definition 22.13] and the discussion immediately afterwards. By the discussion in
the previous paragraph, we already know that gU ! ' RgU ! for all U ∈ U, so comparing these
expressions, we conclude that g! ' Rg! as desired.

4.7 Cohomological smoothness for stacky maps
Having completed the proof of Theorem 1.4, we now switch notation and write Rg! for the
functor constructed therein, and Rg! for its right adjoint, in agreement with the notation in
[FS21, Sch17].

Recall that in Definition 1.3.ii we have defined `-cohomologically smooth morphisms between
decent v-stacks, and that our definition agrees with [FS21, Definition IV.1.11] by the argument
in Remark 4.8. Both of these definitions are extrinsic, formulated in terms of the existence of
charts with various properties. However, we can now give a purely intrinsic definition, parallel
to the definition in the 0-truncated case.

Proposition 4.17. Let f : X → Y be a fine map of decent v-stacks. Then the following
conditions are equivalent.

1. The map f is `-cohomologically smooth in the sense of Definition 1.3.ii.

2. The complex Rf !F` is invertible, the natural map Rf !F`⊗f∗(−)→ Rf !(−) is an isomor-
phism, and these statements hold after any decent base change on Y .

3. The complex Rf !F` is invertible and its formation commutes with any decent base change
on Y .

Proof. For (1) =⇒ (2), assume we have charts a : V → Y , b : W → X, and an `-cohomologically
smooth morphism g : W → V as in the commutative diagram (1.1)(ii). Using the `-cohomological
smoothness of a, b, and g, we have b∗Rf !F` ∼= Rb!F−1

` ⊗ Rb
!Rf !F` ∼= Rb!F−1

` ⊗ Rg
!Ra!F` is

invertible, which implies invertibility of Rf !F` since invertibility can be detected v-locally. For
the second part of the claim, suppose A ∈ Dét(Y,F`). It is enough to check that Rf !F`⊗f∗A→
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Rf !A is an isomorphism after pullback through b, and one sees after twisting by Rb!F` that this
is equivalent to the statement that Rg!Ra!F` ⊗ g∗a∗A→ Rg!Ra!A is an isomorphism, which is
true because a ◦ g is `-cohomologically smooth. Since the property (1) is stable under decent
base change on Y , so are the properties we have just verified.

Now we prove (2) =⇒ (1): Let a : V → Y be a chart, and let b : W → X be the base
change of a through f , so that once again we have a diagram as in (1.1). By hypothesis,
Rg!Λ is invertible, and Rg!F` ⊗ g∗(−) → Rg!(−) is an isomorphism. Let h : U → W be a
chart. Applying h! ∼= h!F` ⊗ h∗, we find that R(g ◦ h)!F` ⊗ (g ◦ h)∗(−) → R(g ◦ h)!(−) is an
isomorphism. This means that g ◦ h is an `-cohomologically smooth morphism between charts
for X and Y respectively, and so f is `-cohomologically smooth in the sense of Definition 1.3.ii.

By the discussion immediately following [FS21, Proposition IV.2.33], a compactifiable mor-
phism g between locally spatial diamonds with finite dim. trg is `-cohomologically smooth (in
the sense of [Sch17]) if and only if Rg!F` is invertible and its formation commutes with any base
change. The above arguments can now be adapted to give the equivalence between (1) and (3).
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