EXAMPLES HANDOUT (II)

1. The conjecture

Take $G = \mathrm{GL}_n$ over a finite extension E/\mathbb{Q}_p with residue field \mathbb{F}_q . Set $\Lambda = \overline{\mathbb{Q}}_\ell$ and fix $q^{1/2} \in \Lambda$.

- Let φ be the semisimple L-parameter such that $\varphi(I_F) = 1$ and maps the geometric Frobenius to $\delta^{1/2} := \operatorname{diag}(q^{(1-n)/2}, \dots, q^{(n-1)/2}) \in \hat{T}(\Lambda)$.
- For $G = GL_n$, we have Vogan stack

$$V_{\hat{G},\varphi} = \mathbb{A}^{n-1}/\hat{T} \xrightarrow{\iota} \operatorname{Par}_{\hat{G}}^{\operatorname{unip}}.$$

$$\downarrow$$

$$\mathbb{B}\hat{T}$$

Each $\mathbf{k} \in \mathbf{X}^*(\hat{T})$, viewed as a coherent sheaf on $\mathbb{B}\hat{T}$, yields $\mathcal{L}_{\mathbf{k}} := \iota_*\mathcal{O}(\mathbf{k}) \in \mathrm{Coh}(\mathrm{Par}_{\hat{G}}^{\mathrm{unip}})$, corresponding to an automorphic sheaf $\mathcal{L}_{\mathbf{k}}^{\mathrm{aut}}$ on Bun_G by assuming categorical local Langlands equivalence. (If we work at the unipotent level, this will be unconditional by [Zhu25].)

• Let $b_{d/n} = b_d$ be the basic isocrystal of slope d/n. Then $G_{b_d} = GL_{(d,n)}(D_{d'/n'})$ gives an inner form of G, which depends only on $d \mod n$.

It turns out that the stalk $i_{bd}^* \mathcal{L}_{k}^{aut}$ is identically zero unless k has degree d.

Conjecture 1.1 (Hansen). Suppose $\mathbf{k} = (k_1, \dots, k_n) \in \mathbf{X}^*(\hat{T})$ has degree $d \in \mathbb{Z}$. Then we expect

$$i_{\mathbf{b}_d}^* \mathcal{L}_{\mathbf{k}}^{\mathrm{aut}} = \pi_{\mathbf{I}_{\mathbf{k}}} \left[\sum_{j \in \mathbf{J}_{\mathbf{k}}} (\delta_j - 2m_j) \right]$$

between derived complexes in $Rep(G_{b_d}(E), \Lambda)$ that are concentrated in degree 0. Here,

- $I_{\mathbf{k}} := \{i \in \{1, \dots, (d, n) 1\} \mid m_{n'i} \leq 0\} \text{ and } J_{\mathbf{k}} := \{i \in \{1, \dots, n 1\} \mid m_i > 0\};$
- $\pi_{\mathbf{I}_{\mathbf{k}}}$ is the unique generalized Steinberg representation of $G_{\mathbf{b}_d}(E)$ corresponding to $\mathbf{I}_{\mathbf{k}}$;
- $\delta_i \in \{0,1\}$, and $\delta_i = 1$ if and only if n' = n/(d,n) divides i;
- m_i 's are integers determined by \mathbf{k} , and $m_i = k_1 + \cdots + k_i$ if d = 0.

2. The proof for b = 1

When b = 1 (achieved by taking d = 0), Conjecture 1.1 can be simplified into the following.

Theorem 2.1. For $\mathbf{k} = (k_1, \dots, k_n)$ of degree 0, writing $m_i = k_1 + \dots + k_i$, we have

$$i_1^* \mathcal{L}_{\boldsymbol{k}}^{\text{aut}} = \pi_{\mathbf{I}_{\boldsymbol{k}}} \left[\sum_{j \notin \mathbf{I}_{\boldsymbol{k}}} (1 - 2m_j) \right].$$

2.1. Jacquet module and coherent Springer sheaf.

Proposition 2.2 ([Zel80, §2]). For any $I \subset \{1, ..., n-1\}$, the Jacquet module of π_I is

$$\mathbf{r}_G^B(\pi_{\mathrm{I}}) = \bigoplus_{\sigma} \sigma(\delta^{1/2}),$$

where the direct sum runs over $\sigma \in S_n$ such that $I = \{i \in \{1, \dots, n-1\} \mid \sigma^{-1}(i) < \sigma^{-1}(i+1)\}.$

Applying [HHS24, Corollary 2.2.1], we get

$$\mathbf{r}_G^B i_1^* \mathcal{L}_{\mathbf{k}}^{\mathrm{aut}} = i_1^{*,T} \mathrm{CT}_{B,!} \mathcal{L}_{\mathbf{k}}^{\mathrm{aut}}.$$

On spectral side, we need $CT_B^{Spec}\mathcal{L}_{\boldsymbol{k}} := \mathfrak{p}_*^{Spec}\mathfrak{q}^{Spec,!}\mathcal{L}_{\boldsymbol{k}}$.

$$\hat{T} \times \mathbb{B}\hat{T} = \operatorname{Par}_{\hat{T}}^{\operatorname{unip}} \qquad \operatorname{Par}_{\hat{B}}^{\operatorname{unip}} \stackrel{\iota}{\longleftarrow} V_{\hat{G},\varphi} \qquad \operatorname{Par}_{\hat{B}}^{\operatorname{unip}} \longleftarrow V_{\hat{G},\varphi} \stackrel{\iota}{\longleftarrow} V_{\hat{G},\varphi}$$

For LArGe NEW seminar on September 8, 2025.

Proposition 2.3 (Xiangqian Yang, see [Yan25, Proposition 3.12]). For each $\sigma \in S_n$, denote $P_{\sigma} :=$ $\{i \in \{1, \dots, n-1\} \mid \sigma^{-1}(i) < \sigma^{-1}(i+1)\}\$ and let Q_{σ} be its complement in $\{1, \dots, n-1\}$. Then

$$V_{\hat{B},\varphi}^{\wedge} \simeq \coprod_{\sigma \in S_n} (\operatorname{Spf} \Lambda[v_i]_{i \in P_{\sigma}} \llbracket u_1, \dots, u_n \rrbracket / (u_i v_i)_{i \in P_{\sigma}}) / \hat{T}.$$

In particular, taking $\sigma = \operatorname{id}$ gives the closed substack $V_{\hat{B},\varphi}^{\wedge} \to V_{\hat{G},\varphi}^{\wedge}$ corresponding to $Q_{\sigma} = \emptyset$.

To further simplify the notations, write

- $X_{\sigma} := (\operatorname{Spf} \Lambda[v_i]_{i \in P_{\sigma}} \llbracket u_1, \dots, u_n \rrbracket / (u_i v_i)_{i \in P_{\sigma}}) / \hat{T}$ (in particular, $X := X_{\operatorname{id}} = V_{\hat{G}, \omega}^{\wedge}$);
- $\mathcal{O}_X/\mathbf{u} := \mathcal{O}_{X_{\mathrm{id}}}/(u_1,\ldots,u_n) = \Lambda[v_1,\ldots,v_{n-1}].$

Then we have

- $\diamond \ \mathbb{L}^{\mathrm{unip}}(\mathcal{L}^{\mathrm{aut}}_{\boldsymbol{k}}) = \hat{\iota}_*(\mathcal{O}_X/\boldsymbol{u})(\mu_{\boldsymbol{k}}) \in \mathrm{Coh}(\mathrm{Par}^{\mathrm{unip},\wedge}_{\hat{G}}), \ \mathrm{and}$ $\diamond \ \mathbb{L}^{\mathrm{unip}}(\mathrm{c\text{-}Ind}_I^G\mathbb{1}) = \mathrm{Coh}\mathrm{Spr}^{\mathrm{unip}} \coloneqq \hat{\mathfrak{q}}_*^{\mathrm{Spec}}\mathcal{O}_{\mathrm{Par}^{\mathrm{unip}}_{\hat{B}}} \in \mathrm{Coh}(\mathrm{Par}^{\mathrm{unip},\wedge}_{\hat{G}}).$

To determine the stalk $i_1^* \mathcal{L}_{k}^{\text{aut}}$ (for b = 1 and $G_b = G$), it suffices to compute RHom(c-Ind $_I^G \mathbb{1}, \mathcal{L}_{k}^{\text{aut}}$) \cong RHom(CohSpr^{unip}, $\hat{\iota}_*(\mathcal{O}_X/\mathbf{u})(\mu_{\mathbf{k}})$). But $\hat{\iota}^!(\text{CohSpr}^{\text{unip}}) \cong \bigoplus_{\sigma \in S_n} \mathcal{O}_{X_{\sigma}}$ as ind-coherent sheaves on Xby Proposition 2.3. So it reduces to

$$\bigoplus_{\sigma \in S_n} \mathrm{RHom}(\mathcal{O}_{X_{\sigma}}, (\mathcal{O}_X/\boldsymbol{u})(\mu_{\boldsymbol{k}})).$$

2.2. A projective resolution. Continue with the computation of cohomology of (†). We construct a free projective resolution $\mathcal{P}_{\bullet} \to \mathcal{O}_{X_{\sigma}} = \mathcal{O}_X/(v_i)_{i \in Q_{\sigma}} \to 0$ of \mathcal{O}_X -modules that is \hat{T} -equivariant.

Construction 2.4. Fix an arbitrary subset $Q \subset \{1, ..., n-1\}$.

- Define $\mathbb{N}^{\mathbb{Q}} := \{ \boldsymbol{d} = (d_i)_{i \in \mathbb{Q}} \mid d_i \in \mathbb{Z}_{\geq 0} \};$
- For each $d \in \mathbb{N}^{\mathbb{Q}}$, write $|d| := \sum_{i \in \mathbb{Q}} d_i$ and define the weight $\chi_d := \sum_{i \in \mathbb{Q}} \lceil d_i/2 \rceil \alpha_i$.
- For $t \ge 0$, set

$$\mathcal{P}_t \coloneqq igoplus_{oldsymbol{d} \in \mathbb{N}^{\mathrm{Q}}, |oldsymbol{d}| = t} \mathcal{O}_X(\chi_{oldsymbol{d}}),$$

with the differential maps $\partial \colon \mathcal{P}_{t+1} \to \mathcal{P}_t$ given by

$$e_{\mathbf{d}} \longmapsto \sum_{i \in Q, d_i > 0} (-1)^{\varepsilon(i, \mathbf{d})} \vartheta(d_i) \cdot e_{\mathbf{d} - \mathbf{e}_i}.$$

The notations in the formula of $\partial(\mathbf{e}_d)$ are explained below.

- For v_i, u_i in \mathcal{O}_X , we set $\vartheta_i(r) = v_i$ when r is odd, and $\vartheta_i(r) = u_i$ when r is even.
- Define $\varepsilon(i, \mathbf{d}) := \sum_{j \in Q_{< i}} d_j$, where $Q_{< i} = Q \cap \{1, \dots, i-1\}$; declare $\varepsilon(1, \mathbf{d}) = 0$.
- \circ The e_i is the |Q|-tuple with 1 on its *i*-th coordinate and 0 elsewhere; set $e_{d-e_i}=0$ if any coordinate of $d - e_i$ is negative.

This resolution depends on Q, but we omit Q from the notation. One can check that \mathcal{P}_{\bullet} is automatically \hat{T} -equivariant, by using the setting that \hat{T} acts on u_i and v_i respectively by weights α_i and 0.

Example 2.5. (1) Take $G = GL_2$ and $Q = \{1\}$. Then \mathcal{P}_{\bullet} looks like

This recovers the resolution in [BM23, §2] for PGL₂ (essentially the same as the GL₂ case).

(2) Take $G = GL_3$ and $Q = \{1, 2\}$. Then we have

$$\mathcal{P}_t = \bigoplus_{d_1 + d_2 = t} \mathcal{O}_X(\lceil d_1/2 \rceil \alpha_1 + \lceil d_2/2 \rceil \alpha_2),$$

and that $\partial(e_{(d_1,d_2)}) = \vartheta_1(d_1)e_{(d_1-1,d_2)} + (-1)^{d_1}\vartheta_2(d_2)e_{(d_1,d_2-1)}$.

2.3. **Proof of Theorem 2.1.** We proceed to compute the cohomology

$$\mathrm{H}^*(\mathrm{RHom}(\mathcal{O}_{X_{\sigma}},(\mathcal{O}_X/\boldsymbol{u})(\mu_{\boldsymbol{k}}))).$$

In IndCoh(Par^{unip, \wedge}_{\hat{G}}), from the resolution \mathcal{P}_{ullet} we get a cochain complex

$$(\mathcal{C}^{\bullet})^{\hat{T}} \coloneqq \operatorname{Hom}_{\mathcal{O}_{X}}(\mathcal{P}_{\bullet}, (\mathcal{O}_{X}/\boldsymbol{u})(\mu_{\boldsymbol{k}}))^{\hat{T}} \cong \bigoplus_{\boldsymbol{d} \in \mathbb{N}^{Q}, |\boldsymbol{d}| = t} (\mathcal{O}_{X}/\boldsymbol{u})(\mu_{\boldsymbol{k}} - \chi_{\boldsymbol{d}})^{\hat{T}}.$$

Lemma 2.6. Let $\nu = r_1\alpha_1 + \cdots + r_{n-1}\alpha_{n-1}$ for $r_1, \ldots, r_{n-1} \in \mathbb{Z}$. Then we have

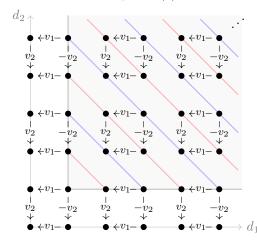
$$\mathcal{O}_{X}(\nu)^{\hat{T}} = \begin{cases} 0, & \text{if } r_{j} > 0 \text{ for some } j; \\ v_{1}^{-r_{1}} \cdots v_{n-1}^{-r_{n-1}} \Lambda \llbracket u_{n} \rrbracket \llbracket u_{j} \rrbracket_{r_{j}=0}, & \text{otherwise.} \end{cases}$$

In particular, $(\mathcal{O}_X/\mathbf{u})(\nu)^{\hat{T}}$ is either isomorphic to Λ or 0, determined by whether all $r_i \leq 0$ or not.

Corollary 2.7. Fix $Q \subset \{1, \dots, n-1\}$ as before. If $(C^{\bullet})^{\hat{T}} \neq 0$, then there exists $\mathbf{d} \in \mathbb{N}^{Q}$ such that for all $i \in Q$, we have $\lceil d_{i}/2 \rceil \geqslant m_{i} = k_{1} + \dots + k_{i}$.

To prove Theorem 2.1, the case of GL_3 already exhibits all phenomena present for GL_n .

- (i) For $Q_{\sigma} = \emptyset$, no resolution is in need and apply Lemma 2.6 directly.
- (ii) For $Q_{\sigma} = \{1\}$, the resolution of $\mathcal{O}_{X_{\sigma}}$ is essentially the same as Example 2.5(1) for the GL₂ case, namely $\mathcal{P}_{\bullet} \to \mathcal{O}_{X_{\sigma}} \to 0$ with $\mathcal{P}_{t} = \mathcal{O}_{X}(\lceil t/2 \rceil \alpha_{1})$. Then Lemma 2.6 computes $(\mathcal{C}^{\bullet})^{\hat{T}}$ and Corollary 2.7 determines the degree shift.
- (iii) For $Q_{\sigma} = \{2\}$, this is the same as in (ii).
- (iv) For $Q_{\sigma} = \{1, 2\}$, we are in the case of Example 2.5(2). The resolution is illustrated below.



It turns out that the cohomology is non-vanishing only at the corner $(d_1, d_2) = (2m_1 - 1, 2m_2 - 1)$ by Corollary 2.7.

The computation above finishes the proof of Theorem 2.1 for GL_3 .

References

- [BM23] Alexander Bertoloni Meli. Coherent sheaves for the Steinberg parameter of PGL₂, 2023. Unpublished notes. URL.
- [HHS24] Linus Hamann, David Hansen, and Peter Scholze. Geometric Eisenstein series I: Finiteness theorems, 2024. Preprint. arXiv:2409.07363.
- [Yan25] Xiangqian Yang. On Ihara's lemma for definite unitary groups, 2025. Preprint. arXiv: 2504.07504.
- [Zel80] Andrei V. Zelevinsky. Induced representations of reductive p-adic groups. II. On irreducible representations of GL(n). Annales scientifiques de l'École Normale Supérieure, 13(2):165-210, 1980. URL.
- [Zhu25] Xinwen Zhu. Tame categorical local Langlands correspondence, 2025. Preprint. arXiv:2504.07482.

Department of Mathematics, National University of Singapore, Block S17, 10 Lower Kent Ridge Road, Singapore 119076

 $Email\ address:$ daiwenhan@u.nus.edu