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Abstract. We prove a generic smoothness result in rigid analytic geometry over a characteristic zero
nonarchimedean field. The proof relies on a novel notion of generic points in rigid analytic geometry which
are well-adapted to “spreading out” arguments, in analogy with the use of generic points in scheme theory. As
an application, we develop a six functor formalism for Zariski-constructible étale sheaves on characteristic
zero rigid spaces. Among other things, this implies that characteristic zero rigid spaces support a well-
behaved theory of perverse sheaves.
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1. Introduction

In this paper, we prove a new generic smoothness result for morphisms of rigid analytic spaces (regarded
as adic spaces, always), and apply it to set up a 6 functor formalism for étale cohomology of rigid analytic
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spaces with coefficients in Zariski-constructible sheaves. Our first geometric result is the following (see also
Remark 1.4 for an alternative approach through [Duc18]).
Theorem 1.1 (Generic smoothness, Theorems 2.21, 2.27 and 2.29). Fix a nonarchimedean field K, and let
f : X → Y be a quasicompact map of rigid analytic spaces over SpaK with Y reduced.

(1) If Y is geometrically reduced (which is automatic from reducedness if K has characteristic 0, [Con99,
Lemma 3.3.1]), there is a dense open subset U ⊂ Y such that f−1(U)→ U is flat.

(2) If charK = 0 and X is smooth, there is a dense open subset U ⊂ Y such that f−1(U) → U is
smooth. If moreover f is proper, then the maximal such U is Zariski-open.

In classical algebraic geometry, results like this are easily proved by spreading out from generic points in
Y . In non-archimedean geometry, at least from the point of view of topology, there are far too many generic
points: all rank one points of Y , and in particular all classical rigid points, are generic in the sense of locally
spectral spaces. Moreover, at most of these points, spreading out cannot work naively, due to the subtle
mixture of completions and integral closures which arise when computing the stalks and residue fields of OY
and O+

Y . Our main new observation in the proof of Theorem 1.1 is that there is nevertheless a reasonable
rigid analytic analog of generic points from algebraic geometry, given as follows.
Definition 1.2 (Weakly Shilov points, §2.1). Fix a nonarchimedean fieldK with a pseudouniformizer t ∈ K◦
and residue field k. A rank one point x in a rigid space X/K is weakly Shilov if any one of the following
equivalent conditions is satisfied:

(1) There is an open affinoid subset Spa(A,A◦) ⊂ X such that x lies in the Shilov boundary of
Spa(A,A◦).

(2) There is an open affinoid subset Spa(A,A◦) ⊂ X containing x such that the map A◦ → K+
x identifies1

K+
x with a t-completed localization of A◦.

(3) The transcendence degree of the secondary residue field K+
x /m over k equals the local dimension of

X at x.

(4) (Applicable only if X is quasiseparated and quasi-paracompact.) There exists a formal model X of
X such that the specialization map sp : |X| → |Xk| carries x to the generic point of an irreducible
component of Xk.

Example 1.3. If X = SpaK〈T 〉 is the closed unit disc, the weakly Shilov points are exactly the points of
Type 2 in the usual nomenclature, i.e. the points defined by the Gauss norms on closed subdisks.

Weakly Shilov points are closely related to divisorial valuations as considered in birational geometry. For
our purposes, the utility of these points arises by combining the characterizations (1) and (2) above: the
former implies such points are dense in X, while the latter (roughly) makes these points amenable to the
same commutative algebra arguments as generic points in algebraic geometry. The proof of Theorem 1.1
proceeds by making this idea precise: indeed, our arguments show that the subsets U in Theorem 1.1 can
be chosen to contain all the weakly Shilov points of Y .
Remark 1.4 (Obtaining Theorem 1.1 from Ducros’ work). Theorem 1.1 can also be deduced from Ducros’
[Duc18] if one switches to Berkovich spaces; we indicate the argument for Theorem 1.1 (2) in the proper
case (which is the most essential one for this paper) in Remark 2.30. Note that the idea of using Abhyankar
points in [Duc18] seems functionally equivalent to our idea of weakly Shilov points. On the other hand, our
differential approach to a key step (see Theorem 2.18) differs from the function theoretic approach of the
corresponding [Duc18, Theorem 6.3.7]. We were unaware of [Duc18] when working on Theorem 1.1, and
thank Brian Conrad for bringing [Duc18] to our attention.

1As x is a rank 1 point, the ring K+
x is a rank 1 valuation ring, and identifies with the subring OKx ⊂ Kx of power bounded

elements of the valued field Kx.
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Let us now turn to the application of this result to étale cohomology of rigid spaces. Recall that for any
rigid space X/K, work of Huber [Hub96] and Berkovich [Ber93] shows that the derived category D(X,Z/n)
of étale Z/n-sheaves admits a reasonable 6-functor formalism (at least for n invertible onK). However, unlike
in the case of schemes, it is much more subtle to isolate a reasonable subcategory of “constructible” complexes
which are stable under the 6 operations.2 In [Han20], the second author proposed that the following notion
should yield the desired theory.

Definition 1.5 (Zariski-constructible sheaves, Definition 3.1). Fix a rigid space X/K and n > 0. An étale
sheaf F of Z/n-modules is called Zariski-constructible if X admits a locally finite stratification X =

∐
i∈I Xi

into Zariski locally closed subsets Xi such that F |Xi is locally constant with finite stalks for all i. Write
D

(b)
zc (X,Z/n) ⊂ D(Xét,Z/n) for the full subcategory of the derived category of Z/n-module sheaves on Xét

spanned by complexes that have Zariski-constructible cohomology sheaves and are locally bounded on X.

The paper [Han20] only showed the stability of Dzc(X,Z/n) by the 6 operations in some very limited
situations. The techniques in the present paper yield this stability in satisfactory generality over characteristic
zero fields. The resulting formalism, which can be regarded as the rigid analytic analog of the classical theory
of analytically constructible sheaves on complex analytic spaces (see, e.g., [Ver76, §2]), is summarized as
follows:

Theorem 1.6 (The 6 functor formalism for Zariski-constructible sheaves). Let K be a characteristic zero
nonarchimedean field of residue characteristic p ≥ 0. For an integer n ≥ 1, the assignment X 7→ D

(b)
zc (X,Z/n)

enjoys the following properties:

(1) Pullback: For any map f : X → Y , the pullback f∗ preserves D(b)
zc (Proposition 3.4).

(2) Proper pushforward: For a proper map f : X → Y , the pushforward Rf∗ preserves D(b)
zc (Theo-

rem 3.10).

(3) More pushforwards: For a Zariski-compactifiable map f : X → Y , the pushforwards Rf∗ and Rf!

carry lisse objects in D(b)
zc into D(b)

zc (Corollary 3.11).

(4) !-pullback: Given a map f : X → Y , if either f is finite or (n, p) = 1, the pullback Rf ! preserves
D

(b)
zc (Corollary 3.12).

(5) Verdier duality: There is a natural dualizing complex ωX ∈ D
(b)
zc (X,Z/n) such that the functor

DX(−) := RH om(−, ωX) induces an anti-equivalence on D(b)
zc satisfying biduality (Theorem 3.21).

(6) ⊗ and RH om: Given F ∈ D(b)
zc (X,Z/n) with locally finite Tor dimension (e.g., if n is a prime),

the functors F ⊗LZ/n (−) and RH om(F ,−) preserves D(b)
zc (Corollary 3.14).

Moreover, proper base change holds (Theorem 3.15), and all of these operations are compatible with ex-
tensions of the nonarchimedean base field and with analytification of algebraic varieties (Proposition 3.16,
Theorem 3.21, Proposition 3.24). Finally, all of these results admit extensions to Z`-coefficients (Theo-
rem 3.36).

Let us make a couple of remarks. First, we do not assume any conditions on p relative to the coefficient
ring (except in the case of Rf !, but see Remark 3.23), so this result generalizes some previously known
finiteness theorems in p-adic Hodge theory (and uses them as input). Secondly, due to the poor behaviour
of Zariski closures in rigid geometry, it is unreasonable to expect arbitrary Zariski-constructible sheaves to

2For instance, constructible sheaves in the sense of Huber’s work [Hub96], while having many wonderful categorical properties,
do not capture the same geometric intuition as the corresponding notion in algebraic or complex geometry. Indeed, even
the skyscraper sheaf at a classical point, perhaps the simplest example of a proper pushforward, is not Huber-constructible.
Relatedly, analytifications of algebraically constructible sheaves on algebraic varieties are almost never Huber-constructible.
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be stable under pushforward (Warning 3.2 (1)), so one cannot do much better than (3) above (although see
Proposition 3.26); similar issues also occur in complex geometry.

Next, we briefly comment on the proofs. Preservation under f∗ and ⊗ is straightforward and is stated for
completeness. The first key new result is the preservation of Zariski-constructibility under Rf∗ for proper f .
This was raised as a conjecture in [Han20, Conjecture 1.14]. Here we reduce it to the known statement that
Rf∗ preserves locally constant constructible complexes when f is both smooth and proper. This reduction
relies on Temkin’s embedded resolution of singularities for quasi-excellent Q-schemes, results of the second
author [Han20, Theorem 1.6] on extending branched covers across Zariski-open immersions (building on
previous work of Bartenwerfer [Bar76] and Lütkebohmert [Lüt93]), and (most crucially) Theorem 1.1.(2).

For the remaining stabilities in Theorem 1.6, we largely reduce them to analogous results for schemes
(e.g., by replacing an affinoid Spa(A) with the scheme Spec(A)). The classical results from SGA4 treat only
finite type objects, and are not sufficient for our purposes. However, Gabber’s work on étale cohomology
of excellent schemes [ILO14] is presented in exactly the right amount of generality, provided we are allowed
to localize our questions to affinoids. The latter is possible thanks to our second key new result (which, in
particular, settles [Han20, Conjecture 1.12]).

Theorem 1.7 (Locality of Zariski-constructibility, Theorem 3.5). For abelian sheaves on characteristic zero
rigid spaces, the property of being Zariski-constructible is an étale-local property.

Using this toolkit, one can imitate many standard constructions with constructible sheaves found in
complex or algebraic geometry. As an example, we show that characteristic zero rigid spaces support a
theory of perverse sheaves which has the same pleasant formal properties as its algebraic counterpart [BBD82]
(except that we need to restrict to qcqs spaces when working with Q`-coefficients).

Theorem 1.8 (Perverse sheaves in rigid geometry, Theorem 4.2 and Theorem 4.11). Let K be a characteristic
zero nonarchimedean field with residue characteristic p ≥ 0 and let X/K be a rigid space. Fix a prime `
and a coefficient ring Λ ∈ {Z/`nZ,Q`}. If Λ = Q`, then assume that X is qcqs and define D(b)

zc (X,Q`) :=

D
(b)
zc (X,Z`)⊗Z`

Q`.
There is a naturally defined perverse t-structure on D

(b)
zc (X,Λ), with abelian heart denoted Perv(X,Λ).

This construction has the following stability properties:

(1) Duality: Perv(X,Λ) is Verdier self-dual inside D(b)
zc (X,Λ).

(2) Finite pushforward: Perv(−,Λ) is stable under f∗ for f : Y → X a finite map.

(3) Intermediate extensions: There is a notion of intermediate extension of lisse sheaves defined on
Zariski-locally closed subsets of X.

(4) Finiteness: If X is quasi-compact, then Perv(X,Λ) is noetherian and artinian.

(5) Nearby cycles: The nearby cycles functor associated with a formal model of X is perverse t-exact
when p 6= `.

Moreover, this construction is compatible with the usual constructions in algebraic geometry under analyti-
fication (in the proper case for Λ = Q`), and is compatible with extensions of the ground field.

As an application, we can define an intersection cohomology complex on any qcqs characteristic 0 rigid
space, and the resulting intersection cohomology groups have reasonable properties:

Corollary 1.9 (Intersection cohomology of rigid spaces, Theorem 4.13). Let K be a characteristic zero
nonarchimedean field of residue characteristic p ≥ 0; let C/K be a completed algebraic closure and let ` be
any prime. Let X/K be a qcqs rigid space X/K.

(1) Existence of intersection cohomology: There are naturally defined `-adic intersection cohomology
groups IHn(XC ,Q`). These are finitely generated Q`-modules if ` 6= p or if X is proper.
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(2) GAGA: If X = X an for a proper K-scheme X , then IH∗(XC ,Q`) ' IH∗(XC ,Q`).

(3) Poincaré duality: If X is proper and equidimensional of dimension d and ` 6= p, there is a natural
Poincaré duality isomorphism

IHn(XC ,Q`)
∗ ∼= IH−n(XC ,Q`)(d).

We end this paper by formulating some conjectures in §4.5, roughly predicting that deep known results
on the intersection cohomology of algebraic varieties over K carry forth to the rigid context.

Conventions. We follow the convention that the term “nonarchimedean field” is reserved for valued fields
carrying a rank 1 valuation.

If K is a nonarchimedean field, we use the terms K-affinoid algebra and topologically of finite type
(henceforth abbreviated tft) K-algebra synonymously; recall that these are exactly the Banach K-algebras
that can receive a continuous surjection from a Tate algebra K〈x1, ..., xn〉. Likewise, we say “rigid space
over K” and “adic space locally of tft over SpaK” interchangeably. If A is a tft K-algebra, we write
Ã := A◦/A◦◦ = (A◦/t)red; this is a k-algebra of finite type [BGR84, Corollary 3, §6.3.4], where k is the
residue field of K and t is a pseudouniformizer (i.e., any nonzero element of K◦◦ − {0}).

We warn the reader that A◦ need not be tfp over OK even when A is reduced; this pathology does not
occur if either K is discrete, or if K is stable field with |K∗| divisible (if K is algebraically closed); see
[BGR84, §3.6] for the definition of stability, and [BGR84, §6.4] for the finiteness properties.

We write SpaA = Spa(A,A◦) for any Huber ring A.
Say X is an analytic adic space and x ∈ X. We write Kx for the completed residue field of X at x. This

is a nonarchimedean field. We shall write | · |x for the associated valuation on functions, though note that
is only well-defined up to equivalence. However, if A is a tft K-algebra and x ∈ SpaA is a rank one point,
there is a unique R≥0-valued representative of the associated equivalence class which extends the fixed norm
on the base field K, i.e. a unique representative such that |t|x = |t|K . We always choose this representative.

Given X and x as above, the secondary residue field of X at a point x is the quotient K̃x = K+
x /mx. Here

K+
x is the valuation subring of the residue field Kx defined as the completed image of the map O+

X,x → Kx;
when x is a rank 1 point, the ring K+

x coincides with the subring OKx ⊂ Kx of power bounded elements.
Recall that if y ≺ x is any specialization, then Kx

∼= Ky and K+
y ⊂ K+

x under this identification.
For any tft K-algebra A, we shall write sp : SpaA → Spec Ã for the specialization map, given by taking

the center of the valuation. This is a continuous, closed, and spectral map of spectral spaces.
If f : X → Y is a map of rigid spaces over K, we say f is Zariski-compactifiable if it admits a factorization

f = f ◦ j, where j : X → X ′ is a Zariski-open immmersion and f : X ′ → Y is a proper morphism. We say a
rigid space X over K is Zariski-compactifiable if the structure map f : X → SpaK is so.

Acknowledgements. In April 2020, Bogdan Zavyalov asked DH whether [Han20, Conjecture 1.14] was
within reach, and the present paper grew directly out of that conversation. We thank Bogdan heartily for
this crucial initial stimulus, and for some helpful comments on previous drafts of this paper. We are also
grateful to Brian Conrad, Johan de Jong, Haoyang Guo, Mattias Jonsson, Shizhang Li, and Jacob Lurie for
useful conversations and exchanges, and to the anonymous referees for a number of comments that helped
improve the exposition. Bhatt was partially supported by the NSF (#1801689, #1952399, #1840234), a
Packard fellowship, and the Simons Foundation (#622511).

2. Generic flatness and generic smoothness

In this section, we introduce the notion of weakly Shilov points, and prove our main geometric results on
generic smoothness.
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2.1. Shilov and weakly Shilov points. Fix a complete nonarchimedean field K and a pseudouniformizer
t ∈ K◦. Recall the following basic example of a “non-classical” point of a standard K-affinoid.

Example 2.1. If X = SpaK〈T 〉 is the one-dimensional affinoid ball over K, then the Gauss point X is given
by the t-adic norm on K〈T 〉. To describe this norm ring theoretically, recall that the standard formal for
X is given by the formal closed disc X := Spf(OK〈T 〉). The special fibre Xs = Spec(OK/t[T ]) has a unique
a generic point η; the t-completed localization of OK〈T 〉 at η is a rank one t-complete and t-torsionfree
valuation ring V equipped with a map OK〈T 〉 → V . The resulting valuation on K〈T 〉 is the Gauss point η.
Moreover, the canonical map X → X given by taking the center of the valuation carries η to η.

We now isolate a general class of points with properties similar to the Gauss point from Example 2.1.

Proposition 2.2. Fix a tft K-algebra A and a rank one point x ∈ Spa(A,A◦). The following are equivalent:

(1) sp(x) is the generic point of an irreducible component of Spec Ã.

(2) {x} = sp−1(sp(x)) as subsets of SpaA.

(3) K+
x is a t-completed ind-Zariski localization of A◦. More precisely, K+

x is the t-completed local ring
of SpecA◦ at the point sp(x) ∈ Spec Ã ⊂ SpecA◦.

(4) The seminorm | · |x belongs to the Shilov boundary of A in the sense of K-Banach algebras.

Proof. We begin with two (well-known) observations on the affinoid adic space Spa(A,A◦); the first concerns
finding suitable rings of definition, while the second concerns a description via formal models.

First, we claim that there exists an open and bounded tfp OK-subalgebra A0 ⊂ A0 such that Spec(Ã)→
Spec(A0/tA0) is a universal homeomorphism and such that A◦ is the integral closure of A0 in A. In fact,
the second part follows from [BGR84, Remark following 6.3.4/1]. For the first, using Noether normalization,
we can choose a surjective map T → A, where T = K〈x1, ..., xn〉 is a Tate algebra. By [BGR84, 6.3.4/2],
the map T̃ → Ã is module finite. Setting A′0 = im(T ◦ → A◦), we learn that A′0/(A◦◦ ∩ A′0)→ Ã is module
finite and injective, with A′0 being open, bounded, and tfp over OK . Enlarging A′0 inside A◦ by adding
finitely topological generators of Ã over A′0, we find an open bounded tfp OK-subalgebra A0 ⊂ A◦ such that
A0/(A

◦◦ ∩ A0) → Ã is bijective. But we also know that
√
tA0 = A◦◦ ∩ A0: any element of the right side

is topologically nilpotent and in A0, and must thus have a large enough power inside tA0. Thus, we have
found the subalgebra A0 indicated at the start of this paragraph.

Next, we also recall an alternative description of the locally ringed space (Spa(A,A◦),O+). Consider the
category of all proper maps fi : Xi → Spec(A0) of schemes which are isomorphisms after inverting t. For
each fi, let Xi,t=0 ⊂ Xi be the special fibre (regarded merely as a closed subset). Set Z = limiXi,t=0, so
Z is a spectral space. Let πi : Z → Xi be the structure map, and define the structure sheaf OZ of Z via
OZ := colimi π

−1
i OXi . Then it is a basic fact that Spa(A,A◦) = Z as topological spaces, and O+ identifies

with the t-adic completion of OZ . For future use, we remark that, by passing to a cofinal subsystem, we may
(and do) assume that each Xi is OK-flat, i.e., OXi

is t-torsionfree. This condition implies that the generic
fibre Xi[1/t] is dense in each Xi, and thus all the transition maps Xi → Xj in the system are surjective:
their image is a closed set containing a dense open. In particular, OZ is t-torsionfree. By spectrality, the
maps πi : Z → Xi,t=0 are also surjective for all i. Finally, we also remark that OZ is integrally closed in
OZ [1/t] by generalities on blowups.

Using the preceding two observations, we prove the equivalences.
(1) ⇒ (2): Fix x ∈ Spa(A) with sp(x) ∈ Spec Ã being a generic point. Using a suitable Noether

normalization, we then learn that Ãsp(x) is a rank 1 valuation ring with pseudouniformizer t: this ring is
the integral closure of a rank 1 t-complete valuation ring in a finite extension of its fraction field. Any point
y ∈ sp−1(sp(x)) is represented by an equivalence class of maps A0 → V where V is a t-complete t-torsionfree
valuation ring with the property that the closed point of Spec(V ) is carried to sp(x). But any such map
factors uniquely as A0 → Ãsp(x) → V . Thus, taking V to be the t-completion of Ãsp(x) gives the unique such
map up to equivalence, showing that y = x.
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(2)⇒ (3): Write xi ∈ Xi for the image of x, so O+
Spa(A,A+),x and colimOXi,xi identify after t-completion.

Now if x = sp−1(sp(x)), then xi = f−1
i (sp(x)) is the unique preimage of sp(x). The map A0,sp(x) → OXi,xi

is then integral (by properness of Xi → Spec(A0), base changed to Spec(A0,sp(x)) and an isomorphism after
inverting t. Taking a colimit, we learn that A0,sp(x) → colimiOXi,xi

is integral and an isomorphism after
inverting t. But the target is also integrally closed in its t-localization, so it must coincide with A◦sp(x); here
we implicitly use that Spec(Ã) ' Spec(A0/t) to identify sp(x) with a point of Spec(A◦), as well as the fact
that A◦ is the integral closure of A0. Thus, we have shown that the t-completion of A◦sp(x) → O

+
Spa(A,A+),x

is an isomorphism. As the t-completion of the target is K+
x , the claim follows.

(3)⇒ (2): This is clear from the description of points of Spa(A,A◦) as equivalence classes of maps A◦ → V
to t-complete and t-torsionfree valuation rings.

(2)⇒ (1): Assume that x is the unique preimage of sp(x) and yet that sp(x) ∈ Spec(Ã) is not a generic
point; we shall obtain a contradiction. Let y ∈ Spec(Ã) be a generic point of an irreducible component
Y ⊂ Spec(Ã) containing sp(x). Applying the implications (1)⇒ (3) to a lift y ∈ Spa(A,A+) of y, we learn
that y has a unique lift y ∈ Spa(A,A+), and that K+

y is the t-completed local ring of A◦y. In particular, the
residue field of K+

y identifies with function field K(Y ) of the irreducible component Y . Choose a valuation
subring V ⊂ K(Y ) that is a Ã-algebra and has center sp(x) ∈ Spec(Ã); this valuation has rank ≥ 1 as
y 6= sp(x). Let V ⊂ K+

y be the preimage of V . Then V is a t-complete valuation ring of rank ≥ 2, is an
A◦-algebra, and has center sp(x) on Spec(Ã). The resulting map A◦ → V then gives a point x′ ∈ Spa(A,A◦)

with rank ≥ 2 and image sp(x) in Spec(Ã). But x is the unique preimage of sp(x), so x = x′. We now obtain
a contradiction as x had rank 1 by assumption, while x′ has rank ≥ 2 by construction.

(1)⇐⇒ (4): This is proven in [Ber90, 2.4.4]. �

Remark 2.3. One may ask if the equivalences proven in Proposition 2.2 continue to hold true for the affinoid
adic space Spa(A,A+) attached to any complete Tate ring (A,A+). Inspection of the proof shows that the
equivalence of (2) and (3) and the implication (2) ⇒ (1) hold true in general. On the other hand, there is
a perfectoid affinoid algebra where (1) ⇒ (2) and (1) ⇒ (3) in Proposition 2.2 fail, as we explain next. We
are not aware of a broader class of algebras (than the K-affinoid ones) where the Proposition 2.2 holds true.

Take a complete and algebraically closed extension C/Qp whose algebraically closed residue field k has
transcendence degree ≥ 1 over Fp. Write V = OC , and let W ⊂ V be the preimage of Fp ⊂ k. Then W
is a p-complete and p-torsionfree local ring that is integrally closed in W [1/p] = V [1/p]. Moreover, we have√
pW =

√
pV with W/

√
pW → V/

√
pV identifying with the map Fp ⊂ k. A lift x ∈ V ⊂ W [1/p] of any

element of k − Fp has the property that x, x−1 /∈ W , so W is not a valuation ring. Endowing W with the
p-adic topology, we obtain a complete uniform Tate ring (W [1/p],W ) with W perfectoid. The special fibre
W̃ [1/p] = W/

√
pW identifies with Fp, so Spec(W̃ [1/p]) has a unique point which is thus a generic point.

On the other hand, the local ring of Spec(W ) at this point is simply W , which is not a valuation ring. This
shows that the implication (1) ⇒ (3) in Proposition 2.2 fails in this example. To show that (1) ⇒ (2) also
fails in this example, one calculates that Spa(W [1/p],W ) identifies with the Riemann-Zariski space of k,
which has more than 1 element; we omit the argument.

Definition 2.4. Let A be a tft K-algebra. A Shilov point x ∈ SpaA is any point satisfying the equivalent
conditions of Proposition 2.2.

Recall that in an analytic adic space, every rank one point is generic in the sense of spectral spaces. For
algebraic purposes, the following class of points is more relevant.

Definition 2.5. Let X be any rigid space over a non-archimedean field K. A point x ∈ X is weakly Shilov
if there is an open affinoid subset x ∈W ⊂ X such that x is a Shilov point of W . In particular, such a point
has rank one.
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Example 2.6. For X = Spa(K〈T 〉) the closed unit disc, the weakly Shilov points are exactly the points of
type 2 (see [Sch12, Example 2.20] for the classification of points on X). This follows from the characterization
in Proposition 2.9, since the secondary residue field of x is algebraic over K when x has type 1, 3 or 4 (and
x’s of type 5 have rank 2, so they are not Shilov).

Remark 2.7. The valuations isolated in Definition 2.5 are sometimes also called divisorial valuations in
birational geometry (see Proposition 2.9 (3)).

Lemma 2.8. Let X be a rigid space over a nonarchimedean field K. Then weakly Shilov points are dense
in X.

Proof. By definition, any open affinoid U ⊂ X contains a weakly Shilov point. �

We also have the following alternative characterization of weakly Shilov points.

Proposition 2.9. Let X be a rigid space over a nonarchimedean field K and let x ∈ X be a rank one point.
The following are equivalent:

(1) x is weakly Shilov.

(2) The transcendence degree of the secondary residue field K̃x over K◦/m equals the local dimension
dimxX of X at x.

(3) (Applicable only when X is quasiseparated and quasi-paracompact) There exists a formal model X
such that x maps to the generic point of an irreducible component of Xs.

Proof. (1)⇐⇒ (2) follows by combining Lemme 4.4 and Corollaire 4.15 in [Poi13].
(3)⇒ (1): if there exists a formal model X as in (3), then taking W ⊂ X be the preimage of any formal

affine open X containing the image of x shows that x is weakly Shilov.
(1) ⇒ (3): Assume x ∈ X is weakly Shilov. We can then find an affinoid open Spa(R) ⊂ X containing

x such that x ∈ Spa(R) is Shilov. By Raynaud, there is a formal model X of X such that Spa(R) ⊂ X is
the preimage of a formal affine open Spf(R0) ⊂ X, cf. [Bos14, Theorem 8.4.3]. By passing to a refinement,
we can assume that the map R0/t→ R̃ gives a homeomorphism of spectra; see first paragraph of the proof
of Proposition 2.2. As x is weakly Shilov, its image in Spec(R̃) is a generic point. But then its image in
Spec(R0/t) is also a generic point since Spec(R̃) → Spec(R0/t) is a homeomorphism by construction. As
Spf(R0) ⊂ X is a formal open immersion, it follows that x gives a generic point of Xs as well �

Corollary 2.10. Say X is a rigid space over a nonarchimedean field K, and Z ⊂ X is a nowhere dense
Zariski closed set. Then Z does not contain any weakly Shilov point of X. In particular, if X is reduced,
then any weakly Shilov point of X lies in the regular locus of X.

Proof. As Z ⊂ X is a nowhere dense Zariski closed set, we have dimx(Z) < dimx(X) for all x ∈ X. The first
statement now follows from the characterization of weak Shilov points in Proposition 2.9 (2). The second
statement follows from the first statement applied to the locus Z ⊂ X of points that are not regular, which
is a nowhere dense Zariski closed set by excellence considerations. �

2.2. Tools involving the cotangent complex. To prove our generic smoothness result, it will be conve-
nient to use the analytic cotangent complex as this provides a homologically well-behaved object detecting
smoothness in non-noetherian situations (such as topologically finitely presented algebras over non-discrete
valuation rings). In this subsection, we recall some results on this object.

Notation 2.11. Fix a complete nonarchimedean fieldK with valuation ring V ⊂ K and a pseudouniformizer
t ∈ V . For any map A → B of V -algebras, write LanB/A for the derived t-completion of LB/A. A tft (or
topologically finite type) V -algebra is a V -algebra A of the form V [x1, ..., xn]∧/I (where the completion is
t-adic). If moreover I is finitely generated, we say that A is tfp (or topologically finitely presented). The
class of tfp V -algebras has good properties such as coherence and classical t-adic completenesss, see [GR03,



THE SIX FUNCTORS FOR ZARISKI-CONSTRUCTIBLE SHEAVES IN RIGID GEOMETRY 9

Proposition 7.1.1]. Moreover, any tft V -algebra which is t-torsion-free is in fact tfp, see [FGK11, Corollary
7.3.6].

Theorem 2.12 (Gabber-Ramero). Say A→ B is a map of tfp V -algebras. Then the following hold true:

(1) LanB/A is a pseudocoherent B-complex.

(2) Assume that A → B induces a smooth map of relative dimension n on taking adic generic fibres.
Then LanB/A[1/t] is a finite projective B[1/t]-module of rank n.

(3) If A→ B is surjective, then LB/A ' LanB/A.

Proof. (1) is [GR03, Theorem 7.1.31].
(2) is the key assertion checked in the proof of [GR03, Theorem 7.2.39].
(3) is [GR03, Theorem 7.1.29].

�

Lemma 2.13. Let R be a finitely presented flat V -algebra.

(1) LR/V is a pseudocoherent R-complex.

(2) If R is also V -finite, then LR/V is derived t-complete.

Proof. For (1), by noetherian approximation, we can write V → R as the base change of a finitely presented
flat map V0 → R0 of finitely generated Z-algebras along some map V0 → V . Then LR0/V0

is pseudocoherent,
and LR0/V0

⊗LR0
R ' LR/V by Tor independent base change, so LR/V is also pseudocoherent.

For (2), observe that if R is V -finite, then R is a finite free V -module (as any finitely presented flat
V -module is finite free). In particular, a pseudocoherent R-complex is also pseudocoherent as a V -complex.
The claim now follows as any pseudocoherent V -complex is derived t-complete (since V itself is so). �

Corollary 2.14. Let E/K be a finite extension, and let W0 ⊂ E◦ be an open tfp V -subalgebra.

(1) LW0/V is pseudocoherent so LW0/V ' LanW0/V
, whence LE/K ' LanW0/V

[1/t].

(2) Hi(L
an
W0/V

[1/t]) = 0 for i 6= 0, 1.

Proof. For (1): since W0 ⊂ E◦, choosing monic equations defining generators of W0 shows that any such
W0 is a finitely presented flat V -algebra. Lemma 2.13 then implies that LW0/V is pseudocoherent and thus
already derived t-complete, so LW0/V ' LanW0/V

. The last part of (1) follows by inverting t and noting that
formation of cotangent complexes commutes with localization.

(2) follows from (1) and a general fact: the cotangent complex of any extension of fields only has homology
in degrees 1 and 0. Indeed, this follows from transitivity triangles and the fact that any field is ind-smooth
over its prime subfield (which is perfect) by generic smoothness in algebraic geometry. �

We need the following result later.

Theorem 2.15 (Quillen). Fix a noetherian ring A and a maximal ideal m with residue field k = A/m. If
Lk/A is concentrated in degree −1, then A is regular at m.

Proof. [Qui, Corollary 10.5] shows that m is generated by a regular sequence if H2(Lk/A) = 0. As the
maximal ideal of a noetherian local ring is generated by a regular sequence exactly when the ring is regular,
the claim follows. �

The following lemma will be useful later as well.

Lemma 2.16. Say A is a reduced Jacobson noetherian ring. Let M → N be a map of finitely generated A-
modules such that M/mM → N/mN is injective for every maximal ideal m. If M is a locally free A-module,
then M → N is injective.
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Proof. The question is local, so we can assume M = A⊕n is a free module. Let x = (x1, ..., xn) ∈ M lie
in the kernel of M → N . The hypothesis implies that xi ∈ m for every maximal ideal m ⊂ A. But the
intersection of all maximal ideals of A is its nilradical (as A is Jacobson) which is 0 (as A is reduced). So
x = 0, as wanted. �

2.3. Regularity of Shilov fibers. In this subsection, we establish the key technical ingredient behind our
generic smoothness result, using the analytic cotangent complex.

Notation 2.17. Fix a complete nonarchimedean field C with valuation ring OC ⊂ C and a pseudouni-
formizer t ∈ OC .3

Our goal is the following.

Theorem 2.18. Let T → R be a map of tfp OC-algebras. Assume Spa(R[1/t]) is smooth over C. Let
V denote the t-completed Zariski local ring of T at a generic point η ∈ Spec(T/t) ⊂ Spec(T ), and set
RV = R⊗̂TV . Then RV [1/t] is regular.

Proof. Our strategy is to first simplify T , and then argue that RV [1/t] is regular using the cotangent complex.
First, observe that the statement of the theorem is Zariski local around η ∈ Spf(T ), so we may shrink

Spf(T ) around η to assume Spec(T/t) is irreducible with generic point η. If T ′ = OC〈x1, ..., xn〉 → T is
a finite injective map, then Spec(T/t) → Spec(T ′/t) is finite and surjective. As both these schemes are
irreducible, the image of the generic point η ∈ Spec(T/t) is the generic point η′ ∈ Spec(T ′/t), and η is the
unique preimage of η′. In particular, we must have T ⊗̂T ′V ′ ' V by base change. But then R⊗̂T ′V ′ ' RV .
Thus, we may replace T with T ′ to assume that T is a standard Tate algebra over OC . In particular, T is
formally smooth over OC . In this case, we have T = T [1/t]◦, so V is actually a t-complete and t-torsionfree
rank one valuation ring (either by explicit calculation, or as explained in Proposition 2.2).

Next, we describe LanV/OC
. By definition, the ring V is a t-completed ind-Zariski localization of T . As the

formation of the t-completed cotangent complex is compatible with t-completed localizations and t-completed
filtered colimits, we learn that LanV/OC

' LanT/OC
⊗̂LTV . But T/OC is formally smooth, so LanT/OC

is a finite
projective T -module placed in degree 0, whence LanV/OC

is a finite free V -module placed in degree 0.
We now begin proving the theorem. Since V is a t-complete and t-torsionfree rank 1 valuation ring, the

ring K := V [1/t] is a nonarchimedean field extension of C with K◦ = V . As RV is a tfp V -algebra, we
can (and will) regard RV [1/t] as an affinoid K-algebra. To show regularity of RV [1/t], it is enough to show
that the local rings of RV [1/t] at all closed points are regular: the regular locus in RV [1/t] is open (as
affinoid K-algebras are noetherian and excellent) and the maximal ideals are dense (as affinoid K-algebras
are Jacobson). A closed point is given by a quotient RV [1/t] → E where E/K is a finite extension; fix
such a point. By Theorem 2.15, it suffices to show that LE/RV [1/t] has homology only in degrees 0, 1. (In
fact, there is no H0 as RV [1/t] → E is surjective, but it will be convenient to formulate things this way.)
Let W0 ⊂ E◦ be the image of RV under this map. As E◦ is the integral closure of V in E, the ring W0

is a finitely presented finite flat V -algebra. Since the map RV → W0 is a surjection of tfp V -algebras, we
have LW0/RV

' LanW0/RV
by Theorem 2.12 (3), and hence LE/RV [1/t] ' LanW0/RV

[1/t] by inverting t, so it is
enough to show that LanW0/RV

[1/t] has homology only in degrees 0, 1. Consider the transitivity triangle for
OC → RV →W0:

LanRV /OC
⊗̂LRV

W0 → LanW0/OC
→ LanW0/RV

. (1)
As R→ RV is a t-completed Zariski localization, we have

LanR/OC
⊗LRRV ' LanR/OC

⊗̂LRRV ' LanRV /OC
,

where the first isomorphism is from the pseudocoherence of LanR/OC
coming from Theorem 2.12 (1). The

same reasoning also allows us to drop the completion on the leftmost term in (1). Inverting t in (1) then

3Contrary to modern notational conventions, we are not assuming C is algebraically closed. We hope this causes no confusion.
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gives a triangle
LanRV /OC

[1/t]⊗LRV [1/t]E → LanW0/OC
[1/t]→ LanW0/RV

[1/t]. (2)

Our task was to show that the term on the right has homology only in degrees 0, 1. The term on the
left is a finite projective E-module in degree 0: indeed, LanR/OC

[1/t] is a finite projective R[1/t]-module by
Theorem 2.12 (2) and the smoothness assumption on Spa(R[1/t]), and we have LanR/OC

⊗LR[1/t] RV [1/t] '
LanRV /OC

[1/t] by the reasoning explained above. By the long exact sequence, it thus suffices to check that
LanW0/OC

has homology only in degrees 0, 1. For this, we consider transitivity triangle for OC → V →W0:

LanV/OC
⊗̂LV E → LanW0/OC

[1/t]→ LanW0/V
[1/t].

Now LanV/OC
[1/t] is a finite free K-module as explained previously, so the term on the left is a finite free

E-module. It remains to observe that LanW0/V
[1/t] has homology in degrees 0, 1 by Corollary 2.14. �

Remark 2.19. In Theorem 2.18, one cannot strengthen the conclusion from regularity to smoothness. For
example, the Frobenius map on the Tate algebra over any characteristic p nonarchimedean field satisfies the
hypothesis of Theorem 2.18, but does not have a single smooth fibre.

Remark 2.20. The proof of Theorem 2.18 relies on the analytic cotangent complex. When C is discretely
valued, it is possible to prove Theorem 2.18 by avoiding the cotangent complex and using instead Popescu’s
desingularization theorem. Indeed, one first observes that R is an excellent noetherian ring: by Elkik’s
theorem, we can write R as the t-completion of a finite type OC-algebra, so R is excellent since OC is so.
But then the maps R→ R⊗T Tη → RV are regular: the first map is a localization, while the second one is
the completion of an excellent ring. By Popescu’s theorem, the map R→ RV is ind-smooth. It follows that
RV [1/t] must be regular since R[1/t] is so. In fact, this reasoning shows that any property of R[1/t] that is
local for the smooth topology passes to RV [1/t]. We do not know how to prove the analogous statement in
the general case.

2.4. Generic flatness. Fix a nonarchimedean base fieldK. Our goal in this section is the following theorem.

Theorem 2.21. Let f : X → Y be a quasicompact map of rigid spaces over K. Assume that Y is geomet-
rically reduced. Let FlX/Y ⊂ Y be the maximal open subset such that X ×Y U → U is flat. Then FlX/Y
contains all weakly Shilov points of Y . In particular, FlX/Y is a dense open subset of Y .

Observe that even the non-emptiness of FlX/Y is not clear a priori. Moreover, if K has characteristic 0,
then it suffices to assume that Y is reduced: as in algebraic geometry, this implies geometric reducedness in
characteristic 0 (see [Con99, Lemma 3.3.1]).

Lemma 2.22. Let A be a ring with a locally nilpotent ideal J ⊂ A, and let f : R→ S be any map of finitely
presented flat A-algebras. Then f is flat if and only if f : R/JR→ S/JS is flat.

Proof. “Only if” is clear. Conversely, suppose f is flat. If J is nilpotent (e.g. if A is Artinian), then flatness
of f follows from Proposition 0.8.3.7 in [FK18].

In the general case, write A as a filtered colimit A ' colimi∈I Ai where Ai ⊂ A is a filtered system of
Z-algebras of finite type. Set Ji = J ∩ Ai, so Ji ⊂ Ai is a nilpotent ideal. By standard approximation
arguments, there is an index i0 ∈ I such that f is the base change along Ai0 → A of a map fi0 : Ri0 → Si0
of finitely presented Ai0-algebras. For all i ≥ i0, write fi : Ri → Si for the evident base change of fi0 . By
two applications of [Gro66, Théorème 11.2.6], Ri and Si are flat Ai-algebras for all sufficiently large i.

Next, note that f is the colimit of the diagrams fi : Ri/JiRi → Si/JiSi. Since f is flat by assumption,
fi is flat for all sufficiently large i by another application of [Gro66, Théorème 11.2.6]. But Ji is nilpotent,
so flatness of fi implies flatness of fi by the special case of the lemma treated in the first paragraph of the
proof. Therefore fi is flat for all sufficiently large i, so f is flat. �
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Recall that an adic ring A admitting a finitely generated ideal of definition I is called topologically
universally (t.u.) rigid-noetherian if the scheme SpecA 〈T1, . . . , Tn〉 r V (IA 〈T1, . . . , Tn〉) is Noetherian for
all n ≥ 0. If A is a tft K-algebra, then any ring of definition A0 ⊂ A is t.u. rigid-Noetherian.

Proposition 2.23. Let A be a t.u. rigid-Noetherian ring, and let J ⊂ A be any open ideal consisting of
topologically nilpotent elements. Let f : R → S be a morphism of flat and topologically finitely presented
A-algebras. Then f is flat if and only if f : R/JR→ S/JS is flat.

Proof. “Only if” is clear. For the converse, choose a finitely generated ideal of definition I ⊂ A contained in
J ; let Jn ⊂ A/In be the image of J , so Jn is locally nilpotent. Since R/JR → S/JR is flat, the previous
lemma implies that R/InR → S/InS is flat for all n ≥ 1. By Corollary 0.8.3.9 in [FK18], we then deduce
that R→ S is flat. �

Proposition 2.24. Let K be a nonarchimedean field, and let f : A→ B be a map of tft K-algebras with A
geometrically reduced. Then there is a (nonempty) rational subset U ⊂ SpaA containing the Shilov boundary
such that SpaB ×SpaA U → U is flat.

Proof. By (the proof of) Theorem 1.3 in [BLR95], we can find a finite étale Galois extension K ′/K such
that the unit ball A◦K′ ⊂ AK′

def
= A ⊗K K ′ is topologically finitely presented over K ′◦ and the special

fiber A◦K′/K
′◦◦A◦K′ is (geometrically) reduced. Choose an open tfp K ′◦-algebra B0 ⊂ B ⊗K K ′ such that

(f ⊗K K ′)(A◦K′) ⊂ B0. Let k′ be the residue field of K ′◦. Then A◦K′ ⊗K′◦ k′ → B0 ⊗K′◦ k′ is a map of
finite-type k′-algebras with reduced source, so there exists a non-zero-divisor f ∈ A◦K′ ⊗K′◦ k′ such that
(A◦K′ ⊗K′◦ k′)[1/f ]→ (B0⊗K′◦ k′)[1/f ] is flat. Choose any lift f̃ ∈ A◦K′ , and let C be the π-adic completion
of A◦K′ [1/f̃ ]; similarly, let D be the π-adic completion of B0[1/f̃ ]. Applying the previous proposition with
A = K ′◦, J = K ′◦◦, R = C, and S = D, we deduce that the map C → D is flat. Then SpaC[1/π] →
SpaAK′ is the inclusion of the Laurent domain U( 1

f̃
), and SpaBK′ ×SpaAK′ U( 1

f̃
) ∼= SpaD[1/π] by design,

so SpaBK′ ×SpaAK′ U( 1
f̃

) → U( 1
f̃

) is flat. Moreover, U( 1
f̃

) contains all the Shilov points of SpaAK′ by
construction.

It remains to undo the base change from K to K ′. For this, let h ∈ A◦ be the image of f̃ under the norm
map AK′ → A, and let U = U( 1

h ) ⊂ SpaA be the associated Laurent domain. We claim that U satisfies
the conclusions of the theorem. Indeed, writing π : SpaAK′ → SpaA for the evident finite étale map, it is
clear from the definitions that π−1(U) = ∩g∈Gal(K′/K)U( 1

f̃
)g as subsets of SpaAK′ . Since each g-translate

of U( 1
f̃

) still contains all Shilov points of SpaAK′ , we see that π−1(U) contains all Shilov points of SpaAK′ ,
and so U contains all Shilov points of SpaA. Moreover, the results in the previous paragraph show that
fU : SpaB ×SpaA U → U becomes flat after base change along the surjective finite étale map π−1(U)→ U ,
so fU is flat by [War17, Proposition 3.1.12]. This concludes the proof. �

Proof of Theorem 2.21. It suffices to check that FlX/Y contains an open neighborhood of every weakly Shilov
point y ∈ Y . The formation of FlX/Y commutes with base change along open immersions Y ′ → Y in the
evident sense, so we’re reduced to showing that if Y is affinoid, then FlX/Y contains an open neighborhood of
every Shilov point of Y . For this, cover X by finitely many open affinoid subsets Xi. Then each FlXi/Y ⊂ Y
contains all Shilov points of Y by Proposition 2.24. Since FlX/Y = ∩iFlXi/Y , we deduce that FlX/Y contains
all Shilov points of Y . �

2.5. Generic smoothness. In this subsection, we combine Theorem 2.18 and Theorem 2.21 to prove our
main generic smoothness result. We begin by translating Theorem 2.18 into geometric language.

Theorem 2.25. Fix a nonarchimedean field K, and let f : X = SpaB → Y = SpaA be a map of K-
affinoid rigid spaces. Suppose that X is smooth over SpaK. Then for any Shilov point y ∈ Y , the adic fiber
Xy = Spa(B⊗̂AKy) is regular. In particular, if K has characteristic zero, then Xy → SpaKy is smooth.
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Proof. The first part follows immediately from Theorem 2.18 thanks to the characterization of Shilov points
in Proposition 2.2 once one observes that the local rings of Spa(R) for a regular tft K-algebra R are regular.
The last statement follows as a rigid analytic space over a characteristic zero nonarchimedean field is smooth
exactly when all of its local rings are regular. �

We also need the following result, relating smoothness and fibral smoothness.

Lemma 2.26. Let f : X → Y be any map of rigid spaces, and let x ∈ X be any point with image y = f(x).
Then the following are equivalent

(1) f is smooth at x.

(2) f is flat in a neighborhood of x and Xy = X ×Y Spa(Ky,K
+
y )→ Spa(Ky,K

+
y ) is smooth at x.

Proof. This follows from (the proof of) Lemma 2.9.2 in [War17]. �

Theorem 2.27. Let f : X → Y be any quasicompact map of rigid spaces in characteristic zero. Assume
that X is smooth and Y is reduced. Then there is a dense open subset U ⊂ Y such that f−1(U) → U is
smooth.

Remark 2.28. Consideration of standard examples (for instance, quasi-elliptic fibrations in characteristics
2 and 3) shows that no result like this can hold in positive characteristic, not even with the weaker conclusion
that f−1(U)→ U is smooth up to a universal homeomorphism.

Proof. Let y ∈ Y be any weakly Shilov point. By Theorem 2.21, we can choose some open subset U(y) ⊂ Y
containing y such that X ×Y U(y)→ U(y) is flat. Moreover, by Theorem 2.25, the entire fiber Xy is smooth
over y. Applying Lemma 2.26 and the openness of the smooth locus in the source, we deduce that every point
x ∈ f−1(y) admits a quasicompact open neighborhood Wx in X such that Wx → Y is smooth. Forming a
suitable union of the Wx’s and using the quasicompacity of f , we deduce that there is a quasicompact open
neighborhood W ⊂ X of the fiber f−1(y) such that W → Y is smooth. Shrinking U(y) further, we may
assume by an easy quasicompacity argument that f−1(U(y)) ⊂ W . In particular, X ×Y U(y) → U(y) is
smooth.

Since weakly Shilov points are dense in Y , setting U = ∪yweakly ShilovU(y) concludes the proof. �

In the proper case, we can do even better.

Theorem 2.29. Let f : X → Y be a proper map of rigid spaces in characteristic zero, with X smooth and
Y reduced. Then the maximal open subset Sf ⊂ Y over which f becomes smooth is a dense Zariski-open
subset.

Proof. Let W ⊂ X be the Zariski-open subset where X → Y is smooth, and let Z = X − W be the
complement regarded as a rigid space with its induced reduced structure. The composite morphism g : Z → Y
is proper, so by Kiehl’s results g∗OZ is a coherent sheaf on Y . Since Supp(g∗OZ) = f(Z), we deduce that
f(Z) ⊂ Y is Zariski-closed, so then Sf = Y − f(Z) is Zariski-open, and density follows from the previous
theorem. �

Remark 2.30 (Deducing Theorem 2.29 from [Duc18]). Let us indicate how to prove the Berkovich variant of
Theorem 2.29, using results from [Duc18].4 Precisely, given a nonarchimedean base field K of characteristic
0, we claim that if f : X → Y is a proper map of K-analytic spaces in the sense of Berkovich with X
quasi-smooth and Y reduced, then f is smooth over a dense Zariski-open subset of Y . To see this, let
T ⊂ Y be image under f of the non-smooth locus of f ; the latter is Zariski-closed by [Duc18, Theorem
10.7.2], so the former is Zariski-closed by properness (as in the proof of Theorem 2.29). As f is smooth over
the Zariski-open subset Y − T ⊂ T , it suffices to show that Y − T is dense in Y . In fact, we claim that
Y − T contains all the Abhyankar points y ∈ Y . By [Duc18, Theorem 10.3.7], the map f is flat at y, so by

4We thank a referee for encouraging us to flesh out this deduction (and in fact for providing a complete argument).
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[Duc18, Theorem 5.3.4], it suffices to note that f−1(y) is quasi-smooth (or equivalently regular, as Ky has
characteristic 0) by [Duc18, Theorem 6.3.7].

3. The six functors for Zariski-constructible sheaves

In this section, we use the geometric results of §2 to develop the six functor formalism for Zariski-
constructible sheaves in rigid analytic geometry over a characteristic 0 field.

3.1. Definition of Zariski-constructible sheaves. In this subsection we briefly review the definition and
basic properties of Zariski-constructible sheaves on rigid analytic spaces. Most of this material is taken from
[Han20]; the exception is Theorem 3.5.

Definition 3.1. Let X be a rigid analytic space over a nonarchimedean field K, and let Λ be a finite
commutative ring.

(1) An étale sheaf F ∈ Sh(X,Λ) is lisse there exists an étale cover {Ui → X} such that F |Ui
is the

constant sheaf associated to a finitely generated Λ-module.

(2) A complex A ∈ D(X,Λ) is lisse if the cohomology sheaves Hn(A) are lisse for all n. We write
Dlis(X,Λ) ⊂ D(X,Λ) for the full subcategory spanned by lisse complexes.

(3) An étale sheaf F ∈ Sh(X,Λ) is Zariski-constructible if X admits a locally finite stratification X =∐
i∈Xi into Zariski locally closed subsets Xi such that F |Xi is a lisse sheaf of Λ-modules for all

i ∈ I. We write Shzc(X,Λ) for the full subcategory of Zariski-constructible sheaves.

(4) A complex A ∈ D(X,Λ) is Zariski-constructible if the cohomology sheaves Hn(A) are Zariski-
constructible for all n. We write Dzc(X,Λ) for the full subcategory spanned by Zariski-constructible
complexes.

One has the bounded below variant D+
zc(X,Λ); similarly for D− and Db. Finally, let D(b)

zc (X,Λ) ⊂ Dzc(X,Λ)
denotes the full triangulated subcategory of complexes which are locally bounded; similarly for D(−) and
D(+). The natural∞-categorical refinements ofD(X,Λ), D

(b)
zc (X,Λ), etc. shall be denotedD(X,Λ),D(b)

zc (X,Λ),
etc., as usual.

Warning 3.2. Let us record some subtleties concerning this notion.

(1) Given a Zariski-open immersion j : U → X and a Zariski-constructible sheaf F on U , the extension
j!F can fail to be Zariski-constructible X, unlike the situation in algebraic geometry (see next
example). The main problem is that the operation of taking Zariski-closures in X of Zariski-closed
subsets of U is poorly behaved in general (e.g., it does something non-trivial over U); this issue does
not arise if F is itself locally constant.

Example 3.3. Let F be the direct sum of skyscraper sheaves supported at an infinite discrete set
of classical points in (A1)an, and let j : (A1)an → (P1)an be the standard open immersion. Then
j!F is not Zariski-constructible on (P1)an: any Zariski-closed set of (P1)an must be either finite or
all of (P1)an by rigid GAGA.

This phenomenon should not be regarded as a pathology: similar examples occur in complex
analytic geometry as well, and are a natural consequence of the non-quasi-compactness of affine
space in any kind of analytic geometry.

(2) Huber’s book [Hub96] defines a notion of “constructible” sheaves that is very well-behaved from
a topos theoretic perspective. However, these sheaves are typically not Zariski-constructible; for
instance, if j is the qcqs open immersion defined by including a closed disc of radius (say) 1/2 inside
a closed disc of radius 1, then j!Λ is constructible in Huber’s sense but is not Zariski-constructible.
In fact, the overlap between these two notions is exactly the lisse sheaves.
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Next, we record some simple stability properties of this notion.

Proposition 3.4. (1) Shzc(X,Λ) is a weak Serre subcategory of Sh(X,Λ), and Dzc(X,Λ) is a thick
triangulated subcategory of D(X,Λ).

(2) (Devissage) A sheaf F ∈ Sh(X,Λ) is Zariski-constructible iff there is a dense Zariski-open subset
U ⊂ X such that F |U is lisse and F |(X r U) is Zariski-constructible.

(3) Zariski-constructibility is stable under f∗ for f any morphism of rigid spaces, and under f∗ for finite
morphisms.

(4) A sheaf F ∈ Sh(X,Λ) is Zariski-constructible iff F |Xi is Zariski-constructible for all irreducible
components Xi ⊂ X.

Proof. (1)-(3) are proved in [Han20]. For (4), one direction is clear. For the other direction, let f0 : X̃ → X

be the normalization of X, and let f1 : X̃ ×X X̃ → X be the evident map. The hypothesis guarantees that
f∗0 F (and then also f∗1 F ) is Zariski-constructible, since X̃ =

∐
i X̃i is the disjoint union of normalizations

of the irreducible components of X. Since f0 and f1 are both finite, pushforward along these maps preserves
Zariski-constructibility by (3). The exact sequence 0 → F → f0∗f

∗
0 F → f1∗f

∗
1 F now exhibits F as the

kernel of a map between Zariski-constructible sheaves, so we conclude by (1). �

In view of Warning 3.2 (1), the following result on the analytic (or even étale) locality of the notion of
Zariski-constructibility is somewhat surprising:

Theorem 3.5. Let X be a rigid space over a characteristic zero nonarchimedean field K, equipped with an
étale Λ-sheaf F . If there exists an étale cover {Ui} of X such that F |Ui

is Zariski-constructible, then F is
Zariski-constructible.

In particular, the assignment carrying a rigid space X to the ∞-category D(b)
zc (X,Λ) is a stack for the

étale topology.

We shall prove this result in §3.2. Finally, the following result is often very useful.

Proposition 3.6. If X is a quasicompact rigid space over a nonarchimedean field K of characteristic zero,
then Db

zc(X,Λ) is the thick triangulated subcategory of D(X,Λ) generated by objects of the form f∗M for
f : Y → X a finite morphism and M a constant constructible Λ-sheaf on Y .

Proof. By induction on dimX and devissage, it’s enough to show that if j : U → X is a dense Zariski-open
and F is lisse and killed by a prime `, then j!F lies in the claimed subcategory. For this, choose (as in
[Sta18, Tag 0A3R]) a finite étale cover g : U ′ → U of prime-to-` degree such that g∗F is an iterated extension
of copies of F`. Then F is a summand of g∗g∗F , so F is a summand of an iterated extension of copies
of g∗F`. Now extend g to a finite cover f : X ′ → X as in [Han20], so j!F is a summand of an iterated
extension of copies of G = j!g∗F` = f∗j

′
!F`, where j

′ : U ′ → X ′ is the evident map. Letting i : Z → X ′ be
the complement of j′, the exact sequence 0 → f∗j

′
!F` → f∗F` → (f ◦ i)∗F` → 0 shows that G lies in the

desired subcategory. �

3.2. Zariski-constructible sheaves via algebraic geometry. In this subsection, we describe Zariski-
constructible sheaves on affinoids purely in terms of algebraic geometry, and deduce that the property of
being Zariski-constructible is étale local.

Let K be a characteristic zero nonarchimedean field. Recall from [Han20] that for any affinoid K-
algebra A and any scheme X locally of finite type over SpecA, there is a naturally associated rigid space
X = X an over SpaA, and a natural map Xét → Xét of sites, inducing a t-exact pullback functor µX :
D(X ,Z/n) → D(X,Z/n) carrying Dc into Dzc. Here we change notation slightly from [Han20], and write
(−)an interchangeably for µ∗X(−).

Proposition 3.7 (Algebraization of Zariski-constructible sheaves over affinoids). Fix an affinoid K-algebra
A, and write S = Spec A and S = SpaA.
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(1) If f : X → Y is any finite type map of finite type S-schemes, then for any F ∈ Db
c(X ,Z/n) the

natural base change map (Rf∗F )an → Rfan∗ F an is an isomorphism. In particular, Rfan∗ F an lies
in Db

zc(Y,Z/n).

(2) If X is any finite type S-scheme, the functor (−)an : Db
c(X ,Z/n)→ Db

zc(X,Z/n) is fully faithful. If
X is proper over S, it is an equivalence of categories.

(3) If X is any finite type S-scheme, the fully faithful functor (−)an : Db
c(X ,Z/n)→ Db

zc(X,Z/n) from
(2) identifies the full subcategory of lisse objects on both sides.

Note that part (2) applies notably when X = S.

Proof. (1) This is exactly [Han20, Theorem 1.8].

(2) The full faithfulness is a special case of [Han20, Theorem 1.10.ii]. Essential surjectivity in the case
where X/S is proper can be checked on hearts. We can also assume that X and X are reduced.
Arguing by induction on dimX as in the proof of [Han20, Theorem 1.7], one reduces to checking
that any sheaf on X of the form j!F is in the essential image of (−)an; here j : U ⊂ X is the
inclusion of any normal Zariski-open subset and F is any lisse sheaf. To do this, first note that
the complement Z = X − U algebraizes to a closed subscheme Z ⊂ X by relative rigid GAGA, so
then U = X − Z is an algebraization of U . We’re now reduced to proving that the analytification
functor FÉt(U)→ FÉt(U) is an equivalence of categories. We explain the construction of an essential
inverse. Suppose V → U is any finite étale map. By [Han20, Theorem 1.6], this extends uniquely
to a branched covering V ′ → Xn, where Xn is the normalization of X. By relative rigid GAGA
again, this algebraizes to a branched covering V ′ → Xn, and then V := V ′×Xn U → U is the desired
algebraization of V .

(3) Since we already have full faithfulness, it suffices to prove essential surjectivity on the hearts, i.e., we
want to realize a lisse sheaf on X as the analytification of a unique lisse sheaf on X . By uniqueness
and Zariski/analytic descent for lisse sheaves in algebraic/analytic geometry, we may assume that
X is separated (or even affine). By finite descent for lisse sheaves in both algebraic and analytic
geometry, we may also assume X is normal. In this case, we can realize X as an an open subscheme
of a normal proper S-scheme X ; the argument used in the proof of (2) now yields the desired
algebraization.

�

We shall use the above description to prove Theorem 3.5 by a topological argument. To run this argument,
we need a couple of lemmas in pure algebraic geometry on the existence and properties of the maximal open
set where a constructible sheaf is lisse.

Lemma 3.8. Let X be a scheme and let F be a constructible sheaf on X. Then there exists a maximal
open subset UF ⊂ X such that F |UF is locally constant. Moreover, UF is given by either of the following
equivalent descriptions:

(1) The set of all x ∈ X such that F |Xx
is locally constant. (Here Xx is the local scheme of X at x.)

(2) The set of all x ∈ X admitting an open neighborhood x ∈ U ⊂ X with F |U being locally constant.

In particular, UF contains all the generic points of X.

Proof. As local constancy is a local property, the collection of all opens V ⊂ X such that F |V is locally
constant is stable under taking unions. Taking the union of all such opens then gives the maximal open UF

such that F |UF is open. It is also clear from this description that UF agrees with the set in (2). The set
in (2) is trivially contained in the set in (1). Conversely, as the functor sending a scheme Y to its category
of locally constant sheaves (resp. constructible sheaves) is locally finitely presented (i.e., carries cofiltered
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limits of affine schemes to direct limits), the set in (1) is also contained in the set in (2), so the two sets
coincide. The final statement is clear from the description of UF given by the set in (1). �

Lemma 3.9. The formation of the open set UF ⊂ X associated with a pair (X,F ) as in Lemma 3.8 is
compatible with pullback along universally generalizing maps of schemes.

Proof. Let f : Y → X be a universally generalizing map of schemes. We have an obvious containment
f−1(UF ) ⊂ Uf∗F , and we must show it is an equality. Assume towards contradiction that there exists some
y ∈ Uf∗F − f−1(UF ). Thus, (f∗F )|Yy

is locally constant but F |Xf(y)
is not locally constant. There is

then a specialization x1  x2 of geometric points of Xf(y) such that the corresponding cospecialization map
Fx2

→ Fx1
is not an isomorphism. Choose an absolutely integrally closed valuation ring V and a map

ηX : Spec(V ) → Xf(y) that witnesses the specialization x1  x2, so η∗X(F |Xf(y)
) is not locally constant.

Now that the map Yy → Xf(y) is universally generalizing (it factors as Yy → Xf(y) ×X Y → Xf(y), with
both maps being universally generalizing) and surjective (all points of Xf(y) specialize to y, so surjectivity
follows from the universally generalizing property). By stability of universally generalizing surjective maps
under base change, we can replace V with an extension if necessary to lift ηX to a map ηY : Spec(V )→ Yy.
But then we have η∗X(F |Xf(y)

) = η∗Y (f∗F |Yy
); this is a contradiction as the left side is not locally constant

by choice of ηX , while the right side is locally constant by choice of y. �

Proof of Theorem 3.5. Let us first give the argument when {Ui} is a cover of X for the analytic topology.
We proceed by induction on dim(X). The dim(X) = 0 case is clear: X is a disjoint union of points in this
case. In general, as Zariski-constructibility is stable under pullback, we may assume each Ui = Spa(Ai) is
affinoid. Write Ui = Spec(Ai) for the obvious algebraization of Ui. The map Ui → Ui identifies constructible
Z/n-sheaves on the target with Zariski-constructible Z/n-sheaves on the source by Proposition 3.7, so there
is a unique constructible Z/n-sheaf Fi over Ui descending F |Ui . Let Vi := Ui,Fi ⊂ Ui be the maximal
Zariski open over which Fi is locally constant as in Lemma 3.8, let Vi ⊂ Ui be its Zariski-open preimage, and
let Zi ⊂ Ui be the Zariski-closed complement of Vi (regarded as a reduced rigid space); note that Zi ⊂ Vi is
nowhere dense as Vi ⊂ Ui contains all the generic points. As the natural algebraizations of the maps given
by rational localizations of affinoids are universally generalizing, Lemma 3.9 implies that for all i, j, the
Zariski-open subsets Vi ∩ (Ui ∩Uj) and Vj ∩ (Ui ∩Uj) of Ui ∩Uj agree, and consequently their complements
also agree. By descent for coherent ideal sheaves applied to the ideal sheaves IZi ⊂ OUi of the Zi’s, there is
a unique Zariski-closed subset Z ⊂ X such that Z ∩Ui = Zi. As Zi is nowhere dense in Ui for all i, we must
have dim(Z) < dim(X). Moreover, the sheaf F is lisse over X −Z by construction. Induction on dimension
shows that F |Z is also Zariski-constructible, so we win.

To adapt this argument to the étale topology, note the proof above has two essential ingredients:

(1) For each pair of indices i, j, if V ⊂ Ui ∩ Uj = Ui ×X Uj is an open affinoid, then the natural
algebraization of V → Ui (resp. V → Uj) is a universally generalizing map of affine schemes.

(2) Descent for coherent sheaves holds true with respect to the cover {Ui}.
These properties are also true for étale covers of X, so the descent claim also holds true in the étale topology.
Indeed, étale descent for coherent sheaves on rigid spaces is [dJvdP96, Corollary 3.2.3], while the first property
reduces to the well-known fact that for any étale map of affinoid rigid spaces, the associated ring map is
flat. �

3.3. Pushforward, ⊗, and RH om. In this subsection, we prove some of our main stability properties for
Zariski-constructible sheaves. Until further notice, we fix a characteristic zero nonarchimedean base field K
of residue characteristic p (with p = 0 allowed). The first main result in this section is the following theorem,
which was conjectured by the second author [Han20, Conjecture 1.14].

Theorem 3.10 (Proper direct images). Let f : X → Y be a proper map of rigid spaces over K. Then Rf∗
preserves D(b)

zc (−,Z/n).
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Note that p|n is allowed here. We caution the reader that if f : X → Y is a proper map of rigid spaces
with Y irreducible, then in contrast with the situation for algebraic varieties, it is not always true that X has
finitely many irreducible components, or that the fibers of f have bounded dimension.5 Thus, it is necessary
to use D(b) and not Db in the above formulation, and similarly in many other places in this section.

Proof. By Theorem 3.5, we may assume Y = Spa(A) for an affinoid K-algebra A. In particular, X and
Y are both qcqs. We may clearly also assume that Y is reduced. Our task is to show that Rf∗ preserves
Db
zc(−,Z/n) in this situation. As X is quasi-compact, we may apply Proposition 3.6, so it suffices to show

that Rf∗Z/n ∈ Db
zc. In fact, as the fibres of f have bounded dimension (e.g., by checking on formal models),

we know by cohomological dimension estimates and proper base change that Rf∗ has finite cohomological
dimension, so it is enough to show that Rf∗Z/n ∈ Dzc, i.e., that each Rif∗Z/n is Zariski-constructible on
Y . By proper base change and induction on dim(Y ), it suffices to find a dense open U ⊂ Y such that
(Rif∗Z/n)|U is locally constant. As K has characteristic 0, Temkin’s [Tem18, Theorem 1.1.13 (i)] gives a
proper hypercover ε : X• → X with each Xi being K-smooth. Cohomological descent enables us to compute
Rf∗Z/n as the totalization of Rg∗Z/n, where g = f ◦ ε. As Hi of the totalization of a cosimplicial object
K(•) : ∆ → D≥0 only depends on truncated cosimplicial object K(•)|∆≤i+1

, we can replace X• with the
finite diagram X≤i+1 and then by each Xj to assume that X is smooth. As Y is reduced, our generic
smoothness result (Theorem 2.29) yields a Zariski-dense Zariski-open U ⊂ X such that f : X → Y is smooth
over U . It then suffices to show that Rig∗Z/n is locally constant when g is both proper and smooth. To
check this, we may assume n = ` is a prime. Now if ` 6= p, the claim reduces to [Hub96, Corollary 6.2.3],
while the claim for ` = p reduces to [SW20, Theorem 10.5.1]. �

As a consequence of Theorem 3.10, we also get some additional stability results. First, locally constant
sheaves are carried to Zariski-constructible complexes via pushforward along a fairly general class of maps.

Corollary 3.11 (Direct images of lisse complexes). Let f : X → Y be a Zariski-compactifiable map of rigid
spaces. Then Rf! and Rf∗ carry D

(b)
lis (−,Z/n) into D(b)

zc (−,Z/n).

As explained in Warning 3.2 (1), the functor Rf∗ does not preserve D
(b)
zc in general, even for Zariski-open

immersions. Thus, the above seems to be the best general statement one can expect.

Proof. The statement is local on the target by Theorem 3.5, so we may assume Y = Spa(A) is affinoid. By
assumption, we can factor f as X j−→ X

g−→ Y with j being a Zariski-open immersion and g being proper.
Using Theorem 3.10, we can reduce to the case f = j is a Zariski-open immersion. The claim for Rf! is clear
from the definition of Zariski-constructible sheaves (using {X,X −X} as the stratification on X witnessing
Zariski-constructibility), so it remains to check the assertion for Rf∗. As Y is affinoid, the Zariski-open
immersion f : X ↪→ Y is the algebraization of a unique open immersion g : X → Y = Spec(A). Moreover,
any object of Db

lis(X,Z/n) is the analytification of a unique object in Db
lis(X ,Z/n) by Proposition 3.7 (3).

Using the compatibility of pushforwards with analytification from Proposition 3.7 (1), the claim follows from
Gabber’s constructibility theorem in [ILO14, Expose XIII, Theorem 1.1.1]. �

Secondly, !-pullback along finite morphisms preserves Zariski-constructibility.

Corollary 3.12 (Finite !-pullback). Let f : X → Y be a finite morphism of rigid spaces over K. Then the
right adjoint Rf ! : D+(Y,Z/n)→ D+(X,Z/n) to f! = f∗ constructed in [Hub96, §7.1] preserves D(b)

zc (−).

Proof. By Theorem 3.5, the assertion is étale-local on Y , so we may assume both X and Y are affinoid,
corresponding to a finite map A → B of affinoid K-algebras. Fix F ∈ Db

zc(Y,Z/n). Let SF ⊂ Y be the
smallest Zariski-closed subset of Y containing the support of F . We shall prove the claim by induction on
dF = dim(SF ).

5 For a simple example where both conditions fail, let Y = (SpecK[T ])an be the rigid affine line, set Xn = (Pn)an and let
fn : Xn → Y be the map which factors over the inclusion of the closed point T = p−n. Then f =

∐
fn :

∐
Xn → Y is proper.
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If dF = 0, then F is supported at finitely many points. As the claim is étale local on Y , we may then
assume that F is a finite direct sum of sheaves of the form k∗Z/n, where k : W → Y is the inclusion of a
Zariski-closed point. Now f ! and k∗ commute: the corresponding statement for left adjoints is the proper
base change theorem for f . We are thus reduced to checking the statement when Y (and thus X) are 0-
dimensional. In this case, up to universal homeomorphisms, the map f is finite étale, so Rf ! = f∗, so the
claim is clear.

Now assume dF > 0. We may then choose a Zariski open subset j : U ↪→ Y such that U ∩ SF is dense is
SF , the restriction L := F |U∩SF

is lisse, and f is finite étale (up to universal homeomophisms) over U : one
can find such an open U as the algebraization of an open U ⊂ Spec(A) satisfying the analogous properties for
the map Spec(B)→ Spec(A) and the algebraization F of F (in the sense of Proposition 3.7). Let i : Z ↪→ Y
be the closed complement, so we have the standard exact triangle

i∗Ri
!F → F → Rj∗(F |U ).

Now Rj∗(F |U ) ' k∗Rj′∗L, where j′ : U ∩ SF → SF and k : SF → X are the natural maps (and thus Zariski
open and Zariski closed immersions respectively). By Corollary 3.11, the third term in the triangle above is
then Zariski-constructible. The remaining term i∗Ri

!F in the triangle is then also Zariski-constructible, so
Ri!F is itself Zariski-constructible. Applying Rf ! to the above triangle gives a triangle

Rf !i∗i
!F → f !F → Rf !k∗Rj

′
∗L.

By proper base change for f as in the previous paragraph, the last term identifies with kX,∗Rj′X,∗(f |U∩SF
)!L,

where kX and j′X are the base changes of k and j′ along f . As f is finite étale up to universal homeomorphisms
over U , we have (f |U∩SF

)!L ' (f |U∩SF
)∗L, so this object is lisse on f−1(U ∩SF ). Corollary 3.11 then implies

that the third term in the triangle above is lisse. For the first term, using proper base change again lets
us write it as iX,∗f !

Zi
!F , where iX and fZ are the base changes of i and f against f and i. As i!F is

known to be Zariski constructible, the induction hypothesis then shows that the first term is also Zariski
constructible. �

Remark 3.13. Using results from [Hub96, §7], in the special case (p, n) = 1, we can extend Corollary 3.12
to much larger generality. Indeed, if f : Y → X is any separated taut morphism of rigid spaces over K, then
Rf ! sends D(b)

zc (X,Z/n) into D(b)
zc (Y,Z/n). To see this, by Theorem 3.5, this assertion can be checked locally

on X and Y , so we can assume they are affinoid. The map f can be then be factored as the composition
of a Zariski-closed immersion followed by a smooth map of pure dimension d. The claim for Zariski-closed
immersions follows from Corollary 3.12, while that for smooth morphisms follows from Huber’s [Hub96,
Theorem 7.5.3], which identifies Rf ! with f∗(d)[2d].

We deduce the existence of ⊗ and RH om.

Corollary 3.14 (⊗ and RH om). Let X be a rigid space. For any F ,G ∈ D(b)
zc (X,Z/n) with F having

finite Tor dimension, both F ⊗ G and RH om(F ,G ) lie in D(b)
zc (X,Z/n).

Proof. We may work locally on X on Theorem 3.5, so assume X is affinoid. The claim about tensor products
is clear (e.g., by Proposition 3.7 and the corresponding statement in algebraic geometry). For RH om, we
proceed by induction on d = dim(X), the case d = 0 being trivial. Choose a dense Zariski-open j : U ⊂ X
such that both F |U and G |U are lisse. Applying RH om(−,G ) to the triangle j!j∗F → F → i∗i

∗F →, we
get a triangle

i∗RH om(i∗F , i!G )→ RH om(F ,G )→ Rj∗(F |∨U ⊗ G |U )→,
where we simplified the first term using the adjunction defining i!, and the last term by using RH om(A,B) =
A∨ ⊗ B for A,B ∈ D(Z/n) with A ∈ Dperf (Z/n). Now induction on dimension and Corolary 3.12 ensure
that the first term lies in Db

zc. The last term lies in Db
zc by Corollary 3.11, so we win. �

We also deduce the proper base change theorem.
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Theorem 3.15. Let

X ′

g′

��

f ′ // Y ′

g

��
X

f // Y

be a Cartesian diagram of rigid spaces over K, with f proper. Then for any F ∈ D(b)
zc (X,Z/n), the natural

base change map g∗Rf∗F → Rf ′∗g
′∗F is an isomorphism.

Proof. This easily splits into the two disjoint cases where p - n or n = pa. When p - n, the result follows from
Huber’s much more general base change results [Hub96, Theorem 4.1.1.(c)]. We may thus assume that n = pa.
By Theorem 3.10, we know that g∗Rf∗F and Rf ′∗g′∗F are Zariski-constructible, hence overconvergent, so it
suffices to show that the base change map induces an isomorphism on stalks at all rank one geometric points
y → Y ′. By two applications of [Hub96, Example 2.6.2], we compute that (g∗Rf∗F )y ' RΓ(X ×Y g(y),F )
and (Rf ′∗g

′∗F )y ' RΓ(X ×Y y,F ). We now conclude by Lemma 3.25. �

We end this section by recording that the equivalence in Proposition 3.7 is compatible with all the
operations we have seen so far.

Proposition 3.16. Fix an affinoid K-algebra A, and write S = Spec A and S = SpaA. The functor
(−)an : Db

c(X ,Z/n) → Db
zc(X,Z/n) for finite type S-schemes X with X = X an is compatible with ⊗,

RH om when the first argument has finite Tor dimension, f∗, Rf∗, Rf! for compactifiable f , and Ri! for
any finite morphism i. If p - n, it is compatible with Rf ! for compactifiable f .

Proof. The compatibilities for f∗, ⊗, and j! for open immersions j are easy and left to the reader. The
compatibility for Rf∗ is a special case of Proposition 3.7 (1). For proper f , the claim for Rf∗ = Rf! is
[Hub96, Theorem 3.7.2] This implies the claim for Rf! for compactifiable f . The result for Ri! in the case
of a closed immersion follows from the triangle Ri! → i∗ → i∗Rj∗j

∗ → and its analytic counterpart, where
j is the complementary open immersion, using the known compatibilities for i∗, j∗, and Rj∗. Given these
compatibilities, the claim for RH om now follows by induction on the dimension, imitating the devissage
carried out in Corollary 3.14. The result for Ri! for general finite maps i : X → Y can be proven by following
the argument in Corollary 3.12.

Finally, the claim for Rf ! in the case (n, p) = 1 is local on the source, so we may factor f as g◦ i where g is
smooth of some pure relative dimension d and i is a closed immersion. Then Rf ! = Ri! ◦Rg! = Ri! ◦g∗[2d](d)
by Poincaré duality for schemes, and Rfan! = Rian! ◦ gan∗[2d](d) by Poincaré duality for rigid spaces as in
Huber’s book. The result now follows from the known compatibilities for g∗ and Ri!. �

3.4. Verdier duality. It remains to discuss Verdier duality. Recall that if p is invertible in the coefficient
ring Z/n, then [Hub96, §7] shows that any separated taut morphism f : X → Y of rigid spaces over K
induces a well-behaved functor Rf! : D(X,Z/n) → D(Y,Z/n) with a well-behaved right adjoint Rf !. In
particular, for any separated taut rigid space X and any n prime to p, we can define the dualizing complex
ωX = Rπ!

X(Z/n), where πX : X → Spa K is the structure map. We shall construct dualizing complexes in
a different way using results from [ILO14]; our construction works without restriction on p, and is equivalent
to Huber’s if (p, n) = 1. We will need the following form of unbounded BBDG gluing [BBD82] for complexes.

Lemma 3.17. Let (C,O) be a ringed site with a final object X and fiber products, and with enough points.
Let B be a collection of open subobjects U ⊂ X such that X = ∪U∈BU and for all U, V ∈ B we have
U ∩ V = ∪W∈B,W⊂U∩VW .

Suppose we are given objects KU ∈ D(U,O) for all U ∈ B together with isomorphisms ρUV : KU |V → KV

for all V ⊂ U with V,U ∈ B which are compatible with composition. Finally, suppose that Exti(KU ,KU ) = 0
for all U ∈ B and all i < 0.
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Then there exists a pair (K, {ρU}U∈B) consisting of an object K ∈ D(X,O) and isomorphisms ρU :
K|U → KU such that ρUV ◦ ρU = ρV for all V ⊂ U with V,U ∈ B. The pair (K, {ρU}) is unique up to unique
isomorphism.

Recall that a subobject U ⊂ X is open if the associated map Sh(CU ) → Sh(C) is an open immersion of
topoi, cf. [Sta18, Tag 08M0] for the latter notion. Note that unlike the unbounded gluing results proved in
[LO08] or [Sta18, Tag 0DCC], we do not assume here that the underlying site locally has finite cohomological
dimension. The price to pay is that we only prove gluing for open covers.

Proof. This follows from the proof of [Sta18, Tag 0D6C]. �

Next, we recall some results on [ILO14] on the existence and uniqueness of étale dualizing complexes for
a fairly general class of noetherian schemes. For this, we need good dimension functions.

Proposition 3.18. Let X be a Noetherian universally catenary scheme whose irreducible components are
equicodimensional in the sense of EGA, i.e. such that dim(OY,y) = dimY for every irreducible component
Y ⊂ X and every closed point y ∈ Y. Then the function δ(x) = dim {x} is a dimension function on X ,
which we call the canonical dimension function.

The hypotheses here are satisfied for any scheme X of finite type over Z, over a field, or over SpecA for
some affinoid K-algebra A. We will only need the latter case.

Proof. By [ILO14, Corollaire XIV.2.4.4], the map x 7→ dim {x} defines a dimension function on each irre-
ducible component of X . Since these functions agree on overlaps of irreducible components, this implies the
claim. �

In the next theorem, we shall use the language introduced in [ILO14, §XVII]. In particular, we shall use
the notion of a potential dualizing complex from [ILO14, §XVII.2]. Recall that such a complex on a scheme
X equipped with a dimension function δ is an object ωX ∈ D+(X ,Z/n) equipped with some additional data:
one has specified isomorphisms RΓx(ωX ) ∼= Z/n[2δ(x)](δ(x)), called pinnings, for each geometric point
x → X lying over a point x ∈ X , and these isomorphisms are required to be compatible with immediate
specializations in the appropriate sense. The following theorem asserts that such complexes exist in large
generality, and have good properties:

Theorem 3.19 (Existence of dualizing complexes in algebraic geometry). Let X be an excellent Noetherian
Z[1/n]-scheme satisfying the hypotheses of Proposition 3.18, and set Λ = Z/n. Then X admits a potential
dualizing complex ωX ∈ Db

ctf (X ,Λ) relative to the canonical dimension function, which is unique up to
unique isomorphism. The functor DX (−) = RH om(−, ωX ) preserves Db

c(X ,Λ) and the biduality map
F → DXDXF is an isomorphism for all F ∈ Db

c(X ,Λ).

Proof. The existence and uniqueness is [ILO14, Theorem XVII.5.1.1], while the rest follows from [ILO14,
Theoreme XVII.6.1.1]. �

Remark 3.20. Choose X as in Theorem 3.19. Assume additionally than X is regular of (locally constant)
dimension d. Then the twisted constant sheaf Z/n[2d](d) comes equipped with the required pinning data
thanks to absolute cohomological purity [ILO14, Theorem XVI.3.1.1], so it follows that there is a unique
isomorphism Z/n[2d](d) ∼= ωX compatible with the pinnings.

Using the preceding results in algebraic geometry and the algebraization results in Proposition 3.7, we
construct dualizing complexes in rigid geometry using Lemma 3.17 on gluing.

Theorem 3.21 (Existence of dualizing complexes in rigid geometry). Let X be a rigid space over K.

(1) Existence: There exists a natural dualizing complex ωX ∈ D(b)
zc (X,Z/n), characterized up to unique

isomorphism by the requirement that its formation commutes with passage to open subsets and is
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given by the algebraization (in the sense of Proposition 3.7) of the potential dualizing complexes from
Theorem 3.19 when X is affinoid. Moreover, one has ωX ∼= (Z/n)[2d](d) for X smooth of pure
dimension d, and canonical isomorphisms ωZ ' Ri!ωX for any finite morphism i : Z → X.

(2) !-compatibility for (n, p) = 1: If X is separated and taut and (n, p) = 1, then ωX ∼= Rπ!
X(Z/n) where

πX : X → SpaK is the structure map.

(3) Biduality: The dualizing functor DX(−) = RH om(−, ωX) induces a contravariant self-equivalence
of D(b)

zc (X,Z/n) satisfying biduality id ∼= DX ◦DX via the natural map.

(4) Duality and finite morphisms: For any finite morphism i : Z → X, there are natural identifications
of functors Ri!DX

∼= DZi
∗ and i∗DZ

∼= DX i∗.

(5) Duality and open immersions: For a Zariski-open immersion j : U → X, there are natural isomor-
phisms j∗DX ' DU j

∗ and Rj∗DU ' DXj!.

(6) Base change: If L/K is an extension of nonarchimedean fields, with a∗ : Dzc(X,Z/n)→ Dzc(XL,Z/n)
the natural pullback map, then a∗ωX ∼= ωXL

.

(7) Compatibility with algebraic geometry: If X = X an for a finite type K-scheme X , then ωX = (ωX )an.

Proof. Let us first construct ωX by glueing together the analytifications of the dualizing complexes coming
from Theorem 3.19. Let U = SpaA be any affinoid rigid space, and set U = SpecA. Then U satisfies the
hypotheses of Theorem 3.19. Let ωU ∈ Db

c(U ,Z/n) be the dualizing complex provided by that theorem.
By Propositions 3.7 and 3.16, we have an equivalence (−)an : Db

c(U ,Z/n)→ Db
zc(U,Z/n) compatible with

RH oms. We now define ωU := (ωU )an, so (DUF )an ∼= DU (F an) for every F ∈ Db
c(U ,Z/n). Since the

dualizing functor DU induces a contravariant self-equivalence on Db
c(U ,Z/n) which satisfies biduality, and

(−)an is an equivalence of categories, we now conclude the analogous results for DU .
To construct ωX over an arbitrary rigid space X, we apply Lemma 3.17, taking B to be the collection

of affinoid opens U ⊂ X, and letting KU = ωU as constructed in the previous paragraph. Note that the
full faithfulness in Proposition 3.7 and Theorem 3.19 show that Z/n ∼= RH om(ωU , ωU ) for all U ∈ B, so
all negative self-exts vanish. Moreover, for any inclusion of open affinoid subsets g : V ⊂ U , there is a
natural isomorphism g∗ωU ∼= ωV compatible with compositions by Lemma 3.22 below (applied with d = 0).
The gluing lemma now applies, and gives a unique ωX ∈ D(X,Z/n) equipped with a transitive system of
isomorphisms ωX |U ' ωU for all open affinoids U ⊂ X.

We now prove this construction has all the required properties.

(1) By construction, the complex ωX is characterized by the properties demanded in the first sentence
of (1); these also characterize ωX uniquely (up to unique isomorphism) by the uniqueness assertions
in Theorem 3.19 and Lemma 3.22 through the equivalence in Proposition 3.7. It is also clear from
the construction and Remark 3.20 that ωX |Xsm ∼= Z/n[2d](d), where d is the dimension. For the
compatibility with Ri! for finite morphisms, we reduce to the affinoid case following our construction,
and use compatibility of the analytification functor with Ri! (Proposition 3.16) to reduce to the
corresponding result in algebraic geometry ([ILO14, Proposition XVII.4.1.2]). The compatibility with
restriction to open subsets is clear from our construction. As these properties guarantee uniqueness
of ωX up to isomorphism, we are done with (1).

(2) The identification with Rπ!
X(Z/n) can be checked locally, where it follows by factoring πX as a closed

immersion followed by a smooth map and using the results on Poincare duality proved in Huber’s
book.

(3) This follows from the corresponding assertion in the affinoid case (which was explained above whilst
constructing ωX) as the property of being Zariski-constructible is local in the analytic topology
(Theorem 3.5).
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(4) This is a formal argument given duality and known adjunctions. For compatibility with i∗, fix
G ∈ D(b)

zc (Z,Z/n). Then we have isomorphisms

i∗DZ(G) =i∗RH om(Z/n,DZ(G))

=i∗RH om(G,ωZ)

=i∗RH om(G, i!ωX)

=RH om(i∗G,ωX)

=DX(i∗G).

where the second isomorphism is by biduality, the third by ωZ = i!ωX , and the fourth by the defining
property of i!. Comparing the first and last term gives i∗DZ = DX i∗.

For compatibility with i!, fix additionally F ∈ D(b)
zc (X,Z/n). Then we have bifunctorial isomor-

phisms

RHom(i∗DX(F ), G) =RHom(DX(F ), i∗G)

=RHom(DX(i∗G), F )

=RHom(i∗DZ(G), F )

=RHom(DZ(G), Ri!F )

=RHom(DZ(Ri!F ), G),

where first equality is by adjunction for (i∗, i∗), the second and last by duality, the third by the
equality i∗DZ = DX i∗ we just showed, and the fourth by adjunction for (i∗, i

!).

(5) The compatibility with j∗ is built into the construction. The rest is again a formal argument using
duality and known adjunctions. For F ∈ D(b)

zc (U,Z/n) and G ∈ D(b)
zc (X,Z/n), we have

RHom(F,Rj∗DU (G)) =RHom(j∗F,DU (G))

=RHom(G,DU (j∗F ))

=RHom(G, j∗DX(F ))

=RHom(j!G,DX(F ))

=RHom(F,DX(j!G)),

with first equality by the adjunction (j∗, Rj∗), the second and last by duality, third by j∗DX = DU j
∗,

and the fourth by the adjunction (j!, j
∗).

(6) By our construction of dualizing complexes, it suffices to construct a natural system of such isomor-
phisms over affinoids. Thus, assume X = Spa(A) is affinoid with base change XL = Spa(AL). Write
X and XL for the natural algebraization, and let f : XL → X be the natural map. It is enough
to construct a natural isomorphism f∗ωX ' ωXL

. We claim this follows from [ILO14, Proposition
4.1.1] (and uniqueness of potential dualizing complexes). To apply this lemma, we need to know
that f is a regular map, and that the dimension function y 7→ δ′(y) := δ(f(y)) − codimf−1(f(y))(y)

on XL agrees with the standard dimension function y 7→ dim({y}). The regularity of f is discussed
in the last paragraph of the proof of Proposition 3.24 below, and essentially comes from [And74]. To
obtain agreement of the dimension functions, it suffices to know that δ′(y) = 0 for a closed point y
(as any point on XL is linked to a closed point by a finite chain of immediate specializations). Thus,
we must check that dim({f(y)}) = codimf−1(f(y))(y). Since y is a closed point, this follows from
[Con99, Lemma 2.1.5] applied to the affinoid algebra of functions on integral scheme {y} ⊂ X .

(7) To deduce this from our construction, it suffices to show the following: if X = Spec(A) is an affine
finite-type K-scheme and U = Spa(B) ⊂ X = X an is an open affinoid with natural map ν : U → X ,
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then there is a natural isomorphism ν∗ωX ' ωU . This follows by Lemma 3.22 below applied to the
map Spec(B)→ Spec(A) with d = 0.

�

In the course of the previous proof, we used the following lemma.

Lemma 3.22. Let g : V = SpecB → U = SpecA be a regular morphism between excellent affine Q-schemes
of finite Krull dimension. Suppose moreover that U and V have equicodimensional irreducible components,
that g maps closed points to closed points, and that V ×U Specκ(g(x)) is equidimensional of dimension d for
all closed points x ∈ V for some (constant) d ≥ 0. Then there is a unique isomorphism g∗ωU [2d](d) ∼= ωV
compatible with the pinnings.

This lemma applies if g arises from an étale map of affinoid rigid spaces SpaB → SpaA, with d = 0. This
is the only case we will need.

Proof. This is a variant of the argument used in Theorem 3.21 (6). By [ILO14, Exp. XVII, Prop. 4.1.1],
g∗ωU is a potential dualizing complex for the dimension function δ̃ : |V | → Z defined by δ̃(x) = dim {g(x)}−
codimg−1(g(x))(x). Our assumptions guarantee that δ̃(x) + d = dim {x} = 0 for all closed points x. Since
the difference of any two dimension functions is locally constant, this implies that δ̃(x) + d = dim {x} for all
x ∈ V , and therefore that g∗ωU [2d](d) is a potential dualizing complex for the canonical dimension function
on V . We now conclude by the uniqueness of potential dualizing complexes. �

Remark 3.23 (Duality and proper maps). In Theorem 3.21, we have only discussed the functor Rf ! when p
is invertible in the coefficient ring, or when f is finite. However, we expect that for any proper map f : X →
Y , the functor Rf∗ : D

(b)
zc (X,Z/pn) → D

(b)
zc (Y,Z/pn) admits a right adjoint Rf ! naturally isomorphic to

DXf
∗DY . One can check that this expectation holds iff there is a natural isomorphism DYRf∗ ∼= Rf∗DX .

For f proper and smooth, ongoing work of Zavyalov confirms these expectations.

3.5. Miscellany. We collect some auxiliary results.
First, we note that the entire formalism is compatible with changing the nonarchimedean base field.

More precisely, let K → L be an extension of characteristic zero nonarchimedean fields. For any rigid space
X/ SpaK, there is a natural map of étale sitesXL,ét → Xét which induces a pullback functorD(X)→ D(XL)
sending Dzc into Dzc.

Proposition 3.24. Notation as above, the change of base field functors Dzc(X)→ Dzc(XL) are compatible
(under the appropriate boundedness conditions) with the operations f∗, ⊗, RH om, Verdier duality, Rf∗ for
proper f , Rf! and Rf∗ on lisse complexes for Zariski-compactifiable morphisms f , and Rf ! if either f is a
finite morphism or p is invertible in the coefficient ring.

Proof. The compatibilities for f∗, ⊗ and j! are trivial. The compatibilities for Rf∗ in the proper case and
Rj∗ in the Zariski-open lisse case are the hardest; the rest follow from these.

For Rf∗ in the case of a proper map f : Y → X, one easily reduces to the two disjoint cases p - n and
n = pa. The first case follows from Huber’s general base change theorem [Hub96, Theorem 4.1.1.b]. The
second case can be reduced, via [Hub96, Theorem 4.1.1.b’], to the situation where K and L are algebraically
closed, and then by Theorem 3.10 it can be checked on stalks at classical points of XL which map to classical
points of X. At these points it reduces to Lemma 3.25 below.

For Rj∗ on lisse sheaves in the case of a Zariski-open immersion j : U → X, we can assume thatX = SpaA
is affinoid. Write jL : UL → XL = SpaA⊗̂KL for the base change, and let jalg : U → X = SpecA and
jalgL : UL → XL = SpecAL be the evident algebraizations. By (multiple applications of) Proposition 3.7,
we are reduced to proving that g∗Rjalg∗ F ∼= RjalgL,∗g

′∗F for any lisse sheaf F on U , where g : XL → X is
the natural map and g′ : UL → U is its base change to U . Since g is regular (see next paragraph), this
follows from regular base change [ILO14, Exp. XVII, Prop. 4.2.1]. (The results for RH om and Ri! can be
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handled in an entirely analogous way, with the endgame supplied by [ILO14, Exp. XVII, Prop. 4.2.2 and
Cor. 4.2.3].)

The claimed regularity of A→ A⊗̂KL can be reduced by Noether normalization to the regularity of the
map K 〈x1, . . . , xn〉 → L 〈x1, . . . , xn〉. By standard excellence properties of affinoid rings, regularity of this
map can be verified after m-adic completion at all maximal ideals m in the source. This finally reduces us
to the fact that for any separable extension of nonarchimedean fields L/K the ring map K[[x1, . . . , xn]] →
L[[x1, . . . , xn]] is regular, which follows from the formal smoothness of this map, cf. [And74]. �

In the previous proof, we used the following lemma.

Lemma 3.25. Let C ′/C/Qp be an extension of algebraically closed nonarchimedean fields. Then for any
proper rigid space X/C and any F ∈ Db

zc(X,Z/p
a), the natural map RΓ(X,F ) → RΓ(XC′ ,FC′) is an

isomorphism.

Proof. By an easy induction on a and Proposition 3.6, we can assume that F = f∗Fp for some finite map
f : X ′ → X. Replacing X by X ′, we can assume further that F = Fp is constant. By two applications of
the primitive comparison theorem, it’s enough to check that the natural map

RΓ(X,O+
X/p)⊗OC/p OC′/p→ RΓ(XC′ ,O+

XC′
/p)

is an almost isomorphism. This can be deduced from a purely local statement: if U = SpaA/C is any
affinoid, then the natural map

RΓ(U,O+
U/p)⊗OC/p OC′/p→ RΓ(UC′ ,O+

UC′
/p)

is an almost isomorphism.
To prove the local statement, choose a perfectoid Zdp-torsor A→ A∞. Then

RΓ(U,O+
U/p)

∼=a RΓcts(Z
d
p, A

◦
∞/p),

and similarly for UC′ . The result now follows by writing RΓcts(Z
d
p,−) as the usual d+1-term Koszul complex

and observing that the natural map A◦∞⊗̂OC
OC′ → A◦C′,∞ is an almost isomorphism (e.g., because both

sides provide perfectoid rings of definition for the Tate ring A∞⊗̂CC ′). �

Secondly, with biduality in hand, we can somewhat extend our results on pushfoward.

Proposition 3.26. Let f : X → Y be a Zariski-compactifiable morphism, and let F ∈ D(b)
zc (X,Z/n) be an

object such that one of the following holds true:

(1) F is lisse or DXF is lisse, or

(2) F = j∗F ′ for some compactification X j→ X ′
f→ Y and some F ′ ∈ D(b)

zc (X ′,Z/n).

Then Rf∗F and Rf!F lie in D(b)
zc (Y,Z/n).

It follows from the above proposition that if f is a Zariski locally closed immersion, any F satisfying (1)
automatically satisfies (2): we may simply take F ′ = Rf∗F by the proposition.

Proof. For the first case, the result is already proved for F lisse. Suppose now that DXF is lisse, and

choose a compactification X j→ X ′
f→ Y . We first show that Rj∗F is Zariski-constructible. To see this, use

Theorem 3.21 to write
Rj∗F ∼= Rj∗DXDXF ∼= DX′j!DXF .

Then DXF is lisse by assumption, so j!DXF is Zariski-constructible by Corollary 3.11, and then duality
preserves Zariski-constructibility. Now the triangle j!F → Rj∗F → i∗i

∗Rj∗F → shows that j!F is also
Zariski-constructible. Applying Rf∗ now gives the claim.
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For the second case, let i : Z → X ′ be the complementary closed immersion. Then we get a triangle
Rf!F → Rf∗F

′ → R(f ◦ i)∗i∗F ′ →, and the second and third terms are Zariski-constructible by Theorem
3.10. Likewise, we get a triangle R(f ◦ i)∗Ri!F ′ → Rf∗F

′ → Rf∗F →, and the first two terms are
Zariski-constructible by Theorem 3.10 and Proposition 3.12. �

Remark 3.27 (Unbounded variants). We briefly discuss without proof how the results discussed above
extend to the unbounded derived category. We shall need the following notion:

Definition 3.28. Given a non-archimedean base field K and the coefficient ring Z/n, we say (†) holds if
Gal(K/K) has finite `-cohomological dimension for all primes `|n.

This condition is very mild, and holds for example if K is separably closed, or if K is a local field, or if
K has separably closed residue field and (n, p) = 1. One can also check that (†) is stable under replacing K
by Kx, where Kx is the residue field of any rigid space X/K at any (adic) point x ∈ X. The main reason
for introducing this condition is the following:

Proposition 3.29. Fix K and Λ = Z/n such that (†) holds. Then for any rigid space X/K, the derived
category D(Xét,Λ) is left-complete and compactly generated, and the functor R lim : D(XN

ét ,Λ)→ D(Xét,Λ)
has bounded cohomological amplitude on any finite-dimensional open subspace of X.

Proof. This is well-known; cf. [Roo06] for the final statement. �

Let us now formulate the promised unbounded variants of the results discussed in this paper. Let f :
X → Y be a map of rigid spaces over K, and let F ∈ Dzc(X,Z/n).

(1) Pullback: The pullback f∗ takes Dzc into Dzc.

(2) Proper pushforward: If F is bounded below or (†) holds, then Rf∗F ∈ Dzc.

(3) General pushforward: Say F is lisse and f is Zariski-compactifiable. If F is bounded below or (†)
holds, then Rf!F , Rf∗F ∈ Dzc.

(4) Duality: The functor DX(−) = RH om(−, ωX) carries D(−)
zc into D(+)

zc . Furthermore, if (†) holds,
then DX(−) also carries D(+)

zc into D(−)
zc , and gives an autoequivalence of Dzc(X,Z/n) satisfying

biduality.

(5) !-pullback: If f is a finite map, then Rf ! takes Dzc to Dzc.

(6) !-pullback for good coefficients: If (p, n) = 1, f is any taut separated map and (†) holds true, then
Rf ! preserves Dzc.

(7) Tensor product: D(−)
zc (X,Z/n) is stable under ⊗ inside D(X,Z/n).

(8) Internal Hom: The bifunctor RH om(−,−) carries D(−)
zc ×D(+)

zc into D(+)
zc .

These assertions are all proven by using homological arguments to reduce to the locally bounded case
(using Proposition 3.29 as needed). We omit the proofs. The most notably difficult case is (4), where the
reduction to the bounded situation is non-formal, and requires the following lemma.

Lemma 3.30. Let X be a d-dimensional rigid space. Then for any F ∈ Shzc(X,Z/n), the complex
RH om(F , ωX) is concentrated in degrees [−2d, 0].

In particular, for any finite-dimensional X, the functor DX(−) preserves Db without assuming that X is
quasi-compact.

Proof. One could deduce this from the last assertion in [ILO14, Theorem XVII.5.1.1] using [Gab04, §3]
as well as our algebraization Proposition 3.7. For the convenience of the reader, we give a direct proof,
essentially mimicing the argument in Corollary 3.14 when G = ωX , while controlling the amplitude of the
terms showing up.
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Without loss of generality, we may assumeX is affinoid and reduced. We proceed induction on d, the d = 0
case being trivial. Let j : U → X be a smooth Zariski-open subset of pure dimension d with complement
of dimension < d such that F |U is locally constant. Let i : Z = SpaB → X be the inclusion of the closed
complement of U . Applying RH om(−, ωX) to the triangle j!j∗F → F → i∗i

∗F →, we get a triangle

i∗RH om(i∗F , ωZ)→ RH om(F , ωX)→ (Rj∗j
∗F∨)[2d](d)→,

where we used the isomorphism ωU ' Z/n[2d](d) (coming from the smoothness of U) to simplify the last
term, and Theorem 3.21 (4) for the first term. By induction, the first term here is concentrated in degrees
[−2d + 2, 0]. It thus suffices to show that Rj∗j∗F∨ is concentrated in degrees [0, 2d − 1]. Proposition 3.7
identifies Rj∗j∗F∨ as the analytification of Rjalg∗ G, where jalg : U = SpecA− SpecB → X = SpecA is the
natural algebraization of j and G is some locally constant sheaf on U . By [ILO14, Exp. XVIII-A, Theorem
1.1], Rjalg∗ G is concentrated in degrees [0, 2d− 1], so the result follows. �

3.6. Adic coefficients. We fix a characteristic zero nonarchimedean base field K of residue characteristic
p > 0. Fix any prime `. In this section we explain a variant of the theory of Zariski-constructible sheaves
with Z`-coefficients, using the formalism6 from [Sch17].

For a rigid space X/K, let Xv denote the v-site of X from [Sch17]. Let Z` = limn Z/`
n be the displayed

inverse limit of constant sheaves, regarded as a sheaf of (abstract) rings. Any perfect complex M ∈ D(Z`)
yields a “constant” `-complete sheaf M := limnM/`n ∈ D(Xv,Z`). Our goal is to build a theory of Zariski-
constructible Z`-complexes on a rigid space X where the locally constant objects are twisted forms of M for
M ∈ Dperf (Z`). We first recall the basic notion of “étale Z`-sheaves” that is introduced in [Sch17] for the
purposes of defining operations.

Construction 3.31. Fix n ≥ 1. For any strictly totally disconnected perfectoid space Y , the usual derived
category D(Yét,Z/`

n) is left-complete and identifies with a full subcategory D(Yv,Z/`
n) via pullback along

Yv → Yét. Moreover, containment in this subcategory can be checked v-locally (see [Sch17, Proposition
14.10, Proposition 14.11 (iii), Theorem 14.12 (ii)]).

For any v-stack X, let Dét(X,Z/`
n) ⊂ D(Xv,Z/`

n) be the full subcategory spanned by objects whose
pullback along any map Y → X with Y a strictly totally disconnected perfectoid space lies in the subcategory
D(Yét,Z/`

n) ⊂ D(Yv,Z/`
n); this condition can be checked after pullback along a v-cover ([Sch17, Remark

14.14]. Imposing this condition for a complex K is equivalent to imposing it for each v-cohomology sheaf
Hi(K) (regarded as a complex) ([Sch17, Proposition 14.16]). Moreover, if X is a locally spatial diamond
(e.g., one attached to a rigid space), then Dét(X,Z/`

n) admits a classical description: it agrees with the
left-completion D̂(Xet,Z/`

n) of the usual derived category D(Xét,Z/`
n) ([Sch17, Proposition 14.15]).

Finally, for any v-stack X, write Dét(X,Z`) ⊂ D`−comp(Xv,Z`) as the full subcategory derived `-complete
objects in D(Xv,Z`) whose mod `-reduction lies in the subcategory Dét(X,Z/`) mentioned above ([Sch17,
Definition 26]). If X is a locally spatial diamond, then derived `-completeness as well as the previous remark
on left-completeness give an equivalence

Dét(X,Z`) = lim
n
Dét(X,Z/`

n) ' lim
n
D̂(Xét,Z/`

n) (3)

at the level of the corresponding ∞-categories, thus giving a classical description of the left side in the case
of rigid spaces, see [Sch17, Proposition 26.2]. In fact, we could have defined Dét(X,Z`) as the homotopy
category of the right side above, and thus avoided ever mentioning the ambient category D`−comp(Xv,Z`);
one reason we introduce the latter is that it carries an obvious t-structure, which we shall use in our proofs.

As in [Sch17, §26], all operations between the categories Dét(−,Z`) of `-adic complexes introduced above
are always interpreted in the `-completed sense, i.e., the functor in question takes values in `-complete

6The paper [Sch17] assumes that a prime number is topologically nilpotent in the base field K. This is the reason we assume
that the residue characteristic p of K is > 0. Since we only use the relatively formal aspects of [Sch17], we expect that this
assumption can be removed once a theory of adic coefficients over nonarchimedean base fields of residue characteristic 0 has
been developed.
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complexes by fiat, and agrees after reduction mod ` with the corresponding functor for finite coefficients.
For instance, if j : U → X is a Zariski-open immersion and M ∈ Db

ét(U,Z`) ⊂ Db
`−comp(Uv,Z`), then

j!M ∈ Db
`−comp(Xv,Z`) is defined to be the derived `-completion of jtop! M ∈ Db(Xv,Z`) where jtop! denotes

the topos theoretic !-extension (without any completions); then one can see that j!M lies in Db
ét(X,Z`) and

j!M ⊗Z`
F` agrees with j!(M ⊗Z`

F`), where the latter is defined in the classical way.

In the above setting, we can introduce Zariski-constructible complexes:

Definition 3.32. Let X be a rigid space. We define full subcategories

D
(b)
lis (X,Z`) ⊂ D(b)

zc (X,Z`) ⊂ D(b)
ét (X,Z`) ⊂ D(b)

`−comp(Xv,Z`)

as follows:
• An object K ∈ D(b)

ét (X,Z`) lies in D(b)
lis (X,Z`) (and is called lisse) if K/` ∈ D(b)(Xét,Z/`) is lisse in

our previous sense (Definition 3.1).
• An objectK ∈ D(b)

ét (X,Z`) lies inD
(b)
zc (X,Z`) (and is called Zariski-constructible) ifK/` ∈ D(b)(Xét,Z/`)

has Zariski-constructible cohomology sheaves.

As before, we write D(b)
lis (X,Z`) and D(b)

zc (X,Z`) for the corresponding full ∞-categories inside Dét(X,Z`).

Remark 3.33. Let us explain an inverse limit description of D(b)
zc (X,Z`), similarly to (3). For each n ≥ 1,

let D(b)
zc,`−ftd(X,Z/`n) ⊂ D(b)

zc (X,Z/`n) be the full subcategory spanned by objectsM such thatM⊗LZ/`n Z/`
is locally bounded. These are compatible under the base change functors changing n. We claim that the
equivalence in (3) restricts to an equivalence

D(b)
zc (X,Z`) ' lim

n
D(b)
zc,`−ftd(X,Z/`n).

Indeed, since Z` has global dimension 1, it is clear that the equivalence in (3) gives a fully faithful functor
from the left to the right. The essential surjectivity follows by observing that, under the equivalence in (3),
the condition that M ∈ Dét(X,Z`) lies inside D(b)

zc (X,Z`) can be checked after reduction mod `.

As both locally constant sheaves and Zariski-constructible sheaves with Z/`-coefficients form weak Serre
subcategories of the category of Z/`-sheaves on Xét, both categories introduced above form triangulated
subcategories of D(b)

ét (X,Z`). These categories admit an algebraic description on affinoids:

Lemma 3.34. Let X = Spa(A) be an affinoid rigid space with the natural algebraization X = Spec(A). The
pullback along X → X induces equivalences

Db
lis(X ,Z`) ' D

(b)
lis (X,Z`) and Db

zc(X ,Z`) ' D(b)
zc (X,Z`)

of triangulated categories.

Proof. This follows from the description in Remark 3.33 together with Proposition 3.7 that implies the
corresponding statements with Z/`n-coefficients by passing to the full subcategory of objects with finite Tor
dimension. �

Using the aforementioned algebraic description, we can show that local constancy mod ` implies local
constancy, justifying our definition of lisse complexes.

Lemma 3.35. Let X be a rigid space and let M ∈ D(b)
lis (X,Z`). Then M is locally constant. More precisely,

for any cover {Ui} of X by connected affinoids, there exist perfect complexes Ni ∈ Dperf (Z`) such that M |Ui

is locally isomorphic (for the v- or in fact even the pro-(finite étale) topology of Ui) to Ni. In particular,
each v-cohomology sheaf Hi(M) is locally constant as well.

This lemma is analogous to [BS15, Remark 6.6.13], with Achinger’s theorem replacing Artin’s theorem.
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Proof. We may assume X = Spa(A) is a connected affinoid. Proposition 3.34 then implies that M is
uniquely pulled back from some M ′ ∈ Db

lis(Spec(A),Z`). Let B := colimiBi be a universal cover of A, i.e.,
this is filtered colimit of connected finite étale covers A → Bi with B itself being simply connected. Thus,
Spec(B) admits no non-trivial locally constant sheaves of finitely generated Z`-modules. Moreover, Achinger
has shown [Ach17, §1.5] that each Spec(Bi) is a K(π, 1), which implies that RΓ(Spec(B),Z`) = Z`. The
combination of these two properties of Spec(B) implies that taking the “constant” sheaf gives an equivalence
Dperf (Z`) ' Db

lis(Spec(B),Z`), so M ′|Spec(B) ∈ Db
lis(Spec(B),Z`) is the “constant” Z`-complex attached

to a perfect Z`-complex N . Analytifying this cover then solves the problem, i.e., taking Y := limi Spa(Bi)
where each Bi is given the natural topology and the inverse limit is computed in v-sheaves, we obtain a
pro-(finite étale) cover Y → X such that M |Y ' N for some N ∈ Dperf (Z`), as wanted. �

Next, we observe that all operations defined before extend to Z`-sheaves.

Theorem 3.36. On the category of rigid spaces over K, the following operations (defined in [Sch17, §26])
restrict to operations on D(b)

zc (−,Z`) and are compatible with reduction modulo `n.

(1) f∗, ⊗, and RH om.

(2) Verdier duality.

(3) Rf∗ for f proper.

(4) Rf! and Rf∗ on lisse complexes for Zarisk-compactifiable morphisms f .

(5) Rf ! if either f is a finite morphism or p 6= `.

Moreover, proper base change holds, and all of these operations are compatible with extensions of the nonar-
chimedean base field.

Proof. Let us first define the dualizing complex ωX ∈ D(b)
zc (X,Z`), thereby defining the operation that is

supposed to give Verdier duality. Given a rigid space X and an integer n ≥ 1, we have constructed in
Theorem 3.21 a dualizing complex ωn ∈ D(b)

zc (X,Z/`n). Given two integers n ≥ m, we claim that there
is a transitive system of isomorphisms anm : ωn ⊗LZ/`n Z/`m ' ωm in Db

zc(X,Z/`
m): for X = Spa(A)

being affinoid, this follows by a similar isomorphism for potential dualizing complexes on Spec(A) (see
discussion on potential dualizing complexes following Theorem 3.19, and use the pinning data there to see
transitivity), and the general case follows by BBDG glueing (as in the proof of Theorem 3.21). By canonicity
as well as the fact that Ext<0

Z/`n(ωn, ωn) = 0 for all n ≥ 1, the system {ωn} lifts naturally to an object of

the ∞-category limnD(b)
zc,`−ftd(X,Z/`n) from Remark 3.33. Using the equivalence there, the inverse limit

ωX := limn ωn ∈ D(Xv,Z`) then lies in D(b)
zc (X,Z`); this object comes equipped with a transitive system of

isomorphisms ωX ⊗LZ`
Z/`n ' ωn, thus providing our candidate dualizing complex ωX .

All the operations are now defined on the larger category Dét(X,Z`), and are compatible with reduction
mod `; the claims in the proposition now follow from the analogous statements mod `. �

Remark 3.37 (Relating Verdier duality with finite and Z`-coefficients). For any n ≥ 1, the reduction
modulo `n-functor D(b)

zc (X,Z`) → D
(b)
zc (X,Z`/`

n) carries the dualizing complex ωX,Z`
:= ωX ∈ D(b)

zc (X,Z`)

constructed in Proposition 3.36 to the dualizing complex ωX,Z/`n := ωX ∈ D(b)
zc (X,Z`) from Theorem 3.21

(1), which gives the formula DX,Z`
(−)/`n ' DX,Z/`n(−/`n) relating the Verdier duality operations un-

der reduction modulo `n. Moreove, using the formula RHomZ`
(Z/`n,Z`) = Z/`n[−1], it follows that the

restriction of scalars functor Res : D
(b)
zc (X,Z`/`

n)→ D
(b)
zc (X,Z`) satisfies DX,Z`

◦Res = Res ◦DX,Z/`n [−1].

Remark 3.38. In the entire discussion in this section, we could have used the pro-étale topology from
[Sch17] instead of the v-topology without any modification: this follows from the full faithfulness results in
[Sch17, §14] for the “change of topology map” and the observation that any F ∈ Shlis(X,Z`) as defined
above is in fact locally constant in the pro-étale topology by Lemma 3.35. Nevertheless, we have preferred
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to formulate things using the v-topology since the operations defined in [Sch17, §26] are defined using the
v-topology.

As our final goal in this section, we define the “standard” or “constructible” t-structure on D
(b)
zc (X,Z`).

We first explain how to do the analogous construction in algebraic geometry; we use the pro-étale approach
from [BS15], but a closely related result can be found in [Eke90, Theorem 3.6 (v)].

Proposition 3.39 (The constructible t-structure for Z`-sheaves on a noetherian scheme). Let Y be a noe-
therian scheme. Then the standard t-structure on D(Yproet,Z`) restricts to one on Db

cons(Yproet,Z`).

In the statement above and the proof below, we use the notions from [BS15, §5, 6]. In particular, we
refer to an object of Db(Yproet) as classical if it is in the essential image of the (fully faithful) pullback along
ν : Yproet → Yet (see [BS15, §5.1]). Classical abelian sheaves on Yproet are thus equivalent to abelian sheaves
on Yet and form an abelian Serre subcategory of all abelian sheaves on Yproet.

Proof. Given M ∈ Db
cons(Yproet,Z`), we must show that each Hi(M) lies in Db

cons(Yproet,Z`). Using the
definition of constructibility [BS15, §5], we must show that the abelian pro-étale sheaves Hi(M)/` and
Hi(M)[`] are constructible F`-sheaves for all i. Note that these sheaves can be regarded as subobjects
(resp. quotient objects) of some Hi(M/`) via the Bockstein sequence for `. As étale subquotients of étale
constructible constructible sheaves on a noetherian scheme are constructible [Sta18, Tag 09BH], it suffices to
show that the pro-étale sheaves Hi(M)/` and Hi(M)[`] are classical. In fact, by the Bockstein sequence and
stability of classical sheaves under cokernels in all pro-étale sheaves, it suffices to prove that each Hi(M)/`
is étale. By definition of constructibility, we know that Hi(M/`n) is classical for all i and n. As classical
sheaves are stable under images, it is then enough to show that Hi(M)/` ⊂ Hi(M/`) is exactly the image of
Hi(M/`n)→ Hi(M/`) for n� 0. By the Bockstein sequences for `n, this would follow if we knew that the
projective system {Hi(M)[`n]}n≥1 are Mittag-Leffler for each i, i.e., if each Hi(M) had bounded `-power
torsion. If M is lisse, this is clear. In general, recall the following fact from [BS15, §6.2]: if k : Z → Y is a
(necessarily constructible, as Y is noetherian) locally closed immersion, then the functors k∗ and k! on the
derived category of all pro-étale sheaves preserve limits and colimits and commute with Hi(−). By [BS15,
Proposition 6.6.11], we know that Y admits a finite stratification {kj : Yj → Y } such that each Nj := k∗jM

is lisse. The aforementioned properties of kj,! and k∗j then show that Hi(M)[`n] admits a finite filtration
whose graded pieces have the form kj,!k

∗
j (Hi(Nj)[`n]) for lisse complexes Ni. But then each Hi(Nj) is also

lisse and hence has bounded `-power torsion, so the corresponding claim for Hi(M) follows by devissage. �

Theorem 3.40 (The constructible t-structure for Z`-sheaves on a rigid space). Let X/K be a rigid space.
Then there exists a natural “constructible” t-structure (cD≤0

zc (X,Z`),
cD≥0

zc (X,Z`)) on D
(b)
zc (X,Z`) with the

following properties:

(1) An object K lies in cD≤0
zc (X,Z`) if and only if K/` ∈ D≤0(X,Z/`).

(2) An object K lies in the heart if and only if there exists a locally finite stratification X = {Xi} by
Zariski locally closed subsets such that K|Xi

is locally constant and concentrated in degree 0 in the
obvious sense (i.e., isomorphic locally on Xi,v to an object of the form N with N a finitely generated
Z`-module).

The restrictions appearing in part (2) above are in the sense of the operations in Proposition 3.36 (see
also Remark 3.38).

Proof. First assume X = Spa(A) is affinoid. In this case, to obtain a t-structure by the description in (1),
we may use Lemma 3.34 to translate to a similar question on Y = Spec(A). Thus, it suffices to show that
the t-structure on Db

cons(Yproet,Z`) constructed in Proposition 3.39 is characterized by the property that
K ∈ D≤0(Yproet) exactly when K/` ∈ D≤0(Yet); this follows from repleteness of Yproet, exactness and full
faithfulness of pullback along Yproet → Yet, and standard facts on derived completions. Moreover, part
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(2) also follows from the reasoning at the end of the proof of Proposition 3.39 as well as the fact that
Zariski-closed subsets of Spa(A) are the same as closed subsets of Spec(A).

For future reference, still in the affinoid case, we remark that once we know (2) is satisfied for some
stratification, there is in fact canonical stratification where (2) is satisfied. Indeed, if we take the open
stratum X0 ⊂ X to be the maximal Zariski dense open provided by Proposition 3.8 for H∗(K/`) and
continue inductively, we obtain a stratification {Xi}i≥0 of X by Zariski locally closed subsets such that K|Xi

is lisse by Lemma 3.35. To check that K|Xi is concentrated in degree 0 in the sense of (2), we may refine the
canonical stratification to ensure it is finer than a given stratification witnessing the property in (2), take
stalks, and then deduce the result for the canonical stratification itself. We observe also that this canonical
stratification has the feature that it is compatible with restricting to smaller affinoids by Lemma 3.9.

We now deduce the general case by glueing. Indeed, first observe that the pullback along maps of affinoids
is t-exact with respect to the t-structure we constructed in the first paragraph: right t-exactness is clear
from the description in (1), while left t-exactness follows from the description of the heart in (2) and the
boundedness of the t-structure on affinoids. As the condition appearing in part (1) is of a local nature, it
follows that for any rigid space X, we can glue the t-structures defined above on the affinoid opens of X
to produce a t-structure on D(b)

zc (X,Z`) satisfying part (1). For part (2), thanks to the last sentence of the
previous paragraph, we may simply glue together the canonical stratification on affinoids constructed in the
previous paragraph to obtain the desired stratification. �

4. Perverse sheaves

In this section, we use the results of §3 to define a notion of perverse sheaves on rigid spaces over
nonarchimedean base field K of characteristic 0. Our results with finite coefficents work for any rigid space,
with Z` coefficients when K has residue characteristic p (due to the corresponding requirement in §3.6), and
Q`-coefficients when one further restricts to the qcqs case.

4.1. Finite coefficients. Let K be a nonarchimedean field of characteristic 0 and let X/K be a rigid space.
In this subsection, we use Z/n-coefficients for some n ≥ 1. In this section, we develop a theory of perverse
sheaves on X that enjoys the same pleasant formal properties as its counterpart in algebraic geometry
[BBD82].

Definition 4.1. Let X/K be a rigid space.

(1) Define pD≤0
zc (X) ⊂ D(b)

zc (X) as the full subcategory of complexes F such that dim suppHj(F ) ≤ −j
for all j ∈ Z.

(2) Define pD≥0
zc (X) ⊂ D(b)

zc (X) as the full subcategory of complexes F such that DX(F ) ∈ pD≤0
zc (X).

The main results about this definition are summarized as follows.

Theorem 4.2 (Properties of the perverse t-structure). In the setup above, we have the following.

(1) The pair (pD≤0
zc (X), pD≥0

zc (X)) define a t-structure on D(b)
zc (X). Write Perv(X) = Perv(X,Z/n) for

the heart of this t-structure, and write pHn : D
(b)
zc (X) → Perv(X) for the associated cohomology

functors.

(2) For a Zariski-open immersion j (resp. Zariski-closed immersion i), we have the following exactness
properties with respect to the perverse t-structure:

(a) j∗ and i∗ are t-exact.

(b) j! is right t-exact in the context of Proposition 3.26 (2), i.e., if F ∈ pD≤0
zc (U,Z/n) arises as the

pullback of some object from D
(b)
zc (X,Z/n), then j!F ∈ pD≤0

zc (X,Z/n).

(c) i∗ is right t-exact and Ri! is left t-exact.



32 BHARGAV BHATT AND DAVID HANSEN

(d) Rj∗ is left t-exact in the context of Proposition 3.26 (2).

(3) Perv(X) is stable under Verdier duality.

(4) If X = X an for a finite type K-scheme X , the functor Db
c(X ) → Db

zc(X) induces a fully faithful
functor Perv(X )→ Perv(X). If X is proper over SpecK, this functor is an equivalence of categories.

(5) Say j : U ⊂ X is the inclusion of any Zariski locally closed subset and L is a perverse sheaf on
U that admits an extension to D

(b)
zc (X,Z/n) under j∗ (e.g., if one of L or DU (L ) is lisse, see

Proposition 3.26). Then there is a naturally associated intermediate extension j!∗L ∈ Perv(X) such
that j∗j!∗L ∼= L . Moreover, DX(j!∗L ) ∼= j!∗DU (L ).

(6) If X is quasicompact, Perv(X) is Noetherian and Artinian. The simple objects have the form
j!∗(L [d]), where j : U → X is a Zariski-locally closed immersion with U smooth of dimension d
and L is a simple locally constant sheaf on U .

(7) Perversity is stable under pushforward along finite morphisms.

(8) Assume p is invertible on Λ. If K is algebraically closed and X is a formal model of X with special
fiber Xs, the nearby cycles functor RλX∗ : Db

zc(X)→ Db
c(Xs) is t-exact for the perverse t-structures.

We expect that the t-exactness in (8) holds true without the assumption on p (using the perverse t-
structure on the target constructed in [Gab04]). The right t-exactness ought to follow from the relevant
affinoid vanishing theorem, generalizing [BM20, Han20], that has been announced by Gabber.

Proof. (1) We give two proofs: one via localizing to [Gab04], and one via a direct argument.

Proof via [Gab04]: We have seen before that X 7→ D(b)
zc (X) is a stack for the analytic topology on

X. Moreover, pullback along open inclusions U ⊂ X of rigid spaces preserves pD≤0
zc (−) by definition,

and pD≥0
zc (−) as Verdier duality localizes. Consequently, these pullbacks are perverse t-exact once

we know the perverse t-structure exists. Given a diagram of stable ∞-categories equipped with
t-structures and t-exact transition maps, the inverse limit carries a unique t-structure compatible
with those of the terms. Using the stackyness of D(b)

zc (−), we thus conclude that it suffices to prove
(1) when X = Spa(A) is affinoid. In this case, using Proposition 3.7 as well as the compatibility
of the notion of dimension and duality with analytification, it is enough to prove the corresponding
statements for Db

cons(X ,Z/n) where X = Spec(A); we do this next via [Gab04].
Consider the strong perversity function p : X → Z given by p(x) = −dim({x}). The results of

[Gab04, §2 & 6] show that there is a natural perverse t-structure on Db
c(X ,Z/n) attached to the

function p(−). It is clear from the definition in [Gab04, §2] as well as the compatibility of the notion
of dimension with analytification that the connective part pD≤0

c (X ,Z/n) ⊂ Db
c(X,Z/n) of this t-

structures agrees with pD≤0
zc (X) ⊂ Db

zc(X) under the equivalence (−)an : Db
c(X ,Z/n) ' Db

zc(X)
from Proposition 3.7. It remains to identify pD≥0

zc (X) ⊂ Db
zc(X) as defined above (via stalks of

the dual) with pD≥0
c (X ,Z/n) ⊂ D≥0

c (X ,Z/n) as defined in [Gab04, §2] (via costalks). For this, it
suffices to show the following pair of assertions:
(∗) For any G ∈ Db(X ,Z/n) and any geometric point x → x ∈ X , the costalk i!xG of G identifies

with the Z/n-linear dual of the stalk i∗xDX (G ) of the Verdier dual of G .
Indeed, assume (∗). Fix some F ∈ Db

zc(X,Z/n) arising as the analytification of G ∈ Db
c(X ,Z/n).

Assume first that F ∈ pD≥0
zc (X,Z/n). Then for any irreducible Zariski-closed subset Z ⊂ X of

dimension i, we know by assumption H−j(DX(F )) vanishes after restriction to a Zariski open subset
of Z for all j < i. This implies a similar constraint on G by t-exactness of analytification and its
compatibility with duality and the notion of dimension. Using (∗) and passing to the limit then
shows that G ∈ pD≥0(X ,Z/n). Conversely, if G ∈ pD≥0(X ,Z/n), then (∗) and the compatibility of
analyitification with duality and the notion of dimension shows that F ∈ pD≥0

zc (X,Z/n).
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It remains to prove (∗). This follows by passage to the limit from (the algebraic version of)
Theorem 3.21 (4) applied to quasi-finite maps of the form U ↪→ Z ↪→ X , with the first map being
a dense open immersion, and the second map being the closed immersion of an irreducible closed
subset.

Direct proof. We now explain a direct proof of the existence of the perverse t-structure on Db
zc(X)

when X is finite dimensional by induction on dimX. The result is trivial when dimX = 0. For the
moment, fix a smooth dense Zariski-open subset j : U → X, with closed complement i : Z → X.
It is trivial from the definition that i∗ : Db

zc(X)→ Db
zc(Z) carries pD≤0

zc into pD≤0
zc , and then (using

biduality) that Ri! carries pD≥0
zc into pD≥0

zc . By induction, we can assume that (1) is true for Z.
Write Db

zc.U−lis(X) ⊂ Db
zc(X) for the full subcategory spanned by complexes whose cohomology

sheaves are lisse after restriction to U . One trivially checks that pD≤0
zc (U) ∩Db

lis(U) and pD≥0
zc (U) ∩

Db
lis(U) define a t-structure on Db

lis(U), which locally on connected components is the obvious shift
by dimU of the standard t-structure. Moreover, a complex F ∈ Db

zc.U−lis(X) lies in pD≤0
zc (X) iff

j∗F ∈ D≤− dimX
lis (U) and i∗F ∈ pD≤0

zc (Z). By duality, this implies that F ∈ Db
zc.U−lis(X) lies in

pD≥0
zc (X) iff j∗F ∈ D≥− dimX

lis (U) and i!F ∈ pD≥0
zc (Z).

On the other hand, by [BBD82, Theoreme 1.4.10] we can glue the perverse t-structure on Db
lis(U)

and the perverse t-structure on Db
zc(Z) to get an actual t-structure on Db

zc.U−lis(X). The key tech-
nical ingredient here is Theorem 3.11, which guarantees that Rj∗ carries Db

lis(U) into Db
zc.U−lis(X).

This together with the induction hypothesis implies that the truncation functors pτ≤i preserve
Db
zc.U−lis(X).
It is clear that this glued t-structure agrees with the restriction of the putative perverse t-structure

from Definition 4.1 to the full subcategory Db
zc.U−lis(X) ⊂ Db

zc(X). Since Db
zc(X) is the filtered

colimit of Db
zc.U−lis(X) over (the opposite category of) all U ⊂ X as above, we deduce that pD≤0

zc

and pD≥0
zc define an honest t-structure on Db

zc(X).

(2) The right t-exactness in part (a) is clear, while the left t-exactness follows as both functors commute
with Verdier duality.

Part (b) is clear.
The claim for i∗ in part (c) is clear and that for Ri! then follows by duality.
For part (d), it suffices to identify DXRj∗F with j!DU (F ) (whenever F satisfies the hypothesis

in the proposition). These sheaves are isomorphic over U as duality is local, so it is enough to show
that i∗DXRj∗F = 0 for i : Z → X being the complementary closed immersion. But this follows as
i∗DX = DZRi

! on Db
zc(X) and Ri!Rj∗ = 0 on all of D(U).

(3) Clear from the definitions.

(4) By Proposition 3.7, (−)an : Db
c(X ) → Db

zc(X) is fully faithful, and is an equivalence in the proper
case. It remains to show that (−)an is perverse t-exact. Right t-exactness is clear, while left t-
exactness follows as (−)an is compatible with duality (e.g., via Lemma 3.22).

(5) As usual, we define j!∗L to be the image of the map pH0(j!L )→ pH0(Rj∗L ) of perverse sheaves,
noting that this makes sense by part (2) and Proposition 3.26. The remaining claims are immediate,
using the formula DXRj∗L = j!DU (L ) from (2) for the last part.

(6) It suffices to prove every perverse sheaf has finite length. We prove the claim by induction on
dimension d = dim(X). Clearly we can assume X is reduced.

When d = 0, the space X identifies with
⊔n
i=1 Spa(Ki) with Ki/K a finite extension. For such

spaces, the claim is clear after translating from étale sheaves to Galois representations, ultimately
because finite Z/n-modules have finite length in the category of all Z/n-modules.



34 BHARGAV BHATT AND DAVID HANSEN

Next, we show that for any Zariski locally closed immersion j : U → X and any lisse sheaf L
on U , the intermediate extension j!∗L [dimU ] is a perverse sheaf of finite length. As pushforward
along closed immersions is exact and fully faithful with essential image closed under passage to
subquotients, we may assume j is a dense Zariski-open immersion. Using induction on dimension
as well as the fact that j!∗ is exact up to perverse sheaves supported on the Zariski-closed space
i : Z := X − U ↪→ X which has dimension < d, it is enough to prove that j!∗L is simple if L is so.
As j∗ is perverse t-exact, it suffices to show that j!∗L admits no non-trivial subobjects or quotients
supported on X − U . The statement for quotients follows from the surjection pH0(j!L ) → j!∗L ,
the right perverse t-exactness of j!, and the fact that RH om(j!(−), i∗(−)) = 0; the statement for
subobjects follows by duality.

We now handle the general case. Given a perverse sheaf F on X, let U ⊂ X be a dense Zariski-
open subset such that F |U [−dim(U)] is lisse. Then we have a correspondence

j!∗(F |U )← pH0(j!(F |U ))→ F

of perverse sheaves with both maps having cones have perverse cohomology sheaves supported on
Z = X − U . As dim(Z) < dim(X), induction on dimension and the previous paragraph show that
F has finite length.

The claimed description of simple objects also follows from the proof above (and is similar to
the algebraic case). Indeed, say F is simple and supported on some Zariski-closed subset Z ⊂ X.
Replacing X with Z, we can assume F is supported everywhere. Let j : U ⊂ X be a Zariski-dense
Zariski-open subset of (locally constant) dimension d such that F |U = L [d] for a lisse sheaf L on U .
As j!∗ preserves injections and has a left-inverse, the simplicity of F implies that L must be simple.
Both maps in the correspondence j!∗(F |U ) ← pH0(j!(F |U )) → F used in the previous paragraph
must then be surjective by simplicity of the targets. The kernels of both maps are supported on
X − U while the simple targets are supported on all of X. It follows that kernels of both maps
identify with the maximal perverse subsheaf of pH0(j!(F |U )) supported on X − U . In particular,
both maps are isomorphic, so F = j!∗(F |U ), as wanted.

(7) Right t-exactness is clear, and commutation of finite pushforward with Verdier duality (Theorem 3.21
(4)) gives left t-exactness.

(8) By the commutation of nearby cycles with Verdier duality [Han18], it’s enough to show that RλX∗ is
right t-exact for the perverse t-structures. Fix some F ∈ pD≤0

zc (X). By [BBD82, Réciproque 4.1.6],
to check that RλX∗F ∈ pD≤0(Xs) it suffices to show that for any étale map j : Ys → Xs from an
affine scheme Ys, the complex RΓ(Ys, j

∗RλX∗F ) is concentrated in non-positive degrees.
Let j : Y → X be the étale map obtained by deforming j to a map of formal schemes and then

passing to the rigid generic fiber. Note that Y is affinoid. Then RΓ(Ys, j
∗RλX∗F ) ∼= RΓ(Y, j∗F )

by basic properties of the nearby cycles functor in this setting, and j∗F ∈ pD≤0
zc (Y ). But RΓ(Y,G )

is concentrated in degrees ≤ 0 for any G ∈ pD≤0
zc (Y ) by rigid analytic Artin-Grothendieck vanishing

[BM20, Han20].
�

4.2. Z`-coefficients. Let K be a nonarchimedean field of characteristic 0 and residue characteristic p > 0,
let ` be a prime number (including possibly ` = p), and let X/K be a rigid space. Our goal is to define a
perverse t-structure on the category D(b)

zc (X,Z`) (introduced in §3.6) that agrees on `-torsion objects with our
previous construction. The definition of the connective part is the same, but that of the coconnective part
needs to modified to account for the fact that the standard t-structure on Dperf (Z`) is not quite self-dual.
A similar issue occurs in algebraic geometry (see [BBD82, §3.3]), and our fix is also similar: there are two
perverse t-structures with Z`-coefficients that are exchanged by Verdier duality and which differ from each
other by torsion (Proposition 4.6).
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Construction 4.3 (The p- and p+-perverse t-structures). Consider the following full subcategories of
D

(b)
zc (X,Z`):
• pD≤0

zc (X,Z`) is the collection of all K’s with K/` ∈ pD≤0
zc (X,F`).

• pD≥0
zc (X,Z`) is the collection of all those K’s with DX(K) ∈ pD≤1

zc (X,Z`) and such that, locally on
X, there exists some c with `c · pH1(DX(K)/`n) = 0 for all n.

We refer to the pair (pD≤0
zc (X,Z`),

pD≥0
zc (X,Z`)) as the p-perverse t-structure on D

(b)
zc (X,Z`); it will be shown

to be a t-structure later (Proposition 4.6).
Write (p

+

D≤0(X,Z`),
p+

D≥0(X,Z`)) for the dual of the pair (pD≤0
zc (X,Z`),

pD≥0
zc (X,Z`)), i.e.,

p+

D≤0
zc (X,Z`) = DX

pD≥0
zc (X,Z`) and p+

D≥0
zc (X,Z`) = DX

pD≤0
zc (X,Z`).

We refer to the pair (p
+

D≤0
zc (X,Z`),

p+

D≥0
zc (X,Z`)) as the p+-perverse t-structure on D(b)

zc (X,Z`).

Example 4.4 (The case of a point). Assume X = Spa(K) is a geometric point, so K is algebraically closed.
In this case, we may identify D(b)

zc (X,Z`) = Dperf (Z`). Under this equivalence, the p-perverse t-structure
on Dperf (Z`) identifies with the standard t-structure (and is thus a t-structure). Indeed, the identification
of the connective part is clear. For the coconnective part, we must show that M ∈ Dperf (Z`) lies in D≥0

exactly when M∨ := RHom(M,Z`) ∈ D≤1 with Ext1(M,Z`) being torsion. This follows easily by using
biduality M = RHom(M∨,Z`) as well as the fact that Hom(N,Z`) = 0 if N is torsion.

More generally, a similar argument shows the following: for a smooth rigid space X/K of dimension
d, intersecting the p-perverse t-structure with Db

lis(X,Z`) gives (homological) d-fold shift of the standard
t-structure on Db

lis(X,Z`).

To compare the two t-structures in Construction 4.3, we shall need the following notion.

Definition 4.5. We say that an object K ∈ D(b)
zc (X,Z`) is locally bounded torsion if, locally on X, there

exists some c with `c · H∗(K) = 0.

The main result of this subsection is the following analog of some remarks in [BBD82, §3.3]:

Proposition 4.6 (Properties of Z`-perverse sheaves). (1) The p-perverse t-structure is indeed a t-structure
on D(b)

zc (X,Z`). Consequently, the same holds for p+-perverse t-structure.

(2) For any n ≥ 1, the reduction modulo `n-functor D(b)
zc (X,Z`) → D

(b)
zc (X,Z`/`

n) is right t-exact with
respect to p-perverse t-structure on the source and the perverse t-structure on the target.

(3) For any n ≥ 1, the restriction of scalars functor Res : D
(b)
zc (X,Z`/`

n)→ D
(b)
zc (X,Z`) is t-exact with

respect to the same pair of t-structures as in (2).

(4) We have pD≤0
zc (X,Z`) ⊂ p+

D≤0
zc (X,Z`) ⊂ pD≤1

zc (X,Z`).

(5) Given K ∈ D(b)
zc (X,Z`), we have K ∈ p+

D≤0
zc (X,Z`) if and only if K ∈ pD≤1

zc (X,Z`) with pH1(K)
being locally bounded torsion. (Note that pH1(−) makes sense by part (1).)

Proof. (1) All assertions are local, so we may assume X = Spa(A) is affinoid. We proceed by induction
on dim(X). If dim(X) = 0, then we can reduce to the case where X is a point. In this case,
the claim follows by Example 4.4. In general, we translate the theorem to a similar question about
Db
cons(Spec(A),Z`) with evident definitions, and proceed by imitating the glueing method of [BBD82,

§1.4]. Fix a smooth dense Zariski-open j : U ⊂ X of dimension d with complementary closed
i : Z ⊂ X . Consider the full subcategory DU−lis ⊂ Db

cons(Spec(A),Z`) spanned by complexes K
which are lisse over U . Then DU−lis admits a semi-orthogonal decomposition into Db

lis(U,Z`) as well
as Db

cons(Z,Z`) as in [BBD82, §1.4.3]. Moreover, forK ∈ DU−lis, one checks thatK ∈ pD≤0
cons(X,Z`)

(resp. K ∈ pD≥0
cons(X,Z`)) exactly when its ∗-pullbacks (resp. !-pullbacks) to U and Z lie in

pD≤0
lis (U,Z`) and pD≤0

cons(Z,Z`) (resp. pD≥0
lis (U,Z`) and pD≥0

cons(Z,Z`)): this is clear for pD≤0 over
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both U and Z as well as for pD≥0 over U , and follows for pD≤0 over Z by the formula i∗DX = DZRi
!.

One can then use [BBD82, Theorem 1.4.10] to glue the p-perverse t-structures on Db
lis(U,Z`) as well

as Db
cons(Z,Z`) (which are t-structures by Example 4.4 and induction respectively) to conclude that

intersecting the p-perverse t-structure with DU−lis gives a t-structure on DU−lis. Taking the colimit
over all such U ’s then proves (1).

(2) Clear from the definition.

(3) The right t-exactness is again clear from the definition. The left t-exactness follows by unwinding
definitions from Remark 3.37.

(4) Both containments are immediate from biduality.

(5) Fix some K ∈ D(b)
zc (X,Z`). Both directions can be checked locally on X, so we may assume X is

qcqs and thus K is bounded.
We first prove the “only if” direction, so assume that K ∈ p+

D≤0(X,Z`). Unwinding definitions
and using biduality, this means that K ∈ pD≤1

zc (X,Z`) and that there exists some c ≥ 1 such that
`c · pH1(K/`n) = 0 for all n. We shall prove that `c · pH1(K) = 0. Since K ∈ pD≤1

zc (X,Z`) and
pD≤0

zc (X,Z`) ⊂ p+

D≤0
zc (X,Z`), we are allowed to replace K with pH1(K)[−1], so we may assume that

K is concentrated in cohomological degree 1 with respect to the p-perverse t-structure. Moreover,
by a variant of the argument used to prove (1), one checks that there exists a constant c′ such
that K (or any perverse Z`-sheaf) has `∞-torsion bounded by `c

′
, i.e., that the perverse Z`-sheaves

ker(`n : K → K) are killed by `c
′
for all n. Our hypothesis on K then shows that the complex K/`n

is killed by `2 max(c,c′) for all n. But this implies K must be killed by `2 max(c,c′) by generalities on
derived `-complete sheaves in the replete topos7 of all v-sheaves on X, so we are done.

For the “if” direction, assume that K ∈ pD≤1
zc (X,Z`) and the object pH1(K) is killed by `c for

some c. As reduction modulo powers of ` is right t-exact for the perverse t-structure, it is then
trivially true that `c · pH1(K/`n) = 0 for all n ≥ 1. It is then immediate from the definitions that
K ∈ p+

D≤0(X,Z`).
�

Remark 4.7. Proposition 4.6 (5) cannot be strengthened to the assertion that pH1(K) is bounded torsion
globally on X for K ∈ p+

D≤0(X,Z`). Indeed, given a countable discrete subset S := {x1, x2, x3, ...} ⊂
X := (A1)an of classical points, one may take K =

⊕
ixn,∗Z/`

n[−1] to obtain a counterexample (where
ixn

: Spa(k(xn))→ X is the inclusion of the point at xn).

4.3. Q`-coefficients. We continue with notation from §4.2. There are some subtleties with passing from
Z` to Q`-coefficents for rigid spaces that are not qcqs.8 Thus, in this subsection, we assume X is qcqs
(e.g., X could be affinoid or proper over K), so D(b)

zc (X,Z`) = Db
zc(X,Z`). In this setting, we shall prove

in Theorem 4.11 that the basic theory of perverse sheaves with Q`-coefficients behaves as well as can be
expected.

Our constructions will take place in the following category:

Definition 4.8 (Q`-constructible sheaves). Set Db
zc(X,Q`) := Db

zc(X,Z`)⊗Z`
Q` (i.e., objects remain the

same and endomorphisms are tensored with Q`).

7This follows from (the replete topos variant of) the following statement (which appears in [BL20] and whose proof we leave
as an exercise here): If M is any derived `-complete abelian group such that there exists some c ≥ 0 with `c · (M/`nM) = 0 for
all n ≥ c+ 1, then `cM = 0.

8In fact, similar issues arise in algebraic geometry but are typically not as consequential as non-qcqs schemes are much rarer
than non-compact rigid spaces. For instance, the affine line over K is qcqs when regarded as a scheme simply because it is a
noetherian scheme, but its analytification is not a qcqs rigid space.
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Remark 4.9 (Q`-sheaves as Verdier quotient). The categoryDb
zc(X,Q`) can also be described as the Verdier

quotient of Db
zc(X,Z`) by its full subcategory of objects annihilated by a power of `. In fact, the analogous

statement holds true with Db
zc(X,Z`) replaced by any Z`-linear triangulated category C. To see this, let

Ctors ⊂ C be the full subcategory of objects annihilated by a power of `. As the multiplication by ` map on
any object of C has cone in Ctors, it follows that C/Ctors is naturally Q`-linear, so there is a natural map
C ⊗Z`

Q` → C/Ctors. Conversely, as the Verdier quotient C/Ctors can be regarded as the localization S−1C,
where S is the collection of maps in C whose cone lies in Ctors, one also immediately constructs a natural
map C/Ctors → C ⊗Z`

Q`. We leave it to the reader to check that these constructions give mutually inverse
equivalences of categories.

Remark 4.10 (Problems in the non-qcqs case). While Definition 4.8 makes sense for any rigid space X, it
is the “wrong” definition to use when X is not qcqs. For example, the object K described in Remark 4.7 is
nonzero in Db

zc(X,Q`) yet vanishes after restriction to any quasi-compact open in X. While there are several
candidate replacements (e.g., based on Remark 4.9, one might work with the quotient of D(b)

zc (X,Z`) by the
full subcategory of locally bounded torsion objects; alternately, one might attempt to work with Zariski
constructible Q`-complexes defined using the proétale site), we were unable to develop enough machinery
to construct a reasonable intersection cohomology theory (e.g., a self-dual theory with a GAGA theorem)
using any of these approaches, so we restrict to the qcqs case in our discussion.

Using our results on integral coefficients, we obtain a well-behaved perverse t-structure withQ`-coefficients:

Theorem 4.11 (Properties of Q`-perverse sheaves). The p- and p+- perverse t-structures from §4.2 induce
a t-structure on Db

zc(X,Q`), and they are the same t-structure; we call this the perverse t-structure on
Db
zc(X,Q`). This t-structure satisfies all the properties in Theorem 4.2 with the following changes: one

works with proper X in (4), only finite maps of qcqs spaces in (7), and replaces the assumption p - #Λ with
p 6= ` in (8).

Proof. The first part is immediate from Proposition 4.6 (using part (5) there and the fact X is qcqs to get
the equality of the two t-structures). It remains to verify the properties in Theorem 4.2 (2) - (7).

Property (3): this is immediate from the fact that the p- and p+-perverse t-structures on D(b)
zc (X,Z`) are

exchanged by Verdier duality.
Property (2): parts (a), (b) and the right t-exactness in (c) is clear from the definition, while the left

t-exactness in (c) was implicitly asserted in the proof of Proposition 4.6 (1). For part (d), we use the stronger
property DXRj∗F = j!DU (F ) proven in Theorem 4.2 (2) (d) and invert `.

Property (4): the equivalence is clear. For perverse t-exactness, one simply notes that entire discussion
in this section also holds true in the algebro-geometric context (and in fact was borrowed from there, see
[BBD82, §3.3]), and that analytification is compatible with duality and passing to perverse cohomology
sheaves with finite coefficients.

Properties (5)-(8): these follow by the same proof as in Theorem 4.2. �

4.4. Intersection cohomology. In this section, fix a rigid space X/K, a prime `, and a coefficient ring
Λ ∈ {Z/`n,Q`}. If Λ ∈ {Z`,Q`}, we assume K has positive residue characteristic p > 0. If Λ = Q`, then
we also assume that X is qcqs. Note that we have a reasonable (e.g., self-dual) theory of perverse Λ-sheaves
in this context by §4.1 and §4.3 respectively.

Construction 4.12 (Intersection cohomology of rigid spaces). Let j : U ⊂ X a Zariski-dense Zariski-
open subset such that Ured is smooth. Write ICX,Λ := j!∗Λ[dim(X)] ∈ Perv(X,Λ); one can show that this
is independent of the choice of U . We call ICX,Λ the intersection cohomology complex on X and write
IH∗(X,Λ) := H∗(X, ICX,Λ) for its cohomology, called the intersection homology of X.

We then have the following result on these objects:

Theorem 4.13 (Basic properties of intersection cohomology). Write C/K for a completed algebraic closure.



38 BHARGAV BHATT AND DAVID HANSEN

(1) IH∗(XC ,Λ) are finitely generated Λ-modules if either X is proper or if X is qcqs and p 6= `.

(2) If X = X an for a proper K-scheme X, then IH∗(XC ,Q`) ' IH∗(XC ,Q`).

(3) If X is proper and equidimensional of dimension d and p 6= `, there is a natural Poincaré duality
isomorphism

IHi(XC ,Λ)∨ ' IH−i(XC ,Λ)(d)

for all i.

Ongoing work by Zavyalov suggests that the third part should hold true without the assumption on `.

Proof. (1) For X proper, we obtain the result from Theorem 3.10. For X qcqs and p 6= `, we can then
choose a formal model of X and deduce the claim from the constructibility of nearby cycles [Hub98].

(2) It is enough to prove that ICX,Λ = (ICX ,Λ)an. This follows from the definition of either side as an
appropriate image, and the compatibility of (−)an with all the constituent operations (namely, j!,
j∗, perverse truncations, and images).

(3) As X is proper, Huber’s results show that RΓ(XC ,−) is compatible with duality [Hub96, Ch. 7], so
it is enough to show that DX(ICX,Λ) ' ICX,Λ(d). Using Theorem 4.2 (4), this amounts to checking
that DU (Λ[d]) ' Λ[d](d) for a smooth rigid space U of dimension d, which follows immediately as
ωU = Λ[2d](d) (Remark 3.20).

�

Remark 4.14 (Intersection cohomology for Zariski-compactifiable spaces). We expect that there is a well-
behaved notion of intersection cohomology with Q`-coefficients on any rigid space, not merely the qcqs ones.
Since we did not construct a good category of perverse Q`-sheaves (see Remark 4.10), let us formulate a
precise conjecture. Say X is a rigid space equipped with a Zariski open immersion j : X ↪→ X with X
proper over K. One can then define a candidate intersection cohomology complex ICX,Q`

:= j∗ICX,Q`
∈

Db
zc(X,Z`) ⊗Z`

Q` as well as the resulting intersection homology groups IH∗(X,Q`) := Ext∗(Q`, ICX,Q`
)

(where the Exts are computed in Db
zc(X,Z`)⊗Z`

Q`). We conjecture that these objects are independent of
the compactification. Note that IH∗(X,Q`) will be finite dimensional Q`-vector space using Theorem 3.26.

4.5. Some conjectures. Given the results in this paper, it is natural to expect that most of the important
foundational theorems on perverse sheaves in complex geometry or arithmetic algebraic geometry admit
analogs for Zariski-constructible sheaves in p-adic analytic geometry. In this section, we formulate some
conjectures along these lines.

Let K/Qp be a finite extension, with residue field k of cardinality q; let C/K be a completed algebraic
closure. Let X be a rigid space over K. Let us begin by describing a conjecture on `-adic intersection
cohomology; we believe this conjecture is accessible in the algebraic case thanks to de Jong’s alterations
theorem [dJ96].

Conjecture 4.15 (`-adic intersection cohomology). Assume X is qcqs. Fix a prime ` 6= p.

(1) Nearby cycles: For any formal model X/OK and any ` 6= p, the nearby cycle sheaf F = RλX∗(ICX,Q`
)

is a mixed `-adic perverse sheaf on the geometric special fiber Xs. Moreover, if X is equidimensional
of dimension d, then ICXs,Q`

occurs as a summand of the dth graded piece of the weight filtration of
F .

(2) Weights: For any prime ` 6= p and any g ∈ WK projecting to a nonnegative power of geometric
Frobenius, the eigenvalues of g acting on IH∗(XC ,Q`) are q-Weil numbers of weight ≥ 0 .

Next, we formulate a conjecture on the p-adic Hodge theoretic properties of p-adic intersection cohomology.
The first part of this conjecture can be proven in the algebraic case using the decomposition theorem.

Conjecture 4.16 (p-adic intersection cohomology). Say X is proper over K.
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(1) Each IHi(XC ,Qp) is a de Rham GK-representation. (Moreover, assuming the conjecture in Re-
mark 4.14, this should be true for any Zariski compactifiable rigid space.)

(2) If L is a de Rham Zp-local system on a smooth Zariski-open subset j : U → X, then H∗(XK , IC(L[dim(X)]))
is de Rham.

Finally, we discuss the rigid analog of the BBDG decomposition theorem. As in complex geometry, the
Hopf surface construction X = (A2,an−{0})/qZ (with q ∈ K with 0 < |q| < |1|) gives a proper smooth genus
1 fibration f : X → (A2,an−{0})/Gan

m ' P1,an over K such that Rf∗Q` is not formal (i.e., is not isomorphic
to a direct sum of its shifted cohomology sheaves). It is thus unreasonable to expect the decomposition
theorem to hold true for arbitrary proper maps between rigid spaces. Nevertheless, by analogy with the
complex geometric story in [Sai90], the following appears plausible:

Conjecture 4.17 (Decomposition theorem). Let f : X → Y be a projective map of rigid spaces over K with
Y qcqs. Then Rf∗ICX,Q`

is a direct sum of shifts of perverse sheaves of the form j!∗L , where j : U → Y is
a Zariski-locally closed immersion and L is a Q`-local system on U .

Finally, we also expect that Zariski-constructible sheaves on smooth rigid spaces are holonomic, in analogy
with [KS94, Bei16], but we do not formulate a precise statement here.
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