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Abstract. We prove many new cases of a conjecture of Calegari-Emerton describing the qualita-
tive properties of completed cohomology. The heart of our argument is a careful inductive analysis
of completed cohomology on the Borel-Serre boundary. As a key input to this induction, we prove
a new perfectoidness result for towers of minimally compactified Shimura varieties, generalizing
previous work of Scholze.
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1. Introduction

1.1. Motivation for completed cohomology. This paper is motivated by the notion of reci-
procity in the Langlands program. Let G/Q be a connected reductive group. Roughly speaking,
reciprocity is the expectation that there should be some precise relationship between

• algebraic automorphic representations π of G(AQ), and

• p-adic Galois representations ρ : Gal(Q/Q)→ LG(Qp) which are geometric in the sense of
Fontaine-Mazur.

For a more precise conjectural formulation of this relationship, we refer the reader to [Clo90,
BG14]. While there are many partial results, the general problem of reciprocity seems very difficult
to attack, for (at least) two reasons:

(1) Algebraic automorphic representations are inherently of an archimedean/real-analytic na-
ture, while p-adic Galois representations are (of course) inherently p-adic.

(2) Algebraic automorphic representations are rigid, while p-adic Galois representations natu-
rally deform into positive-dimensional families.

These observations suggest that one should try to bridge the gap, by seeking a genuinely p-adic
variant of the notion of automorphic representation, which is flexible enough to accommodate all
p-adic Galois representations. At present, the most satisfactory theory of “p-adic automorphic
representations” is the notion of completed (co)homology, introduced by Emerton [Eme06].

Let us recall the key definitions; we refer the reader to the body of the paper for any unexplained
notation. Fix a connected reductive group G/Q. Let A ⊆ G be the maximal Q-split central
torus, and let K∞ ⊆ G(R) be a maximal compact subgroup. Let XG = G(R)/A(R)K∞ be the
(connected) symmetric space for G; we write X for XG if G is clear. For any open compact subgroup
K ⊆ G(Af ), we have the associated locally symmetric space XK = G(Q)+\(X ×G(Af ))/K.

Definition 1.1. Let Kp ⊆ G(Apf ) be any open compact subgroup. Then we define completed

cohomology for G with tame level Kp as

H̃∗(Kp) = lim←−
n

lim−→
Kp⊆G(Qp)

H∗(XKpKp ,Z/pn).

Similarly, we define completed homology for G with tame level Kp as

H̃∗(K
p) = lim←−

Kp⊆G(Qp)

H∗(XKpKp ,Zp).

We also define compactly supported completed cohomology H̃∗c (Kp) and completed Borel-Moore

homology H̃BM
∗ (Kp) by the obvious variants on these recipes.

By construction, these spaces admit commuting actions of G(Qp) and a “big” Hecke algebra
T(Kp), and the G(Qp)-actions are continuous for the natural topologies. Moreover, these spaces
are not “too big”. In particular, they are all p-adically separated and complete with bounded

p∞-torsion. Additionally, H̃∗ and H̃BM
∗ are finitely generated as modules over the completed group

ring ZpJKpK for any open compact subgroup Kp ⊆ G(Qp), while H̃∗(Kp)[1
p ] and H̃∗c (Kp)[1

p ] are

naturally admissible unitary Qp-Banach space representations of G(Qp).

The main motivations for considering completed (co)homology are summarized in the following
conjecture, which we don’t attempt to formulate precisely. For a more careful discussion, we refer
the reader to [CE12] and [Eme14].
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Hope 1.2. Let ψ : T(Kp) → Qp be a system of Hecke eigenvalues occurring in H̃∗(Kp)[1
p ].

Then there exists a continuous, odd, almost everywhere unramified Galois representation ρψ :

Gal(Q/Q) → CG(Qp) which matches ψ in the usual sense. Moreover, the ψ-isotypic part of

H̃∗(Kp)[1
p ], as a Qp-Banach space representation of G(Qp), should (up to multiplicities) depend

only on ρψ|Gal(Qp/Qp).

Finally, every (suitable) continuous, odd, almost everywhere unramified Galois representation
ρ : Gal(Q/Q)→ CG(Qp) should occur in this way.

Here CG denotes the C-group of G as defined in [BG14], which is an extension of LG. When
G = GL2/Q, this is (an imprecise version of) a theorem of Emerton [Eme11]. However, in general,
very little is known. As mentioned, the precise formulation of this conjecture should not be taken
too seriously. The reader wondering about the appearance of the C-group and what “suitable”
means might want to consider the case G = PGL2/Q.

1.2. Main results. In this paper, we study the qualitative properties of completed (co)homology,
which are encapsulated in a beautiful conjecture of Calegari–Emerton. To state this conjecture,
we need a small amount of additional notation. If G/Q is a connected reductive group, we define

nonnegative integers l0 = rankG(R) − rankA(R)K∞ and q0 = dimXG−l0
2 . Roughly speaking, for

semisimple groups l0 measures the failure ofG(R) to admit discrete series representations, while q0 is
the lowest degree in which the locally symmetric spaces XK should have “interesting” cohomology.

Conjecture 1.3 (Calegari–Emerton). Let G/Q be a connected reductive group. Let q0 and l0 be
the invariants of G defined above. Let Kp ⊆ G(Apf ) be any open compact subgroup. Then

(1) For all i > q0, H̃ i
c(K

p) = H̃ i(Kp) = 0.

(2) For all i > q0, H̃BM
i (Kp) = H̃i(K

p) = 0, and H̃BM
q0 (Kp) and H̃q0(Kp) are p-torsion-free.

(3) For any compact open pro-p subgroup Kp ⊆ G(Qp), the groups H̃i(K
p) and H̃BM

i (Kp) have
codimension ≥ q0 + l0 − i over the completed group ring ZpJKpK for any i < q0.

(4) The groups H̃q0(Kp) and H̃BM
q0 (Kp) have codimension exactly l0.

The individual portions of this conjecture are far from independent, and in fact there are natural
implications (1) ⇒ (2) ⇒ (3). Amusingly, these implications are “asymmetric” in the sense that

(1) for H̃∗ implies (2) for H̃∗ implies (3) for H̃BM
∗ , and similarly (1) for H̃∗c implies (2) for H̃BM

∗
implies (3) for H̃∗.

Let us discuss what was previously known about this conjecture.

• For some groups of small rank (e.g. GL2, or ResK/Q GL2 for K/Q quadratic, or GSp4), one
can prove Conjecture 1.3 by hand using various tricks involving the congruence subgroup
property, the cohomological dimension bounds of [BS], Poincaré duality, etc. However, these
methods quickly run out of steam.

• When G is semisimple and l0 = 0, part (4) of the conjecture was proved by Calegari–
Emerton [CE09], as a consequence of Matsushima’s formula and limit multiplicity results
for discrete series representations.

• When G admits a Shimura datum of Hodge type, Scholze proved part (1) of Conjecture

1.3, but for H̃∗c only, by perfectoid methods [Sch15]. Shen [She17] later treated the case
when G admits a compact Shimura variety of abelian type and satisfies l0(G) = 0.

• For the unitary Shimura varieties treated in [CS19], Conjecture 1.3(1) for H̃∗ follows from
[CS19, Theorem 2.6.2, Lemma 4.6.2]. We make some further comments in Remark 5.23.
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The main result of this paper is the following theorem (cf. Theorems 4.4, 4.5, and 4.9).

Theorem 1.4. Let G/Q be a semisimple group such that X is a Hermitian symmetric space and
(G,X) is a connected Shimura datum of pre-abelian type. Then Conjecture 1.3 is true for G.

More generally, let G/Q be a connected reductive group such that Z(G) satisfies the Leopoldt con-
jecture and such that Gder admits a connected Shimura datum of pre-abelian type. Then Conjecture
1.3 is true for G.

Moreover, there exists a (computable) j ≤ q0 such the natural maps H̃ i
c → H̃ i and H̃i → H̃BM

i
are isomorphisms for all i ≥ j.

The assumptions on G here guarantee that l0(Gder) = 0, which allows us to prove part (4)
of Conjecture 1.3 by a fairly straightforward analysis combining the results of [CE09] with the
Leopoldt conjecture for Z(G). By our previous remarks, the whole conjecture now follows if we
can prove part (1). Note that when l0 = 0 and X is a Hermitian symmetric domain, part (1) of the

conjecture simply asserts that H̃ i
c = H̃ i = 0 for all i > d = dimCX. It is this vanishing conjecture

which we focus on.

Our proof of the vanishing conjecture builds on Scholze’s methods and combines them with some
new ideas. Roughly speaking, we first reduce to the case where (G,X) is a connected Shimura
datum of pre-abelian type, and then proceed in two steps:

Step One. We prove the vanishing of H̃ i
c for i > d by pushing Scholze’s methods to their limit.

Step Two. We prove the vanishing of H̃ i for i > d by a careful analysis of boundary cohomology,
using Step One for G and for various auxiliary almost direct factors of Levi subgroups related to
the boundary strata of the minimal compactification.

Let us now describe these steps in more detail.

1.3. Step One: p-adic methods. As described above, the proof of Theorem 1.4 proceeds in two

essentially distinct steps. In the first step, we prove the vanishing of H̃ i
c(K

p) for i above the middle
degree, using the p-adic geometry of Shimura varieties. For Shimura data of Hodge type, this is
one of the main results of [Sch15], where it is deduced from the existence of perfectoid Shimura
varieties of Hodge type (with infinite level at p). We thus need to generalize the geometric results
of [Sch15] to a wider class of Shimura data. To this end, we prove the following theorem.

Theorem 1.5. Let (G,X) be a Shimura datum of pre-abelian type, with reflex field E. Fix a
complete algebraically closed field C/Qp and an embedding E → C. Fix any open compact subgroup
Kp ⊆ G(Apf ). For any open compact subgroup Kp ⊆ G(Qp), let X ∗KpKp

denote the adic space

over SpaC associated with the base change of the minimal compactification ShKpKp(G,X)∗ along
E → C. Then there is a perfectoid space X ∗Kp such that

X ∗Kp = lim←−
Kp⊆G(Qp)

X ∗KpKp

as diamonds over SpdC. Moreover, the Hodge-Tate period map πHT : X ∗Kp → F`G,µ exists as a
map of adic spaces over C and is G(Qp)-equivariant and functorial in the tame level. Finally, the
boundary of X ∗Kp is Zariski-closed.

Recall that a Shimura datum (G,X) is of pre-abelian type if there exists a Shimura da-
tum (G′, X ′) of Hodge type admitting an isomorphism of connected Shimura data (Gad, X+) '
(G′ad, X ′+). This is slightly more general than the (somewhat more well-known) notion of a
Shimura datum of abelian type. While it is probably true that every tower of minimally com-
pactified Shimura varieties with infinite level at p is perfectoid, we expect that Theorem 1.5 is the
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most general result which can be proved via current technology. We also state and prove a similar
result for connected Shimura varieties, cf. Theorem 5.21.

While the idea behind the proof of Theorem 1.5 is clear, the argument is unfortunately somewhat
technical.1 Roughly speaking, there are two key ingredients:

• “Perfectoidization results” à la Bhatt–Scholze, building in particular on [BS19, Theorem

1.16(1)]. Roughly speaking, these techniques let us prove that if (Xi)i∈I
(fi)i∈I→ (Yi)i∈I is a

(pro-)finite morphism between two reasonable inverse systems of rigid analytic spaces, and
lim←−i∈I Yi is perfectoid, then lim←−i∈I Xi is also perfectoid. For a precise statement, see Lemma
5.10.

• A new general and user-friendly existence result for quotients of perfectoid spaces by finite
groups, cf. Theorem 5.8.

For open Shimura varieties of abelian type, the problem of proving perfectoidness at infinite level
was previously considered by Shen [She17]. We remark that our method is more direct and uses
very little from the theory of Shimura varieties and their connected components.

1.4. Step Two: Topological methods. The second step is totally disjoint from the first, and
doesn’t use any p-adic geometry. We content ourselves with a somewhat impressionistic sketch
here. In what follows, assume G is a semisimple group such that (G,X) is a connected Shimura
datum of pre-abelian type, and set d = dimCX as before.

First, we prove an isomorphism of the form H̃ i(Kp) ∼= H i(XKpKp ,Mapcts(Kp,Zp)) for any choice
of open compact subgroup Kp ⊆ G(Qp). Here Mapcts(Kp,Zp) denotes the Kp-module of continuous
Zp-valued functions on Kp. This is essentially a version of Shapiro’s lemma, and goes back to a
paper of Hill [Hil10]. Next, by standard properties of manifolds with boundary, this isomorphism

induces an isomorphism H̃ i(Kp) ∼= H i(XKpKp ,Mapcts(Kp,Zp)), where XKpKp denotes the Borel–
Serre compactification of XKpKp .

By repeated use of excision for compactly supported cohomology, it now suffices to prove that
for some stratification XKpKp = ∪Z∈ZZ, we have H i

c(Z,Mapcts(Kp,Zp)|Z) = 0 for all i > d and
all Z ∈ Z. The key idea can now be phrased as follows:

(†) If we take Z to be the stratification of XKpKp obtained by pulling back the usual stratification

of X∗KpKp
along the map π : XKpKp → X∗KpKp

constructed by Zucker [Zuc83], then Z is a

stratification with the above property.

The idea that (†) is both true and provable is perhaps the most novel contribution of this
paper; we make some additional remarks on the use of this stratification in Remark 3.14. Let
us give a sketch of the key ideas. Let S ⊆ X∗KpKp

be a boundary stratum, with preimage

Z = π−1(S) ⊆ XKpKp . By the structure theory of the minimal compactification, the strata S are
indexed by (equivalence classes of) pairs (Q,α) where Q ⊆ G is a Q-rational parabolic subgroup
whose projection to each simple factor Gi of Gad is either a maximal parabolic or equal to Gi,
and α is some auxiliary data depending on the level structure. (We will suppress all dependences
on level structures in the following discussion.) Moreover, the parabolic Q comes equipped with a
canonically defined almost direct product decomposition Q = U · L ·H. Here U is the unipotent
radical of Q, L is a reductive group (the linear part), H is a semisimple group whose associated
symmetric space is Hermitian (the Hermitian part); L ·H is the full Levi subgroup of Q.

In parallel with this decomposition of Q, the stratum Z almost admits a direct product decompo-
sition Z ≈ ZU×ZL×ZH , where ZU is a compact nilmanifold, ZL is the Borel–Serre compactification

1A glance at the proof of the key Proposition 5.20 should convince the reader of this.
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of a locally symmetric space for the group L, and ZH ∼= S is a locally symmetric space for the
group H. The key idea now is that H i

c(Z,Mapcts(Kp,Zp)|Z) can also be decomposed accordingly,
by a Künneth-like formula, into contributions coming from each of these three factors, which can
each be controlled:

• The contribution of ZU is trivial, which follows from a well-known vanishing principle for
completed cohomology of unipotent groups.
• The contribution of ZH can be expressed in terms of compactly supported completed

cohomology for H, which can be controlled by Step One.
• The contribution of ZL can be expressed in terms of completed cohomology for L, which

can be controlled using the bounds in [BS73], or even using the trivial bound.

The critical observation here is that Step One gives such good control over the contribution of
ZH that we need very little control over the contribution of ZL.

In reality, the above sketch is somewhat oversimplified, because Z does not really admit a direct
product decomposition; rather, it has the structure of an iterated fibration whose fibers are as
described above. This makes the proof somewhat more complicated. Nevertheless, the essential
idea follows the outline given above.

Let us briefly outline the contents of this paper. Section 2 collects some preliminaries on topology
and arithmetic groups that are needed for the computations in later section. Section 3 discusses
completed (co)homology and the Calegari–Emerton conjectures, carrying out the core of “Step
Two” above. Section 4 introduces Shimura varieties and proves our main results on the Calegari–
Emerton conjectures, including Theorem 1.4. Section 5 carries out “Step One”, proving Theorem
1.5 and deducing the vanishing theorem for compactly supported completed cohomology. We note
that section 5 is completely independent of the previous sections. Conversely, the vanishing result
Corollary 5.22 is the only part of section 5 that gets used in previous sections.

Acknowledgments. The authors would like to thank Bhargav Bhatt, Frank Calegari, Ana Cara-
iani, Matt Emerton, Michael Harris, Ben Heuer, Kai-Wen Lan, Vincent Pilloni, Peter Scholze, and
Jack Thorne for conversations related to the material in this paper. They also wish to thank Mark
Goresky, whose survey [Gor05] was very helpful in the initial stages of the project. Moreover, they
wish to thank the Herchel Smith Foundation and the Max Planck Institute for Mathematics in
Bonn for supporting visits to Cambridge and Bonn, respectively, during which work on this project
was carried out. C.J. was supported by the Herchel Smith Foundation during part of this project.

2. Preliminaries

In this section we collect some facts and definitions from topology and algebraic groups that we
will need. We make no attempt to state results in maximal generality and none of them are original,
but we have often had difficulties locating the precise statements that we need in the literature.
We hope that collecting this material here is of sufficient aid to the reader to justify its inclusion.

The topological spaces that we will work with will mostly be smooth manifolds with boundary;
we will simply write “manifold with boundary” to mean a smooth manifold with boundary. Any
smooth manifold with boundary admits a combinatorial triangulation for which the boundary is a
subsimplicial complex (see e.g. [Mun63, Theorem 10.6]). We recall that if X is a manifold with
boundary with interior X and U ⊆ X is an open subset containing X, then the inclusion j : U → X
is homotopy equivalence by the global collar neighbourhood theorem. In a very similar vein, if F is
a local system on X, a simple local calculation shows that Rj∗j

−1F = F . In particular, we obtain
canonical isomorphisms H i(U,F) ∼= H i(X,F) which we will often treat as equalities.
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All actions of groups on topological spaces will be left actions in this section. Of course, all
results have natural analogues for right actions (and we will use them).

2.1. Local systems. Let X be a topological space and let Γ be a group acting from the left on X.
In this paper most of our actions will be free2, by which we mean that every point x ∈ X has an
open neighborhood U such that U ∩ γU 6= ∅ only if γ = 1. The quotient map π : X → XΓ := Γ\X
is then a covering map, and we recall that any left Γ-module3 M defines a local system M̃ on XΓ

given by

M̃(U) = Maplc,Γ(π−1(U),M)

where the right hand side denotes the locally constant functions f : π−1(U) → M satisfying
f(γx) = γ.f(x) for all γ ∈ Γ and all x ∈ π−1(U). When X is a manifold with boundary, this may
be written as

M̃(U) = MapΓ(π0(π−1(U)),M),

where Map simply denotes set-theoretic functions (as π0(π−1(U)) is discrete). The following
theorem is well known, and follows directly from the fact that the singular chain complex C•(X)
is a resolution of Z by free Γ-modules.

Theorem 2.1. Let X is a contractible manifold with boundary with a free action of Γ. Then

H∗(XΓ, M̃) ∼= Ext∗Z[Γ](Z,M) ∼= H∗(Γ,M)

canonically for every Γ-module M .

We now consider a relative version of Theorem 2.1. Let p : E → B be a fibre bundle with
contractible fibre F (all spaces are manifolds with boundary). Assume that we have a group Γ
acting (from the left) on both E and B, making p Γ-equivariant. We assume further that the
action of Γ is free on E, and that the action of Γ on B factors through a quotient ∆ which acts
freely on B. Set N = Ker(Γ→ ∆); N then acts freely on the fibres of p. Consider the induced map

q : EΓ → B∆

on quotients.

Corollary 2.2. Let M be a Γ-module and let i ≥ 0. Then Riq∗M̃ is the local system on B∆ given
by the ∆-module H i(N,M).

Proof. We begin by proving the case i = 0. Write πE : E → EΓ and πB : B → B∆ for the quotient
maps and let U ⊆ B be open. From the definitions, one sees that

q∗M̃(U) = Maplc,Γ(p−1π−1
B (U),M).

Since the fibres of p are connected and the action ofN preserves the fibres, we have Maplc,Γ(p−1π−1
B (U),M) =

Maplc,∆(π−1
B (U),MN ), which is the desired statement.

This proves that the diagram of functors

ModΓ
//

M 7→MN

��

Sh(EΓ)

q∗
��

Mod∆
// Sh(B∆)

2The most common terminology for this notion seems to be a free and properly discontinuous action, but we find
this terminology rather cumbersome.

3By which we always mean a (left) Z[Γ]-module, unless otherwise stated.
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commutes up to natural isomorphism, where the horizontal functors are the local systems functors

M 7→ M̃ . The horizontal functors are exact (by looking at stalks), so it suffices to show that

M 7→ M̃ sends injective Γ-modules to q∗-acyclic sheaves on EΓ (then the diagram above commutes
also after passing to derived categories and derived functors, which is what we want).

So, let M be an injective Γ-module, and let i ≥ 1. Riq∗M̃ is the sheafification of the presheaf

U 7→ H i(q−1(U), M̃) on B∆. There is a basis of open subsets U of B∆ which are contractible and
for which the fibre bundle q : q−1(U)→ U is trivial. In this case q−1(U) ∼= U ×N\F and hence

H i(q−1(U), M̃) ∼= H i(N,M)

by Theorem 2.1. But M is an injective N -module since the restriction functor from Γ-modules to

N -modules has an exact left adjoint V 7→ Z[Γ] ⊗Z[N ] V . Thus H i(q−1(U), M̃) = 0 for all such U ,

and hence Riq∗M̃ = 0 as desired. �

We will also use a (less precise but more general) version for pushforwards with proper support.

Proposition 2.3. Let f : X → Y be a fibre bundle of manifolds with boundary, with fibre Z (also
a manifold with boundary). Let F be a local system on X. Then, for any i ≥ 0, Rif!F is a local
system on Y with fibre H i

c(Z,F).

Proof. We will use the commutation of derived pushforward with proper support with (arbitrary)
pullbacks; see [KS94, Proposition 2.6.7]. Let U ⊆ Y be a contractible open subset such that f is
trivial over U , i.e. isomorphic to the canonical projection pU : U × Z → U . These form an open
cover of Y , so since Rif! commutes with pullback it suffices to show that RipU,!F is a constant
sheaf. Since U is contractible, the restriction of F to U × Y F comes by pullback from a local
system on Y , which we will call FZ . Consider the cartesian diagram

U × Z
pZ //

pU
��

Z

g

��
U

f // pt,

where pt denotes the point and f and g are the canonical maps. Then we have

RipU,!F = RipU,!p
−1
Z FZ ∼= f−1Rig!FZ .

In other words, RipU,!F is the pullback of H i
c(Z,FZ) via the canonical map U → pt. This proves

the proposition. �

Next, let X be a manifold with boundary with a free left action of a group Γ, and assume that
Γ′ ⊆ Γ is a finite index subgroup. Consider the natural map q : XΓ′ → XΓ. If M is a Γ′-module,
we put

IndΓ
Γ′M = {f : Γ→M | f(γ′γ) = γ′.f(γ) ∀γ′ ∈ Γ′, γ ∈ Γ},

which is a left Γ-module under right translation (γ.f)(x) = f(xγ). We then have the following.

Proposition 2.4. With notation and assumptions as above, Riq∗M̃ = 0 for i ≥ 1, and q∗M̃ is the
local system attached to IndΓ

Γ′M .

Proof. The map q is proper, so if x ∈ XΓ, then (Riq∗M̃)x = H i(q−1(x), M̃) (by [KS94, Proposition
2.6.7]), and q−1(x) has no higher cohomology since it is a finite set. This proves the first part. To

compute q∗M̃ , let U ⊆ XΓ be open and write π : X → XΓ for the quotient map. Unwinding the
definitions, we see that

q∗M̃(U) = MapΓ′(π0(π−1(U)),M),



PERFECTOID SHIMURA VARIETIES AND THE CALEGARI–EMERTON CONJECTURES 9

and the right hand side is easily seen to be equal to MapΓ(π0(π−1(U)), IndΓ
Γ′M) functorially in U ,

as desired. �

We move on to results on the commutation of M 7→ M̃ with direct limits. First, let X be a
manifold with boundary, with a free left action of a group Γ. Write XΓ := Γ\X; we assume that
XΓ is compact, so it has a finite triangulation. Fix such a triangulation and pull it back to X;
this gives a triangulation whose corresponding complex of simplicial chains C∆

• (X) is a bounded
complex of finite free Z[Γ]-modules. Let (Mi)i∈I be a directed system of Γ-modules with direct
limit M = lim−→i

Mi.

Lemma 2.5. The natural map

lim−→
i

H∗(XΓ, M̃i)→ H∗(XΓ, M̃)

is an isomorphism.

Proof. The canonical map

i : C∆
• (X)→ C•(X)

is Γ-equivariant and a quasi-isomorphism; since the terms of both complexes are projective Z[Γ]-
modules the map is therefore a chain homotopy equivalence. This then gives us a commutative
diagram of complexes

lim−→i
HomΓ(C•(X),Mi) //

��

HomΓ(C•(X),M)

��
lim−→i

HomΓ(C∆
• (X),Mi) // HomΓ(C∆

• (X),M)

where the vertical maps are induced by i and the horizontal maps are the natural maps. The
vertical maps are then quasi-isomorphisms since they are induced from i, and the lower horizontal
map is an isomorphism since C∆

• (X) is bounded complex of finite free Z[Γ]-modules. The top
horizontal map is therefore a quasi-isomorphism as well, and taking cohomology gives the desired
result. �

We can then prove the result in greater generality. With X and Γ as above, let U ⊆ X be a
Γ-invariant open subset containing the interior of X. Set UΓ := Γ\U , Z := X \ U and ZΓ := Γ\Z.

Proposition 2.6. The natural map

lim−→
i

H∗? (UΓ, M̃i)→ H∗? (XΓ, M̃)

is an isomorphism, for ? ∈ {∅, c}.

Proof. For ? = ∅ this reduces directly to Lemma 2.5 by our setup, so assume that ? = c. By
naturality of the excision sequence and exactness of direct limits we have a commutative diagram

. . . // lim−→i
Hj
c (UΓ, M̃i) //

��

lim−→i
Hj(XΓ, M̃i) //

��

lim−→i
Hj(ZΓ, M̃i) //

��

. . .

. . . // Hj
c (UΓ, M̃) // Hj(XΓ, M̃) // Hj(ZΓ, M̃) // . . .

with exact rows. The result then follows from Lemma 2.5 (since it is applicable to both XΓ and
ZΓ) and the five lemma. �
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2.2. “Completed cohomology”. In this subsection we make some definitions and recall a theo-
rem of Hill which we will use to handle completed cohomology later. To begin with, we make the
following general definition. Let R = lim←−iR/I

n be an adic ring, with I a finitely generated ideal of
definition.

Definition 2.7. Let (Xi)i∈I be an inverse system of topological spaces, with inverse limit X. We

define the completed cohomology groups H̃∗? (X,R) of (Xi)i∈I with coefficients in R, to be

H̃∗? (X,R) = lim←−
n

lim−→
i

H∗? (Xi, R/I
n).

Here ? ∈ {∅, c}, i.e. we consider either usual or compactly supported cohomology, when the latter
makes sense.

Remark 2.8. A few remarks on this definition:

(1) The notation is chosen for simplicity; we make no assertion that H̃∗? (X,R) only depends
on X. One weak form of independence is clear though: We may replace I with a cofinal
subsystem J . In particular, we may always assume that I contains an initial element 0 ∈ I.

(2) We will almost exclusively work with discrete R, where the inverse limit in the definition of

H̃∗? (X,R) disappears.

We now recall the computation of completed cohomology as the cohomology of a “big” local
system at finite level in some circumstances, which first appeared in [Hil10]. Let X be a manifold
with boundary, equipped with a left action of a group G. We assume that there is a subgroup
Γ ⊆ G which acts freely on X, and suppose that Γ = Γ0 ⊇ Γ1 ⊇ Γ2 ⊇ . . . is a sequence of finite
index subgroups of Γ. Let X ⊆ X be a Γ-stable open subset containing the interior of X. Set

X̂ := lim←− (· · · → Γ2\X → Γ1\X → Γ0\X) .

and define

K = lim←−
i

Γi\Γ;

this is a profinite set with a right action of Γ. Assume that XΓ is compact. Then we get the

following formula for completed cohomology of X̂ (cf. [Hil10, Corollary 1]):

Proposition 2.9. With assumptions as above, let R be a discrete ring and let ? ∈ {∅, c}. Then
there is a canonical isomorphism

H̃∗? (X̂, R) ∼= H∗?

(
XΓ, ˜Mapcts(K,R)

)
,

where Γ acts on Mapcts(K,R) via right translation.

Proof. By Lemma 2.4 and the definition, we have

H̃∗? (X̂, R) ∼= lim−→
i

H∗?

(
XΓ, ˜Map(Γi\Γ, R)

)
.

Our setup implies that we may apply Proposition 2.6 to the right hand side, so it remains to show
that

lim−→
i

Map(Γi\Γ, R) = Mapcts(K,R)

as Γ-modules. But this is immediate from the definition of K. �
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We will also encounter local systems slightly bigger than the one appearing in Proposition 2.9.
We keep the notation and assumptions of Proposition 2.9, except that we forget the groups denoted
by K and Γi, i ≥ 1. Let G be a profinite group with closed subgroups K ⊆ H ⊆ G, and assume
that K is normal in H. For simplicity, we assume that there is a countable basis of neighborhoods
of 1 ∈ G. Suppose that we have a group homomorphism Γ → H/K; then Mapcts(H/K,R) and
Mapcts(G/K,R) become left Γ-modules via right translation, and hence induce local systems on
the space XΓ. Then we have the following simple but useful lemma.

Lemma 2.10. Fix an integer q ≥ 0 and let ? ∈ {∅, c}.

(1) Hq
? (XΓ, ˜Mapcts(H/K,R)) = 0 if and only if Hq

? (XΓ, ˜Mapcts(G/K,R)) = 0;

(2) Hq
c (XΓ, ˜Mapcts(H/K,R)) → Hq(XΓ, ˜Mapcts(H/K,R)) is injective (or surjective, or bijec-

tive) if and only if Hq
c (XΓ, ˜Mapcts(G/K,R)) → Hq(XΓ, ˜Mapcts(G/K,R)) is injective (or

surjective, or bijective).

Proof. Choose a continuous splitting of the natural map G/K → G/H (the existence of which is
easy to prove using the assumption that 1 ∈ G has a countable basis of neighborhoods); this gives
a homeomorphism

G/K ∼= G/H ×H/K
of right H/K-spaces (where H/K acts on the right hand side through the second factor). Then

Mapcts(G/K,R) ∼= Mapcts(G/H ×H/K,R) ∼= Mapcts(G/H,R)⊗R Mapcts(H/K,R)

as H/K-modules (and hence as Γ-modules), where the action is trivial on Mapcts(G/H,R). Now
Mapcts(G/H,R) is a direct limit of finite free R-modules, so using Proposition 2.6 we have an
isomorphism

Hq
? (XΓ, ˜Mapcts(G/K,R)) ∼= Mapcts(G/H,R)⊗R Hq

? (XΓ, ˜Mapcts(H/K,R))

which respects the maps in part (2). The lemma follows from this (since Mapcts(G/H,R) is a free
R-module). �

2.3. Arithmetic and congruence subgroups. Here we quickly recall some material on arith-
metic and congruence subgroups. Let G be a connected linear algebraic group over Q. Congruence
subgroups of G(Q) are subgroups of the form G(Q) ∩ K, where K ⊆ G(Af ) is a compact open
subgroup and the intersection is taken inside G(Af ). A subgroup in G(Q) is usually said to be
arithmetic if it is commensurable with one (equivalently any) congruence subgroup. In fact, one
can require a slightly stronger condition.

Proposition 2.11. Any arithmetic subgroup in G(Q) is contained in a congruence subgroup.

Proof. Let Γ be an arithmetic subgroup, let K1 ⊆ G(Af ) be a compact open subgroup and set
Γ1 = G(Q) ∩K1. The closure of Γ1 in G(Af ) is compact since Γ1 ⊆ K1, and since Γ and Γ1 are
commensurable this easily implies that the closure of Γ in G(Af ) is a compact subgroup. Since any
compact subgroup of locally profinite group is contained in a compact open subgroup, we deduce
the existence of a compact open subgroup K2 ⊆ G(Af ) with Γ ⊆ K2. It follows that Γ is contained
in the congruence subgroup G(Q) ∩K2, as desired. �

Moving on, let H be another connected linear algebraic group, and let Γ ⊆ G(Q) be an arithmetic
subgroup. If H ⊆ G is a subgroup, then directly from the definitions we see that Γ ∩H(Q) is an
arithmetic subgroup in H(Q), which is congruence if Γ is. If we instead have a surjection f : G→ H,
then f(Γ) is an arithmetic subgroup (see [PR94, Theorem 4.1]); this will be important in this paper
and we will use it freely. Before moving on, we recall that group cohomology for any torsion-free
arithmetic subgroup Γ commutes with direct limits.
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We recall the notion of neatness from [Bor69, §17.1]. An element γ ∈ G(Q) is called neat if there
is a faithful representation r : G → GL(V ) such that the multiplicative group generated by the
eigenvalues of r(γ) (in one, or equivalently any, algebraically closed field containing Q) is torsion-
free. A neat element cannot have finite order. An arithmetic subgroup Γ ⊆ G(Q) is called neat if
all its elements are neat; such subgroups are in particular torsion-free. From the definitions, we see
that if H ⊆ G is a connected linear algebraic subgroup and Γ ⊆ G(Q) is neat, then Γ ∩ H(Q) is
neat. If an element γ is neat, then for any representation ρ : G→ GL(W ), the subgroup generated
by the eigenvalues of ρ(γ) is torsion-free [Bor69, Corollaire 17.3]. An easy consequence of this is
that if f : G→ H is a surjection of linear algebraic groups and Γ is neat, then f(Γ) is neat.

For language reasons, let us also introduce notions of neatness for adelic and p-adic groups. The
notion of neatness for an element g = (gp)p ∈ G(Af ) and a subgroup K ⊆ G(Af ) is defined in
[Pin90, §0.6]. For p-adic groups, we make the definition analogous to the case of arithmetic groups:
An element g ∈ G(Qp) is called neat if there is a faithful representation ρ : GQp → GL(W ) over
Qp such that the multiplicative group generated by the eigenvalues of ρ(g) (in one, or equivalently
any, algebraically closed field containing Qp) is torsion-free. Again, this is independent of the
choice of ρ. A subgroup Kp ⊆ G(Qp) is called neat if all of its elements are neat. We note the
following implications among these concepts: If Kp ⊆ G(Qp) is a neat compact open subgroup,
then KpKp ⊆ G(Af ) is neat for any compact open Kp ⊆ G(Apf ). If a compact open K ⊆ G(Af ) is

neat, then Γ = Γ(Q) ∩K is a neat congruence subgroup of G.

We record the following version of the standard result that “sufficiently small” congruence
subgroups are neat; it will be important for us to be able to only impose congruence conditions at
a fixed prime p.

Proposition 2.12. Let p be a prime. Then sufficiently small compact open subgroups of G(Qp)
are neat. In particular, if Kp ⊆ G(Apf ) is compact open, then K = KpKp and Γ = G(Q) ∩K are

neat for sufficiently small Kp ⊆ G(Qp).

Proof. By choosing a faithful representation ρ : G → GLn (and remembering that any compact
subgroup of a locally profinite group is contained in a compact open subgroup), we may reduce to
G = GLn. In this case, set Kr,p = Ker(GLn(Zp)→ GLn(Z/pr)); we will prove that if r > n/(p−1),
then Kr,p is neat, so we assume this condition on r from now on. To show neatness, it suffices
to show that if γ ∈ Kr,p, then the group generated by the eigenvalues of γ is torsion-free. Let

α1, . . . , αn be the eigenvalues of γ (in some choice of Qp, with valuation vp normalized so that
vp(p) = 1). The characteristic polynomial of γ reduces to (X − 1)n modulo pr, so by looking at
Newton polygons vp(αi − 1) ≥ r/n for all i. Thus, if α is any element in the multiplicative group
generated by the αi, vp(α− 1) ≥ r/n. In particular, since r > n/(p− 1), α cannot be a nontrivial
root of unity. This finishes the proof of the proposition. �

We also recall another fact about “sufficiently small” congruence subgroups, and set up some
notation. For any real Lie group J , we write J+ for the identity component of J . The following is
[Del79, Corollaire 2.0.14].

Proposition 2.13. Let G be a connected reductive group over Q. Then there exists a congruence
subgroup Γ ⊆ G(Q) which is contained in G(R)+. In particular, if ∆ ⊆ G(Q) is any congruence
subgroup, then ∆ ∩G(R)+ is also a congruence subgroup.

We remark that, unlike neatness, the condition Γ ⊆ G(R)+ cannot be enforced only by congruence
conditions at a single prime (chosen independently of G). For a simple example, consider G =
ResFQGm with F := Q(

√
3), and consider the totally negative unit α = −2 +

√
3 ∈ F . One checks
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easily that α3n ≡ 1 modulo 3n for all n but all the α3n are totally negative. For an example with
a semisimple G, consider G = ResFQPGL2 and the matrices(

α3n 0
0 1

)
, n ≥ 1;

again these tend to the identity 3-adically but they all lie in a non-identity component since they
have totally negative determinant.

2.4. Cohomology of unipotent groups. From now on we fix a prime number p. Let N be a
unipotent algebraic group over Q. The goal in this subsection is to prove the following theorem
(we remark that N satisfies strong approximation and that all arithmetic subgroups of N(Q) are
congruence subgroups):

Theorem 2.14. If Γ ⊆ N(Q) is a congruence subgroup with closure Kp ⊆ N(Qp) and V is a
smooth K-representation over Fp, then the natural map

H i
cts(Kp, V )→ H i(Γ, V )

is an isomorphism for all i.

We start with some recollections. First, in the situation above, Γ = N(Q) ∩ K for some open
compact subgroup K ⊆ N(Af ), and Γ is dense in K by strong approximation for N . In particular,
Kp is the image of K under the projection map N(Af ) → N(Qp), and hence open. We have a
natural forgetful functor

Modsm(Kp,Fp)→ Mod(Γ)

and if V ∈ Modsm(Kp,Fp), then V Γ = V Kp by smoothness of V and density of Γ in Kp. In light of
this, Theorem 2.14 follows directly from the following special case, which is in fact all we will need.

Proposition 2.15. Let V be an injective smooth Kp-representation over Fp. Then H i(Γ, V ) = 0
for all i ≥ 1.

We will prove this by induction on dimN . Before the main argument, we will discuss the structure
of injective Kp-representations. Let W be any Fp-vector space, which we give the discrete topology.
We can form Mapcts(Kp,W ), where Kp acts by right translation. This is the smooth induction of
W , viewed as a representation of the trivial group, to Kp. Since smooth induction has an exact left
adjoint (restriction), Mapcts(Kp,W ) is injective for any W . We will refer to these representations
as “standard injectives”. Now if V ∈ Modsm(Kp) is arbitrary, there is a Kp-equivariant injection

V → Mapcts(Kp, V )

given by v 7→ (k 7→ kv), where Kp acts on Mapcts(Kp, V ) by right translation. Thus there are
enough standard injectives, and any injective is a direct summand of a standard injective. In
particular, it suffices to prove Proposition 2.15 for standard injectives. Moreover, since group coho-
mology of Γ commutes with direct limits, it suffices to prove Proposition 2.15 for Mapcts(Kp,Fp).

We now begin the induction. First assume that dimN = 1, i.e. that N = Ga. Then
(up to isomorphism) Γ = Z and Kp = Zp. There are a number of ways of proving that
H i(Z,Mapcts(Zp,Fp)) = 0 for i ≥ 1. For example, by Proposition 2.9,

H i(Z,Mapcts(Zp,Fp)) = lim−→
n

H i(R/pnZ,Fp) = lim−→
n

H i(S1,Fp)

where on the right the transition maps come from pullback along the maps S1 → S1, z 7→ zp. All
groups are 0 for i ≥ 2, and for i = 1 one easily sees that the transition maps are all 0, so this proves
Proposition 2.15 for N = Ga.
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We move on to the induction step. By the structure of unipotent groups, we can choose a proper
non-trivial normal subgroup U ⊆ N . Set H = N/U and let f : N → H denote the natural map.
Put ΓU = Γ ∩ U(Q), ΓH = f(Γ), KU,p = Kp ∩ U(Qp) and KH,p = f(Kp) ⊆ H(Qp). Then KU,p is
the closure of ΓU in U(Qp) and KH,p is the closure of ΓH in H(Qp). Let V be an injective smooth
Kp-representation over Fp. We have the Hochschild–Serre spectral sequence

H i(ΓH , H
j(ΓU , V )) =⇒ H i+j(Γ, V ).

The restriction of V to KU,p is still injective by [Eme10, Proposition 2.1.11]. Thus, by the
induction hypothesis, Hj(ΓU , V ) = 0 for j ≥ 1, and hence the spectral sequence degenerates
to H i(Γ, V ) = H i(ΓH , V

ΓU ). By above, V ΓU = V KU,p , which is an injective4 KH,p-module. By the
induction hypothesis again we get

H i(Γ, V ) = H i(ΓH , V
KU,p) = 0

for i ≥ 1, as desired. This finishes the proof of Proposition 2.15, and hence the proof of Theorem
2.14.

3. Completed cohomology of locally symmetric spaces

We continue to fix a prime number p.

3.1. Locally symmetric spaces. In this section we recall some material on locally symmetric
spaces and their Borel–Serre compactifications. Let G be a connected linear algebraic group
over Q, let A = AG ⊆ G be a maximal torus in the Q-split part of the radical of G and let
K∞ = KG,∞ ⊆ G(R) be a maximal compact subgroup. We will work with the (connected)
symmetric space

X = XG := G(R)+/A(R)+K+
∞ = G(R)/A(R)K∞,

which is the symmetric space part of any space of type S −Q for G, in the terminology of [BS73].
If Γ ⊆ G(Q) is a torsion-free arithmetic subgroup, then Γ acts freely on X and the quotient Γ\X
is a locally symmetric space. If K ⊆ G(Af ) is a compact (not necessarily open) subgroup, we will
set

XG
K := G(Q)+\X ×G(Af )/K,

where G(Q)+ := G(Q) ∩ G(R)+ and K and G(Af ) carry their usual adelic topologies. When K
is additionally open and g ∈ G(Af ), set Γg = Γg,K := G(Q)+ ∩ gKg−1; these are congruence
subgroups by Proposition 2.13. We have the following decomposition as topological spaces

XG
K
∼=

⊔
g∈G(Q)+\G(Af )/K

Γg\X,

where the set ΣK := G(Q)+\G(Af )/K is finite by [Bor63, Theorem 5.1]. If K is neat, then all the

Γg are neat and in particular torsion-free, so XG
K is a (possibly disconnected) manifold of dimension

dimRX.

Recall the Borel–Serre bordification X = X
G

of X = XG from [BS73]. X has a natural structure
of a manifold with corners, with interior X. We write ∂X = X \ X. The action of G(Q) on X
extends to an action of X, and again any torsion-free arithmetic subgroup Γ ⊆ G(Q) acts freely on
X. As a set,

X =
⊔
Q

XQ

4M 7→MKU,p preserves injectives, since inflation from KH,p to Kp provides an exact left adjoint.
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where Q runs through the (rational) parabolic subgroups of G. The closure of XQ inside X is

X
Q

=
⊔
P ′⊆QX

P ′ . Write CQ for the set of parabolics Q′ of G which are conjugate to Q (over Q);

CQ carries a (tautological) left G(Q)-action by conjugation. Fix a minimal parabolic P of G over
Q for simplicity. We can then write

X =
⊔
Q

XQ =
⊔
Q⊇P

⊔
Q′∈CQ

XQ′ ,

and the subsets XG,Q =
⊔
Q′∈CQ X

Q′ are stable under G(Q). If g ∈ G(Q), then gXQ′ = XgQ′g−1

and hence the stabilizer of XQ′ is Q′(Q). In particular, if Γ ⊆ G(Q) is an arithmetic subgroup, we
see that

Γ\X =
⊔
Q⊇P

⊔
Q′∈CQ,Γ

ΓQ′\XQ′ ,

where CQ,Γ = Γ\CQ and ΓQ′ = Γ ∩ Q′(Q). If Γ is neat, then ΓQ′ is neat for all Q′. The space

Γ\X is a compact manifold with corners, which in particular implies that it is homeomorphic to a
manifold with boundary [BS73, Appendix], so the results of §2 apply to it.

3.2. The vanishing conjecture for completed cohomology. In this subsection we assume
that G is reductive. Fix a compact open subgroup Kp ⊆ G(Apf ). Let R be an adic ring with finitely

generated ideal of definition I. We define completed cohomology of G (with respect to Kp) to be

H̃∗? (Kp, R) := H̃∗? (XKp , R) = lim←−
n

lim−→
Kp

H∗?
(
XKpKp , R/I

n
)
,

where ? ∈ {∅, c} and Kp runs through the compact open subgroups of G(Qp). We recall the
quantities

l0 = l0(G) := rank(G(R))− rank(A(R)K∞)

and

q0 = q0(G) :=
dimRX − l0

2
,

where rank denotes the rank as a Lie group. With these preparations, we may state the main
vanishing conjecture of Calegari–Emerton:

Conjecture 3.1. Let ? ∈ {∅, c}. Then H̃n
? (Kp,Zp) = 0 for all n > q0.

Remark 3.2. While Conjecture 3.1 is not explicitly stated in [CE12], it is a direct consequence of
[CE12, Conjecture 1.5(5)-(8) and Theorem 1.1(3)]. We will discuss [CE12, Conjecture 1.5] in §3.4.

We will focus on the following equivalent version, which is also implicit in [CE12].

Conjecture 3.3. Let ? ∈ {∅, c}. Then H̃n
? (Kp,Fp) = 0 for all n > q0.

Proposition 3.4. Conjecture 3.1 is equivalent to Conjecture 3.3.

Proof. That Conjecture 3.1 implies Conjecture 3.3 follows from [CE12, Theorem 1.16(5)]. For the
converse, note first that we have long exact sequences

· · · → H̃ i
?(Kp,Z/pr−1)→ H̃ i

?(Kp,Z/pr)→ H̃ i
?(Kp,Fp)→ . . .

coming from the the corresponding long exact sequences at finite level, so by induction on r we

see that Conjecture 3.3 implies that H̃ i
?(Kp,Z/pr) = 0 for all r and n > q0. Conjecture 3.1 then

follows since H̃ i
?(Kp,Zp) = lim←−r H̃

i
?(Kp,Z/pr). �
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As usual in the Langlands program, adelic double quotients have the advantage that they make
the Hecke actions and group actions transparent. These actions will, however, play essentially no
role in this paper, and we found it simpler to work non-adelically. The rest of this subsection
will discuss a version of Conjecture 3.3 in this language that we will treat. Let Γ ⊆ G(Q) be an
arbitrary arithmetic subgroup and set

Cp = Cp(Γ) := {Γ ∩G(Apf )Kp | Kp ⊆ G(Qp) compact open}.

Informally, this is the set of arithmetic subgroups of Γ where we shrink the level at p. Armed with
this definition, we set

X̂ = X̂(Γ) = X̂G(Γ) := lim←−
Γ′∈Cp

Γ′\X.

We let G(R)+ denote the preimage of Gad(R)+ under the natural map G(R) → Gad(R); we also
set G(Q)+ = Γ(Q) ∩G(R)+. We can then state the following conjecture.

Conjecture 3.5. Let ? ∈ {∅, c} and assume that Γ ⊆ G(Q)+ is an arithmetic subgroup. Then we

have H̃n
? (X̂,Fp) = 0 for all n > q0.

This is the conjecture that we will focus on. The restriction to Γ ⊆ G(Q)+ seems unnatural
but this condition will feature in all our unconditional theorems, so we have included for the sake
of easy referencing. A priori, (the natural generalization of ) Conjecture 3.5 is slightly stronger
than Conjecture 3.3 because we allow arbitrary arithmetic subgroups as our “base level” instead
of just congruence subgroups inside the identity component G(R)+ of G(R). Let us give a general
discussion of the passage between disconnected spaces and their components, and formalize the

implication relevant to this paper. To simplify notation, we drop the notation M̃ used in §2 to
denote the local system associated with a representation M , simply writing M for the local system
as well in the rest of this paper. We also set G(Q)+ = G(Q) ∩G(R)+.

First, for any compact subgroup K ⊆ G(Af ), define

XK := XGK := G(Q)+\X ×G(Af )/K,

where we now give G(Af ) the discrete topology. Note that XK = XK when K is open. In general,
XK is a manifold when K is neat. If K1 ⊆ K2 are neat, with K1 normal in K2, then K2/K1 acts
freely on XK1 with quotient XK2 . We similarly define XK , replacing X by X. In particular, using
XKp and XKp , we may apply Theorem 2.9 to deduce that

H̃ i
?(Kp,Fp) ∼= H i

?(XK ,Mapcts(Kp,Fp))

where K = KpKp with Kp neat. Using the decomposition into connected components, we see that

H̃ i
?(Kp,Fp) ∼=

⊕
g∈G(Q)+\G(Af )/K

H i
?(Γg\X,Mapcts(Kp,Fp)).

Here, the right Kp-module Mapcts(Kp,Fp) (action via left translation) becomes a right Γg =
G(Q)+ ∩ gKg−1-module via the composition Γg → K → Kp where the first map is conjugation
by g−1 and the second is the projection, and then a left Γg-module by inversion. In particular, we
have an isomorphism

Mapcts(Kp,Fp) ∼= Mapcts(gpKpg
−1
p ,Fp)

of Γg-modules (with the obvious Γg-structure on the right hand side). Then, note that the left
Γg-module Mapcts(gpKpg

−1
p ,Fp), where the action is via inverting the left translation action, is

isomorphic to the left Γg-module Mapcts(gpKpg
−1
p ,Fp) where the action is the right translation

action (the isomorphism is given by inversion on gpKpg
−1
p ). This proves the following:



PERFECTOID SHIMURA VARIETIES AND THE CALEGARI–EMERTON CONJECTURES 17

Proposition 3.6. Fix i and Kp. Choose Kp sufficiently small to make K = KpKp neat. For

any other K ′ ⊆ G(Af ) compact open, set Γ′ = G(Q)+ ∩ K ′. Then H̃ i
?(Kp,Fp) = 0 if and

only if H i
?(Γ′\X,Mapcts(K

′
p,Fp)) = 0 for all conjugates K ′ of K in G(Af ), where Γ′ acts on

Mapcts(K
′
p,Fp)) either via right translation or by inverting the left translation action.

As a corollary we get the implication between Conjecture 3.5 and Conjecture 3.3.

Proposition 3.7. Let ? ∈ {∅, c}. Then Conjecture 3.5 for ? implies Conjecture 3.3 for ?.

Proof. Let Kp ⊆ G(Apf ) be compact open and let n > q0. By Proposition 3.6, it suffices to show

that Hn
? (Γ\X,Mapcts(Kp,Fp)) = 0 for some sufficiently small Kp, where Γ = G(Q)+ ∩KpKp acts

on Mapcts(Kp,Fp)) via right translation. Consider X̂ = X̂(Γ). By Conjecture 3.5, H̃n
? (X̂,Fp) = 0.

By Theorem 2.9,

Hn
? (Γ\X,Mapcts(H,Fp)) = H̃n

? (X̂,Fp) = 0

where H is the closure of Γ in Kp and Γ acts on Mapcts(H,Fp) via right translation. An application
of Lemma 2.10 then gives that Hn

? (Γ\X,Mapcts(Kp,Fp)) = 0, as desired. �

3.3. The case of Hermitian symmetric domains. In this subsection, we assume that G
is semisimple and that X is a Hermitian symmetric domain. In this case, l0 = 0 and q0 =
(dimRX)/2 = dimCX; we will simply write d for this quantity. We briefly recall some material
from the theory of hermitian symmetric domains and their boundary components; some references
for this material are [AMRT10, BB66, Hel78]. We do not assume that G has no R-anisotropic
Q-simple factors.

First, let us recall that an element g ∈ G(R) acts holomorphically on X if and only if g ∈ G(R)+;
see [BB66, Proposition 11.3] (note that G is assumed to be adjoint in this reference). The space
X = XG has a bordification X∗ = XG,∗ obtained by adding the rational boundary components
of X, see [BB66]. To describe it, we make a definition. If G is Q-simple, we call a parabolic
subgroup Q maximal if there is no parabolic subgroup Q′ with Q ( Q′ ( G. For general G, we
will call a parabolic subgroup Q maximal if its projection to every Q-simple factor is maximal
in the previous sense. Let Q be such a maximal parabolic subgroup of G; we write NQ for its
unipotent radical and MQ for its Levi quotient. MQ decomposes into an almost direct product
MQ = MQ,`MQ,h; see [AMRT10, Item (5), p. 142] (in the notation of that reference, we take
MQ,` = G` and MQ,h = Gh ·M ). MQ,` is called the linear part; it is a connected reductive
group. MQ,h is called the Hermitian part and it is a semisimple group whose symmetric space is a
Hermitian symmetric domain. Our main result in the topological part of this paper is the following.

Theorem 3.8. With assumptions as above, assume that Conjecture 3.5 holds for MQ,h for all
maximal parabolics Q of G (including Q = G) and ? = c. Then Conjecture 3.5 holds for G and
? = ∅.

The proof will occupy the rest of this subsection. Let us now describe the bordification X∗.
Set-theoretically,

X∗ =
⊔

Q maximal

XMQ,h =
⊔

Q⊇P maximal

XG,MQ,h ,

where XG,MQ,h :=
⊔
Q′∈CQ X

MQ′,h and we recall that P is a fixed choice of a minimal parabolic

subgroup. The action of G(Q) on X extends to an action on X∗, but torsion-free arithmetic
subgroups will no longer act freely (in general). The spaces XG,MQ,h are stable under G(Q).
If Γ ⊆ G(Q)+ is a torsion-free arithmetic subgroup, then Γ\X∗ has a canonical structure of a
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projective algebraic variety over C. Let us now assume that Γ is in addition neat, and let ΓMQ′,h

be the image of ΓQ′ in MQ′,h(Q); this is a neat arithmetic subgroup. We have a stratification

Γ\X∗ =
⊔

Q⊇P maximal

⊔
Q′∈CQ,Γ

ΓMQ′,h\X
MQ′,h

of the quotient. By construction ΓMQ′,h acts holomorphically on XMQ′,h , so ΓMQ′,h ⊆MQ′,h(Q)+.

In [Zuc83], Zucker constructs a G(Q)-equivariant continuous map π : X → X∗ that we will make
use of.5 With Q as above, let us write Y (Q) = π−1(XMQ,h). By [Zuc83, (3.8), Proposition], we
have a natural homeomorphism

Y (Q) ∼= XMQ,h ×XMQ,` ×XNQ

and the projection maps

Y (Q)→ Y (MQ) := XMQ,h ×XMQ,` → X
MQ,`

are Q(Q)-equivariant (and fibre bundles). Write LQ = MQ,`/(MQ,` ∩ MQ,h); the natural map

MQ,` → LQ is a central isogeny and X
MQ,` = X

LQ . Then we remark that, in the displayed
equation above, Q(Q) acts via the projection map Q(Q)→M(Q) on Y (MQ) and via the projection

map Q(Q) → LQ(Q) on X
MQ,` . In particular, we note that Y (Q) is contractible and that if Γ is

torsion-free, then ΓQ acts freely on Y (Q).

We now begin the proof of Theorem 3.8. Fix an arithmetic subgroup Γ ⊆ G(Q)+. Our goal is

to understand H̃∗(X̂,Fp) = H̃∗(X̂,Fp) in terms of the H̃∗c (X̂MQ,h ,Fp), where X̂ = X̂G(Γ) and

X̂ = lim←−
Γ′⊆Cp(Γ)

Γ′\X.

By Proposition 2.12 we may assume that Γ is neat without changing X̂ and X̂. Let S denote the

closure of Γ in G(Qp). Proposition 2.9 then gives us the following description of H̃∗(X̂,Fp).

Proposition 3.9. We have a canonical isomorphism

H̃∗(X̂,Fp) ∼= H∗(Γ\X,Mapcts(S,Fp)).

The “stratification” (Y (Q))Q of X induces a finite stratification (ΓQ\Y (Q))Q of Γ\X into locally
closed subsets, parametrized by Γ-conjugacy classes of maximal parabolic subgroupsQ. By repeated
use of the excision sequence, it suffices for us to prove that

H i
c(ΓQ\Y (Q),Mapcts(S,Fp)) = 0

for i > d and for all Q. From now on we fix Q and drop the subscripts −Q from all associated
algebraic groups for simplicity. Consider the proper map f : ΓQ\Y (Q) → ΓM\Y (M), which is

a fibre bundle with fibre ΓN\XNQ . Here ΓN = N(Q) ∩ ΓQ and ΓM is the image of ΓQ under
Q(Q)→M(Q). Set SN = S ∩N(Qp); by strong approximation this is the closure of ΓN in N(Qp)
(and hence open). Then we have

H∗c (ΓQ\Y (Q),Mapcts(S,Fp)) = H∗c (ΓM\Y (M), Rf∗Mapcts(S,Fp)).
Since Γ ∩ SN = ΓN , ΓM = ΓQ/ΓN acts by right translation on S/SN .

5It is, strictly speaking, not necessary for us to use minimal compactifcations and Zucker’s work [Zuc83], as all we
need is the resulting stratification of the Borel–Serre compactification which one may describe directly. Nevertheless,
we have opted to include the minimal compactification in our discussion as it gives a conceptual way of understanding
the stratification that we use, and why we use it.
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Proposition 3.10. f∗Mapcts(S,Fp) = Mapcts(S/SN ,Fp) with ΓM acting by right translation, and
Rif∗Mapcts(S,Fp) = 0 for all i ≥ 1.

Proof. By Corollary 2.2, Rif∗Mapcts(S,Fp) is the local system on ΓM\Y (M) corresponding to the
ΓM -representation H i(ΓN ,Mapcts(S,Fp)). When i = 0, the description is clear since ΓN is dense in
SN . In general, choose a continuous section S → SN of the inclusion, which gives a homeomorphism
S ∼= S/SN × SN of right SN -spaces. Arguing as in Lemma 2.10, we see that

H i(ΓN ,Mapcts(S,Fp)) ∼= Mapcts(S/SN ,Fp)⊗Fp H
i(ΓN ,Mapcts(SN ,Fp)).

By Proposition 2.15 and the injectivity of Mapcts(SN ,Fp) (discussed in §2.4), the right hand side
is 0 when i ≥ 1. �

So, we are down to computing H∗c (ΓM\Y (M),Mapcts(S/SN ,Fp)), for which we use the fibre
bundle

g : ΓM\Y (M)→ ΓL\X
L
,

with fibre Γh\XMh . Here Γh = Mh(Q) ∩ ΓM and ΓL = r(ΓM ), where r : M → L denotes the
canonical map. We remark that Γh acts holomorphically on XMh , and hence Γh ⊆ Mh(Q)+. The
Leray spectral sequence reads

H i(Γl\X
L
, Rjg! Mapcts(S/SN ,Fp)) =⇒ H i+j

c (ΓM\Y (M),Mapcts(S/SN ,Fp)).
The key is then the following.

Proposition 3.11. Rjg! Mapcts(S/SN ,Fp)) is a local system on ΓL\X
L

and vanishes for j >
dimCX

Mh.

Proof. Rjg! Mapcts(S/SN ,Fp)) is a local system with fibre Hj
c (Γh\XM,h,Mapcts(S/SN ,Fp)) by

Proposition 2.3. Consider the closure Th of Γh in Mh(Qp), which we may also view as the closure
of Γh in S/SN . Write Sh for the preimage of Th under S → S/SN . Sh is a group containing SN as
a normal subgroup, and Th = Sh/SN . Applying Lemma 2.10 with G = S, H = Sh, K = SN and

Γ = Γh, Hj
c (Γh\XM,h,Mapcts(S/SN ,Fp)) vanishes if

Hj
c (Γh\XMh ,Mapcts(Th,Fp)).

But Hj
c (Γh\XM,h,Mapcts(Th,Fp)) is compactly supported completed Fp-cohomology for Mh by

Proposition 2.9, so this vanishes for j > dimCX
Mh by assumption. �

Before we put everything together, we need to relate d to dimCX
Mh and dimRX

L. Recall that
AL is the maximal Q-split torus in the center of L, and write Z(N) for the center of N . The result
is then the following.

Lemma 3.12. dimCX
Mh + dimRX

L = d− 1
2 (dimN − dimZ(N))− dimAL.

Proof. The symmetric space XG has a decomposition

XG ∼= XMh × C(L)×N(R)

as real manifolds6 by [AMRT10, Equation (4.1)]. This gives

dimCX
Mh = d− 1

2
(dimRC(L) + dimN) .

The space C(L), called C(F ) in [AMRT10], is an open subset of Z(N)(R) and diffeomorphic to
L(R)/KL,∞ by [AMRT10, Theorem 4.1(2)], where KL,∞ denotes a maximal compact subgroup of

6This is written as D ∼= F × C(F ) ×W (F ) in [AMRT10]; with respect to our notation D = XG, F = XMh ,
C(F ) = C(L) and W (F ) = N(R).
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L(R). Thus dimRX
L = dimRC(L) − dimAL and dimRC(L) = dimZ(N). Combining this with

the displayed equation above and rearranging gives the desired result. �

We may now put everything together to prove a more precise version of Theorem 3.8. From now
on we let Q denote an arbitrary maximal parabolic of G again, and set

γ(Q) =
1

2
(dimNQ − dimZ(NQ)) + dimALQ + ss.rankQ(LQ)

whenver Q 6= G. Here ss.rankQ(H), for H a reductive group over Q, denotes the Q-rank of the
derived group of H (the ‘semisimple Q-rank’ of H). Note that γ(Q) is non-negative and only
depends on the conjugacy class of Q. In fact, dimALQ , and hence γ(Q), is always positive. This
follows, for example, from [BS73, §4.2, Equation (2)], upon noting that dimALQ = dimAQ. More
precisely, this shows that dimALQ is equal to the number of Q-simple adjoint factors of G→ H in
which the projection of Q is not equal to H.

Theorem 3.13. Assume that Conjecture 3.5 holds for MQ,h for all maximal parabolics Q of G
(including Q = G) and ? = c. Then the natural map

H i
c(X̂,Fp)→ H i(X̂,Fp)

is an isomorphism when i > d + 1 − infQ 6=G γ(Q), and surjective for i = d + 1 − infQ6=G γ(Q). In

particular, Conjecture 3.5 holds for G and ? = ∅, and Hd
c (X̂,Fp)→ Hd(X̂,Fp) is an isomorphism.

Proof. This merely summarizes the work done above, so we will be rather brief. By Proposi-
tion 3.9 and repeated use of the excision sequence, it suffices to show that, for all Q 6= G,
H i
c(ΓQ\Y (Q),Mapcts(S,Fp)) = 0 for i > d − γ(Q). Propositions 3.10 and 3.11 then give us a

spectral sequence

Hj(Γl\X
L
, Rkg! Mapcts(S/SN ,Fp) =⇒ Hj+k

c (ΓQ\Y (Q),Mapcts(S,Fp))

and shows that Rkg! Mapcts(S/SN ,Fp) is a local system which is 0 for k > dimCX
Mh . By [BS73,

Corollary 11.4.3] the cohomology of local systems on Γl\X
L

vanishes in degrees > dimRX
L −

ss.rankQ(L), so we see that H i
c(ΓQ\Y (Q),Mapcts(S,Fp)) = 0 for i > dimCX

Mh + dimRX
L −

ss.rankQ(L). Finally, by Lemma 3.12, this quantity is equal to d − γ(Q) as desired, finishing the
proof. �

Remark 3.14. The reader familiar with the Borel–Serre compactification may wonder if one could
not have used the “usual” stratification, indexed by all rational parabolic subgroups of G. This
is possible, but it simply amounts to a more complicated version of the analysis above. Let us
explain this briefly. The strata in the usual compactification are locally symmetric spaces for
rational parabolics P of G, and we would want to prove vanishing results for compactly supported
cohomology on these strata of the same local system as above. If M is Levi quotient of P , the
analogue of Proposition 3.10 goes through in the same way and essentially reduces us to compactly
supported completed cohomology of M . No trivial bound will be sufficient, and in general XM

won’t be Hermitian, so we are forced to try to find an almost direct factor of M whose symmetric
space is Hermitian (just like for maximal P ) to get a better bound. It is not so hard to see (e.g.
by looking at Dynkin diagrams) that there is a canonical maximal Q whose Hermitian part is an
almost direct factor of M , and using this one can push through the analysis. The strata of the
coarser stratification that we use are simply the unions of the XP for all P which have the same
Hermitian part, i.e. which are associated with the same maximal Q by the procedure above, and
they fit together in such way that it is much better to analyze them together rather than separately.
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3.4. The Calegari–Emerton conjectures on completed homology. We return to the setting
of §3.2. We recall from [CE12] that completed homology of G with tame level Kp ⊆ G(Apf ) values

in an adic ring R is defined as

H̃i(K
p, R) := lim←−

Kp

Hi(XKpKp , R),

where Kp runs through the compact open subgroups of G(Qp). One may define completed Borel–

Moore homology H̃BM
i (Kp, R) similarly (again see [CE12]). Let ? ∈ {∅, BM}. For any compact

open subgroup Kp ⊆ G(Qp), H̃
?
i (Kp,Zp) is a finitely generated right module for the Iwasawa

algebra ZpJKpK, which is an Auslander–Gorenstein ring and has well-defined codimension (or grade)
function on its finitely generated right modules, defined by

cd(M) = inf{j | ExtjZpJKpK(M,ZpJKpK) 6= 0}.

We refer to [AW13, §2.5] for more details on the properties of the codimension function. In particular

we remark that by general properties, cd(H̃?
i (Kp,Zp)) is independent of the choice of Kp. Recall the

quantities q0 and l0 from §3.2. We may then state a slightly weaker version of [CE12, Conjecture

1.5]. For simplicity, from now on we write H̃?
i for H̃?

i (Kp,Zp).

Conjecture 3.15 (Calegari–Emerton). Let ? ∈ {∅, BM}. Then the following holds:

(1) If i < q0, then cd(H̃?
i ) ≥ q0 + l0 − i.

(2) H̃?
q0 has codimension l0.

(3) H̃?
q0 is p-torsionfree.

(4) H̃?
i = 0 for i > q0.

The difference between this conjecture and [CE12, Conjecture 1.5] is that the latter predicts

cd(H̃?
i ) > q0+l0−i when i < q0. Completed (Borel–Moore) homology is closely related to completed

(compacty supported) cohomology via [CE12, Theorem 1.1]. Moreover, completed homology and
completed Borel–Moore homology are related via the two Poincaré duality spectral sequences

Eij2 = ExtiA(H̃j , A) =⇒ H̃BM
D−i−j ;

Eij2 = ExtiA(H̃BM
j , A) =⇒ H̃D−i−j ,

where A = ZpJKpK and D = dimRX = 2q0 + l0; see [CE12, §1.3]. We have the following relation
between Conjecture 3.1 and Conjecture 3.15.

Proposition 3.16. Conjecture 3.1 for compactly supported completed cohomology implies Con-
jecture 3.15(3)-(4) for completed Borel–Moore homology and Conjecture 3.15(1) for completed ho-
mology. Similarly, Conjecture 3.1 for completed cohomology implies Conjecture 3.15(3)-(4) for
completed homology and Conjecture 3.15(1) for completed Borel–Moore homology.

Proof. The first part is essentially [Sch15, Corollary 4.2.3]; the proof there works verbatim (note
that there is a small typo in that proof; the quantity c there should be chosen to be minimal, not
maximal, with respect to the given property). For the second part the proof is the same, swapping
the roles of completed cohomology and compactly supported completed cohomology, and completed
homology and completed Borel–Moore homology. �

Let us also indicate that Conjecture 3.15(2) is known for completed homology when G is
semisimple and l0 = 0; this is part of [CE12, Theorem 1.4] (and follows from [CE09] and known limit
multiplicity formulas for discrete series). More precisely, let Γ ⊆ G(Q) is an arithmetic subgroup

with closure Γ ⊆ G(Qp) and let X̂ = X̂(Γ). Then H̃q0(X̂,Zp)[1/p] is an admissible Qp-Banach
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space representation of Γ of corank 0 by the results of [CE09]. Dualizing, we see that the completed
homology space

H̃q0(X̂,Zp) := lim←−
Γ′⊆Cp(Γ)

Hq0(Γ′\X,Zp)

has codimension 0 as a ZpJΓK-module. If A → B is a (left and right) flat map of (left and
right) Noetherian rings and M is a finitely generated right A-module, then one easily sees that
ExtiB(M ⊗A B,B) ∼= B ⊗A ExtiA(M,A). In particular, if A → B is (left and right) faithfully flat,
then ExtiA(M,A) = 0 if and only if ExtiB(M⊗AB,B) = 0. By an analysis of components similar to

that preceding Proposition 3.6, one sees that if Γ = G(Q)+∩KpKp, then H̃q0(X̂,Zp)⊗ZpJΓKZpJKpK

is a direct summand of H̃q0(Kp,Zp), and hence the latter has codimension 0 as a ZpJKpK-module.

Here we take Kp to be sufficiently small so that it is neat and pro-p; then ZpJΓK→ ZpJKpK is flat

(indeed projective) by [Bru66, Lemma 4.5], and hence faithfully flat since ZpJΓK is then local. For
ease of reference, let us state the result below.

Theorem 3.17. Assume that G is semisimple and that l0 = 0. Then the codimension of H̃q0 is
equal to 0.

4. Shimura varieties

In this section we discuss Shimura varieties of Hodge and (pre-) abelian type, and how the
conditional results of §3 together with the results §5 give many unconditional cases of Conjectures
3.1 and 3.15.

4.1. Recollections on Shimura varieties. We use the definition and conventions for Shimura
data, morphisms of Shimura data, and connected Shimura data from [Del79]; see also [Mil05].
Given a Shimura datum (G,X), there are three other data which one can attach to it, one Shimura
datum and two connected Shimura data. They are as follows

• The connected Shimura datum (Gder, X+);
• The connected Shimura datum (Gad, X+);
• The Shimura datum (Gad, Xad).

Here X+ ⊆ X is any choice of a connected component, and if h ∈ X, then Xad is the Gad(R)-
conjugacy class of the composition of h with GR → GadR (this is independent of the choice of h). The

Shimura datum (Gad, Xad) will only feature when we discuss the Hodge–Tate period map later, the
other two will feature throughout the rest of this article. We recall that a Shimura datum (G,X)
is said to be of Hodge type if there exists a Siegel Shimura datum (G′, X ′) and a closed immersion
(G,X)→ (G′, X ′) of Shimura data. A Shimura datum (G,X) is said to be of abelian type if there
exists a Shimura datum (G1, X1) of Hodge type and a central isogeny Gder1 → Gder which induces
an isomorphism (Gad1 , X

+
1 ) ∼= (Gad, X+). We make the following slightly more general definition,

following [Moo98, 2.10].

Definition 4.1. Let (G,X) be a connected Shimura datum. We say that (G,X) is of pre-abelian

type if there exists a Shimura datum (G̃, X̃) of Hodge type such that (Gad, X) ∼= (G̃ad, X̃+). We
say that a Shimura datum (G,X) is of pre-abelian type if (Gder, X+) is of pre-abelian type.

Remark 4.2. Recall that, if G is semisimple, then by the convential definition G admits a connected
Shimura datum (G,X) if and only if G has no compact Q-factors and XG is a hermitian symmetric
domain; in this case X ∼= XG. The assumption that G has no compact Q-factors could be dropped,
but we will keep phrasing our results in terms of Shimura data for simplicity.

To be able to apply the inductive arguments from §3, we will need the following lemma.
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Lemma 4.3. Assume that G admits a connected Shimura datum of pre-abelian type and let Q ⊆ G
be a maximal parabolic with hermitian part Mh. Then Mh admits a connected Shimura datum of
pre-abelian type.

Proof. The assertion does not depend on the choice of G inside the isogeny class of G, so we may
assume that (G,X) = (Gder1 , X+

1 ) with (G1, X1) a Shimura datum of Hodge type. The assertion
then follows from the well known fact that the rational boundary components of (G1, X1) are of
Hodge type. �

4.2. Results for semisimple groups. The following is the main theorem of this paper on the
Calegari–Emerton conjectures; at this point the proof is simply a summary of the results so far
together with Corollary 5.22, which we prove using p-adic methods in the next section.

Theorem 4.4. Let G be a semisimple group which admits a connected Shimura datum of pre-
abelian type. Then Conjectures 3.1, 3.5 and 3.15 hold for G. Moreover, for any Kp, the natural

map H̃ i
c(K

p,Zp)→ H̃ i(Kp,Zp) is an isomorphism for i > d+1−infQ6=G γ(Q), where d = dimCX
G,

Q is a maximal parabolic subgroup of G and we recall that the quantities γ(G) are defined in §3.3.

Proof. We start with Conjecture 3.5. For ? = c, this Corollary 5.22. For ? = ∅, it then follows

from Lemma 4.3 and Theorem 3.13. The more precise statement about the map H̃ i
c(K

p,Zp) →
H̃ i(Kp,Zp) follows from Theorem 3.13, Lemma 2.10 and an analysis of components as in the proof
of Proposition 3.6. Conjecture 3.1 then follows, and as does Conjecture 3.15 (using Proposition

3.16, Theorem 3.17 and the fact that H̃d(K
p,Zp) = H̃BM

d (Kp,Zp)). �

4.3. Results for reductive groups. Here we will briefly indicate what type of results can be
proved towards the Calegari–Emerton conjectures for more general reductive groups. Recall that if
(G,X) is a Shimura datum, then X+ need not equal the symmetric space XG in general. Indeed,
X+ ∼= G(R)/Z(R)K∞, where Z ⊆ G is the center and K∞ ⊆ G(R) is a maximal compact subgroup.
Recall that A ⊆ Z is the maximal Q-split subtorus and set

Za =
⋂
χ

Kerχ,

where χ runs over the characters of Z defined over Q. Then Z = ZaA with A ∩ Za finite, and
XG → X+ is a (trivial) fibration with fiber Za(R)/(Za(R) ∩K∞). In particular, XG ∼= X+ if and
only if Za(R) is compact. Note that this is equivalent to all arithmetic subgroups of Z being finite,
and to l0(Z) = 0. When this happens, we get clean results. Let d = dimCX.

Theorem 4.5. Assume that G admits a Shimura datum of pre-abelian type and that Za(R) is

compact. Then Conjectures 3.1, 3.5 and 3.15 hold for G. Moreover, the natural map H̃d
c (Kp,Zp)→

H̃d(Kp,Zp) is an isomorphism.

Proof. We start with Conjecture 3.5. Fix a neat arithmetic subgroup Γ ⊆ G(Q)+ and n > q0. Let
T = G/Gder be the cocenter of G. Since Z → T is an isogeny, all arithmetic subgroups of T are
finite as well. In particular, the image of Γ in T (Q) is neat, hence trivial. So Γ is contained in
Gder(Q)+, and one readily sees that Conjecture 3.5 for G is equivalent to Conjecture 3.5 for Gder,
which follows from Theorem 4.4. Conjecture 3.1 then follows, and as does Conjecture 3.15 (using
Proposition 3.16) apart from part (2). For a proof of this we refer to Corollary 4.10 below, though
we also note that one could give an easier proof in this special case. The last statement follows
from the corresponding statement for Gder by the same arguments as in Theorem 4.4. �

Remark 4.6. We have elected to state the isomorphism H̃ i
c(K

p,Zp)→ H̃ i(Kp,Zp) only in degree
i = d for simplicity, but of course the proof also shows that we get an isomorphism in (possibly)
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more degrees as in Theorem 4.4. We will continue to only state the isomorphism in the middle
degree throughout this section.

Corollary 4.7. Assume that G admits a Shimura datum of Hodge type. Then Conjectures 3.1, 3.5

and 3.15 hold. Moreover, the natural map H̃d
c (Kp,Zp)→ H̃d(Kp,Zp) is an isomorphism.

Proof. If G admits a Shimura datum of Hodge type, then Za(R) is compact, so Theorem 4.5
applies. �

When Za(R) is non-compact, the Leopoldt conjecture interferes in deducing the Calegari–
Emerton conjectures for G from Gder or Gad. Indeed, if G = T is a torus, then the Leopoldt
conjecture for T is equivalent to Conjecture 3.1 for T ; see [Hil10, §4.3.3] (note that Hill uses the
symmetric spaces G(R)/K∞ instead of our XG). We recall this briefly (also recall that tori satisfy
the congruence subgroup property). Let K = KpKp be a compact open subgroup of T (Af ) with
Kp arbitrary and Kp neat. Set Γ = T (Q)∩K; this is a finitely generated torsion-free abelian group.

Let Γ̂ be the p-adic completion of Γ and consider the natural map f : Γ̂ → Kp; set ∆ = Ker f
and I = Im f . ∆ is a finite free Zp-module and the Leopoldt conjecture asserts that ∆ = 0 (this
assertion is independent of the choice of K). An application of [Hil10, Lemma 14] gives that

H i(Γ,Mapcts(I,Fp)) = HomZp(∧iZp∆,Fp),

and, by Lemma 2.10, H i(Γ,Mapcts(I,Fp)) vanishes simultaneously with H i(Γ,Mapcts(Kp,Fp)),
so by Proposition 3.6 the vanishing of ∆ is equivalent to Conjecture 3.3. In fact, the Leopoldt
conjecture is also equivalent to Conjecture 3.15(2) for T (note that q0(T ) = 0). This is certainly
also well known; we give a very brief sketch of the proof.

Proposition 4.8. Let Kp ⊆ T (Apf ) be compact open. Then the codimension of H̃0(Kp,Zp) is

l0 − rankZp∆. In fact, the projective dimension of H̃0(Kp,Zp) is l0 − rankZp∆.

Proof. Choose Kp neat and set Γ = T (Q)+ ∩ KpKp. As a right Kp-module, a straightforward
computation (using the commutativity of T ) shows that

H̃0(Kp,Zp) ∼=
⊕
t

ZpJI\KpK

where t runs over the finite set T (Q)+\T (Af )/KpKp and I denotes the closure of Γ in Kp. Set
M = ZpJI\KpK, A = ZpJIK and B = ZpJKpK; B is a projective (left and right) A-module by [Bru66,
Lemma 4.5] and M is a finitely generated right B-module, which is isomorphic to Zp ⊗A B. Then

ExtiB(M,B) ∼= B ⊗A ExtiA(Zp, A), so the codimension of M as a right B-module is equal to the

codimension of Zp as a right A-module. Since I ∼= Zl0−rankZp∆
p , a computation using the Koszul

complex shows that the codimension of Zp is l0 − rankZp∆. This finishes the proof of the first
part. For the second part about the projective dimension, note that the Koszul complex of A is a
resolution P• of Zp of length l0 − rankZp∆ by finite free A-modules. It follows that P• ⊗A B is a
resolution of M of length l0 − rankZp∆ by finite free B-modules. Together with the first part, this
finishes the proof of the second part. �

We may now give the most general result for reductive groups that we can prove.

Theorem 4.9. Let G be a connected reductive group over Q with center Z. Assume that the
Leopoldt conjecture holds for Z and that Gad admits a Shimura datum of abelian type. Then
Conjecture 3.5 holds for G.

Proof. Let Γ0 ⊆ G(Q)+ be an arithmetic subgroup and choose a sufficiently small neat Kp which is

a product Kp = KZ
p ×Kad

p of a compact open KZ
p ⊆ Z(Qp) and a compact open Kad

p ⊆ Gder(Qp);
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note that the image of Kad
p in Gad(Qp) is open and isomorphic to Kad

p ; we will conflate the two

(this explains the notation). Set Γ = Γ0 ∩ Kp. Let ΓZ = Γ ∩ Z(Q) and consider the closure ΓZ
of ΓZ inside KZ

p . It is not clear to us a priori if ΓZ is saturated inside KZ
p (as a Zp-module), but

if not we may achieve this by replacing KZ
p with a smaller subgroup without changing ΓZ , so we

may assume this. This implies that the closure of the image of the projection Γ→ KZ
p is equal to

ΓZ . To see this, let C = G/Gder be the cocenter of G. The image ΓC of Γ under the projection
Γ→ C(Qp) is an arithmetic subgroup inside KZ

p which contains ΓZ as a finite index subgroup. It

follows that the closure ΓC of ΓC inside KZ
p contains ΓZ as a finite index subgroup, but since ΓZ

is saturated they must be equal. From this, it follows that the composition

Γ→ Kp → Kp/ΓZ ,

where the first map is the inclusion and the second is the natural projection, is equal to the
composition

Γ→ Kad
p → Kad

p ×KZ
p /ΓZ = Kp/ΓZ ,

where the first map is the projection and the second is the inclusion which is trivial on the second
factor. We will use these facts in the calculation below.

Now, by Proposition 2.9 and Lemma 2.10, it suffices to show that

Hn
? (Γ\X,Mapcts(Kp,Fp)) = 0

for n > q0 = q0(G) = q0(Gad). Let Γad be the image of Γ in Gad(Q)+. Consider the proper fibration

π : Γ\X → Γad\Xad with fiber ΓZ\XZ (in this proof and the next only, Xad = XGad) and the
corresponding Leray spectral sequence

Hr
? (Γad\Xad, Rsπ∗Mapcts(Kp,Fp)) =⇒ Hr+s

? (Γ\X,Mapcts(Kp,Fp)).
By Corollary 2.3, Rsπ∗Mapcts(Kp,Fp) is the local system corresponding to Hs(ΓZ ,Mapcts(Kp,Fp)).
Using the discussion on Leopoldt’s conjecture above, the assumption that Leopoldt holds for Z,
and Lemma 2.10, we see that Hs(ΓZ ,Mapcts(Kp,Fp)) = 0 for s > 0. We then compute

Mapcts(Kp,Fp)ΓZ ∼= Mapcts(K
Z
p /ΓZ ,Fp)⊗Mapcts(K

ad
p ,Fp)

as Γad-modules, where Γad acts trivially on the first factor, which is an Fp-vector space that we call
V (this uses the detailed setup above). So, the Leray spectral sequence reduces to

Hn
? (Γ\X,Mapcts(Kp,Fp)) ∼= Hn

? (Γad\Xad, V⊗Mapcts(K
ad
p ,Fp)) ∼= Hn

? (Γad\Xad,Mapcts(K
ad
p ,Fp))⊗V.

By Lemma 2.10 and Theorem 4.4, Hn
? (Γad\Xad,Mapcts(K

ad
p ,Fp)) vanishes for n > q0. This finishes

the proof. �

Corollary 4.10. Keep the notation and assumptions of Theorem 4.9. Then Conjectures 3.1 and

3.15 hold for G. Moreover, the natural map H̃q0
c (Kp,Zp)→ H̃q0(Kp,Zp) is an isomorphism.

Proof. Note that l0 = l0(G) = l0(Z) and q0 = q0(G) = q0(Gad). Fix Kp ⊆ G(Apf ). Using Theorem

4.9, everything apart from Conjecture 3.15(2) follows as before, and additionally H̃q0(Kp,Zp) =

H̃BM
q0 (Kp,Zp) . The argument in Proposition 3.16 also shows that H̃q0(Kp,Zp) has codimension
≥ l0, so we need to show the opposite inequality. As in the proof of Theorem 4.9, choose a
neat Kp ⊆ G(Qp) which can be written as a product Kp = Kad

p × KZ
p with KZ

p ⊆ Z(Qp) and

Kad
p ⊆ Gder(Qp), and set Γ = G(Q)+ ∩ KpKp and ΓZ = Γ ∩ Z(Q); again we rig it so that the

closure ΓZ is saturated inside KZ
p .

We then have H̃q0(Kp,Zp) ∼= HomZp(H̃
q0(Kp,Zp),Zp) by [CE12, Theorem 1.1(3)] and the

vanishing of H̃q0+1(Kp,Zp), so it suffices to prove that H̃q0(Kp,Zp) has a sub Kp-representation
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of injective dimension ≤ l0. Since Hq0(Γ\X,Mapcts(Kp,Zp)) is a direct summand of H̃q0(Kp,Zp),
it suffices to show that Hq0(Γ\X,Mapcts(Kp,Zp)) has a submodule of injective dimension ≤ l0.
Here we view Mapcts(Kp,Zp) as a left Γ-module via inverting the left translation action; it has a
commuting left Kp-action via right translation which gives Hq0(Γ\X,Mapcts(Kp,Zp)) its structure
of a left Kp-module. Using the computations in the proof of Theorem 4.9 with Fp replaced by Z/pr
and taking inverse limits over r (which commute with cohomology by [Eme06, Proposition 1.2.12]),
we see that

Hq0(Γ\X,Mapcts(Kp,Zp)) ∼= Hq0(Γad\Xad,Mapcts(K
ad
p ,Zp))⊗̂Zp Mapcts(K

Z
p ,Zp)ΓZ ,

as leftKp = Kad
p ×KZ

p -representations. By Proposition 4.8 and the assumption on Z, Mapcts(K
Z
p ,Zp)ΓZ

has injective dimension l0 as a KZ
p -representation. By Theorem 3.17 and the discussion preceding

it, Hq0(Γad\Xad,Mapcts(K
ad
p ,Zp)) contains an injective admissible Kad

p -subrepresentation W . It

follows that W ⊗̂Zp Mapcts(K
Z
p ,Zp)ΓZ is a sub Kp-representation of Hq0(Γ\X,Mapcts(Kp,Zp)) of

injective dimension ≤ l0, as desired. �

Remark 4.11. We make a few additional remarks on these results.

(1) Examples of cases when Theorem 4.9 and Corollary 4.10 are unconditional include G =
ResFQ GSp2g for abelian totally real fields F , since the Leopoldt conjecture is known for tori
which split over an abelian extension of Q. One could also get weaker results with no
condition on the center by assuming the known bounds for the Leopoldt defect.

(2) Conjecture 3.15 has a natural analogue for Fp-coefficients, stated in [CE12, §1.7]. Our
methods prove this conjecture too under the same assumptions. We content ourselves by
noting that the arguments to prove Proposition 3.16 and Corollary 4.10 go through with only
superficial changes for Fp-coefficients (though one could simplify the argument in Corollary
4.10 for Fp-coefficients). Note here that Theorem 3.17 implies its Fp-version when one

knows p-torsionfreeness of H̃q0, using the results of [CE12, §1.7].

5. Perfectoid Shimura varieties

5.1. Preparations in p-adic geometry. In this preliminary section, we prove a number of loosely
related results in p-adic geometry. We continue to fix a prime p. Group actions on spaces will mostly
be right actions throughout this section.

Until further notice, “adic space” means “analytic adic space over Zp”. In what follows, we freely
use the language of diamonds and some standard notation from [Sch17]. Recall that a diamond is a
pro-étale sheaf on the site Perf of characteristic p perfectoid spaces with certain properties. If X is
an adic space, the corresponding diamond X♦ comes equipped with a natural map X♦ → Spd Zp;
since Perf/ Spd Zp is naturally equivalent to the category Perfd of all perfectoid spaces, one is free

to think of X♦ as a functor on Perfd. If X is a diamond with a G-action for some profinite group
G, we write X/G for the quotient sheaf computed as a pro-étale sheaf.

Lemma 5.1. Let X be a spatial diamond with a G-action for some profinite group G. Suppose that
G acts with finitely many orbits on π0X, and that each connected component of X is a perfectoid
space. Then X is a perfectoid space.

Proof. Let X0 be some connected component of X, and let x ∈ X0 be any point. Choose some
open affinoid perfectoid neighborhood U ⊆ X0 of x. This spreads out (e.g. by [Sch17, Proposition

11.23(iii)]) to a small open spatial subdiamond Ũ ⊆ X with Ũ ∩ X0 = U . Let K ⊆ G be the

open subgroup stabilizing Ũ . Then for any k ∈ K, Ũ ∩X0k = Ũk ∩X0k = (Ũ ∩X0)k = Uk is an
affinoid perfectoid space. Since our assumptions on the group action guarantee that the orbit X0K
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is an open spatial subdiamond of X, we deduce that Ũ ∩X0K is an open spatial subdiamond of X
containing x, with the property that each connected component of Ũ ∩X0K is affinoid perfectoid.
By [Sch17, Lemma 11.27], we deduce that Ũ ∩ X0K itself is affinoid perfectoid. Since X0 and x
were arbitrary, we get the result. �

We now turn to some general results on group quotients. Let X be an adic space equipped
with an action of a finite group G. The coarse quotient X/G always exists in Huber’s category V,
but in general it may not be an adic space. We need some general results showing that if X is
a rigid analytic space or a perfectoid space, then so is X/G. The first author already considered
this problem in [Han16b], but the results there can be difficult to apply, since they included the
assumption that X admits a G-invariant affinoid covering, and such coverings can be hard to exhibit
in “real-life” situations. Here we obtain much more satisfying and user-friendly results, which don’t
assume the a priori existence of G-invariant affinoid covers. In the rigid analytic situation we obtain
a very general result, cf. Theorem 5.3 below. In the perfectoid situation, we need slightly stronger
hyptheses, cf. Theorem 5.8, but the result is sufficient for our intended applications to Shimura
varieties.

Let X be a topological space with an action of a finite group G by continuous automorphisms.
Let x ∈ X be any point, with stabilizer Hx ⊆ G. We say an open neighborhood U of x is G-clean
if Uh = U for all h ∈ Hx and moreover U ∩ Ug = ∅ for all g ∈ GrHx. Note in particular that if
U is a G-clean neighborhood of x, then the natural map

U ×Hx G (u,g)7→ug−→ X

is an open embedding, and its image is just the union inside X of [G : Hx] many disjoint translates
of U , so this is an especially pleasant type of G-stable open containing the orbit xG.

Lemma 5.2. Let X be a Hausdorff topological space with a G-action. Then every point x ∈ X
admits a G-clean open neighborhood.

Proof. Fix x ∈ X, with stabilizer H. Choose coset representatives G =
∐

1≤i≤nHgi with g1 = 1;

the orbit of x is then {x1, . . . , xn}, with xi = xgi. Since X is Hausdorff we may choose pairwise
disjoint open neighborhoods U ′i of the xi’s. Clearly g−1

i Hgi is the stabilizer of xi, so the open set

Ui =
⋂

k∈g−1
i Hgi

U ′ik

contains xi and is stable under g−1
i Hgi; moreover the Ui’s are pairwise disjoint. Now set Vi = Uig

−1
i ,

so x ∈ Vi and Vi is H-stable. Finally, set W =
⋂
i Vi; we claim that W is a G-clean open

neighborhood of x. Indeed, W is H-stable since the Vi’s are, so it remains to check that if i 6= j,
then Wgi ∩Wgj = ∅. But Wgi ⊆ Vigi = Ui and similarly for Wgj , so Wgi ∩Wgj ⊆ Ui ∩ Uj = ∅,
as desired. �

Theorem 5.3. Let X be a rigid analytic space over some nonarchimedean field K with an action of
a finite group G. Assume that X is separated, and that for every rank one point x ∈ X, the closure
{x} ⊆ X is contained in some open affinoid subspace U = Spa(A,A◦) ⊆ X. Then the categorical
quotient X/G = (|X|/G, (q∗OX)G, · · · ) is a rigid analytic space, and the natural map X → X/G is
finite. Moreover, the canonical map X♦/G→ (X/G)♦ is an isomorphism.

The auxiliary conditions on X in this theorem are satisfied e.g. if X is affinoid, or if X is
partially proper. In particular, the theorem applies whenever X is the analytification of a separated
K-scheme of finite type. We would like to emphasize that these auxiliary conditions do not involve
the G-action in any way. In particular, we are not assuming a priori that X admits a covering by
G-stable affinoid subsets (though, a posteriori, the theorem shows that this is the case).
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Proof. Let x ∈ |X| be any rank one point, with stabilizer Hx and closure {x} ⊆ |X|. Let |X|h be
the maximal Hausdorff quotient of |X|, and let π : |X| → |X|h be the natural map, so if x ∈ |X| is
any rank one point, then {x} ⊆ π−1(π(x)).7 By functoriality of the maximal Hausdorff quotient,
G naturally acts on |X|h and π is G-equivariant. By Lemma 5.2 we can choose a G-clean open

neighborhood Ux ⊆ |X|h of π(x). Set Ũx = π−1(Ux) ⊆ |X|, so Ũx is a G-clean open neighborhood

of x containing {x}.

By assumption, we can choose an open affinoid subspace Vx = Spa(A,A◦) ⊆ X containing

{x}. Since X is separated, the intersection ∩h∈HxVxh is still affinoid, so after replacing Vx by

∩h∈HxVxh, we can assume that Vx is Hx-stable. The intersection Wx = Ũx ∩ Vx is still a G-clean

open neighborhood of x containing {x}. Now, observe that Wx ×Hx G ⊆ X is a G-stable open

subspace of X containing {x}G with the crucial property that

Wx/Hx
∼=
(
Wx ×Hx G

)
/G ⊆ X/G

is naturally a rigid analytic space, because Vx/Hx
∼= Spa(AHx , A◦Hx) is an affinoid rigid space and

|Wx|/Hx is an open subset of |Vx|/Hx. Varying over all rank one points x ∈ X, the spaces Wx/Hx

give an open covering of X/G by rigid analytic spaces, so X/G is a rigid analytic space, as desired.

For finiteness of the map X → X/G, note that f : Wx →Wx/Hx is finite, since it’s the pullback
of the finite map Vx → Vx/Hx along Wx/Hx → Vx/Hx. It then suffices to observe that the pullback
of X → X/G along the open embedding Wx/Hx → X/G is given by the map

Wx ×Hx G '
∐

1≤i≤n
Wxgi

∐
f◦g−1

i−→ Wx/Hx,

which is clearly finite.

For the last point, it suffices to prove that the canonical maps V ♦x /Hx → (Vx/Hx)♦ are iso-
morphisms of pro-étale sheaves. We claim that in fact for any Tate Zp-algebra A with an ac-
tion of a finite group G and a G-stable subring of integral elements A+, the canonical map
Spd(A,A+)/G → Spd(AG, A+G) is an isomorphism. It suffices to check that Spd(A,A+) × G ⇒
Spd(A,A+) is a presentation of Spd(AG, A+G) as a pro-étale sheaf. Arguing as in [CGJ19,
Proposition 2.1.1], this reduces to the fact that the maps Spd(A,A+) → Spd(AG, A+G) and
Spd(A,A+)×G→ Spd(A,A+)×Spd(AG,A+G) Spd(A,A+) are quasi-pro-étale. Since the morphisms

in question are separated, this can be checked on rank one geometric points by [Sch17, Proposition
13.6], where it is obvious. �

Unfortunately, the perfectoid variant of the previous theorem is not so clean, primarily because
of “problems” with the notion of a “separated” perfectoid space. For example, for perfectoid spaces
over a perfectoid field, the notion introduced in [Sch17, Definition 5.10] is too weak for our purposes.
The following notion of separation is more than sufficient for our purposes. In what follows, we will
frequently use the fact that if X and Y are perfectoid spaces over Spa(K,K+) for some affinoid
field (K,K+), then the fiber product X ×Spa(K,K+) Y is naturally a perfectoid space. By gluing,

7 One might guess that in fact {x} = π−1(π(x)), but this is not clear to us. Indeed, let |X|ν be the quotient of
|X| by the transitive closure of the pre-relation “x ∼ y if U ∩ V 6= ∅ for all open neighborhoods x ∈ U, y ∈ V ”. Then

π naturally factors as a composition of quotient maps |X| τ→ |X|ν q→ |X|h. By some standard structure theory of

analytic adic spaces, τ induces a bijection from the rank one points of |X| onto |X|ν , and τ−1(τ(x)) = {x} for any
rank one point x ∈ |X|. However, the map q may not be a homeomorphism: for a general topological space T , Th

can be obtained by transfinitely iterating the construction T  T ν . When |X| is taut, one can prove that q is a
homeomorphism by combining [Hub96, Lemmas 5.3.4 and 8.1.5].
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this reduces to the claim that this fiber product is naturally affinoid perfectoid if X and Y are each
affinoid perfectoid, which is [KL15, Corollary 3.6.18].

Definition 5.4. (1) A map of perfectoid spaces Z → X is a Zariski-closed embedding if for
any open affinoid perfectoid subset U ⊆ X, the map Z ×X U → U is a Zariski-closed
embedding of affinoid perfectoid spaces in the sense of [Sch15, §2.2]. We say that an open
subset U of a perfectoid space X is Zariski open if the inclusion X \ U → X is a Zariski
closed embedding.

(2) A perfectoid space X over a nonarchimedean field Spa(K,K+) is analytically separated if
the diagonal map X → X ×Spa(K,K+) X is a Zariski-closed embedding.

We caution the reader this definition of being a Zariski-closed embedding is rather delicate:
among other things, it’s not clear whether this property can be checked locally on a single affinoid
cover of X, or whether this property is stable under base change. The key property of analytically
separated perfectoid spaces that we will use is part (2) of the following lemma.

Lemma 5.5. (1) If a perfectoid space X is analytically separated, then it is separated in the
sense of [Sch17], i.e. X♦ → Spd(K,K+) is a separated map of v-sheaves.

(2) If X is analytically separated, then for any two open affinoid perfectoid subsets U, V ⊆ X,
the intersection U ∩ V is affinoid perfectoid.

Proof. Part (1) is straightforward and left to the reader (and we won’t need it anyway). Part (2)
is immediate upon writing U ∩ V = (U ×Spa(K,K+) V )×X×Spa(K,K+)X,∆

X. �

In practice, analytic separation can often be checked via the following lemma.

Lemma 5.6. Let (Xi)i∈I be a cofiltered inverse system of separated rigid analytic spaces over some
Spa(K,K◦), and suppose there is some perfectoid space X∞ such that X∞ = lim←−iXi as diamonds.
Suppose moreover that each Xi is an open subset of the analytification of a projective variety over
K. Then X∞ is analytically separated.

Proof. By assumption, we can choose open immersions Xi → V an
i for some projective varieties Vi.

Let U ⊆ X∞ ×Spa(K,K◦) X∞ be some open affinoid perfectoid subset. Set

Wi = U ×Xi×Spa(K,K◦)Xi,∆ Xi
∼= U ×V an

i ×Spa(K,K◦)V
an
i ,∆ V an

i .

A priori, we are computing this fiber product as diamonds. However, by the subsequent lemma,
Wi is affinoid perfectoid and the resulting map Wi → U is a Zariski-closed embedding. Then
U ×X∞×Spa(K,K◦)X∞,∆ X∞ = lim←−iWi is affinoid perfectoid, and lim←−iWi → U is a cofiltered limit of
Zariski-closed embeddings. Since any cofiltered limit of Zariski-closed embeddings with fixed target
is a Zariski-closed embedding, we get the result. �

Lemma 5.7. Let Y → X be a closed immersion of quasi-projective varieties over a nonarchimedean
field K, and let Z be any perfectoid space equipped with a map f : Z → Xan. Then the diamond
W = Z ×Xan Y an is a perfectoid space, and the natural map W → Z is a Zariski-closed embedding.

Proof. Unwinding the definitions, it suffices to prove that if Z is affinoid perfectoid, then W =
Z ×Xan Y an → Z is a Zariski-closed embedding of affinoid perfectoid spaces.

Replacing X by its closure in some projective space, and replacing Y by its closure in X, we can
assume that Y → X is a closed immersion of projective varieties. Let I ⊆ OXan be the ideal sheaf
cutting out Y an. By rigid GAGA and the projectivity of X, we can choose a vector bundle E on
Xan together with a surjection E � I. Then f∗E is naturally a vector bundle on Z, and the image
of the natural map f∗E → OZ is just the ideal sheaf generated by f−1I. However, Z is affinoid
perfectoid, so f∗E is generated by its global sections, which are just a finitely generated projective
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OZ(Z)-module. In paticular, if e1, . . . , en ∈ H0(Z, f∗E) is any set of generators, then their images
in OZ(Z) generate an ideal I corresponding to the ideal sheaf generated by f−1I. Let W ⊆ Z be
the Zariski-closed subset cut out by I. It is then easy to see that W represents the fiber product
claimed in the statement of the lemma. �

Theorem 5.8. Let X be a perfectoid space over a nonarchimedean field, with an action of a finite
group G. Assume that X is analytically separated, and that for every rank one point x ∈ X, the
closure {x} ⊆ X is contained in some open affinoid perfectoid subspace U = Spa(A,A+) ⊆ X.

Then the categorical quotient X/G is a perfectoid space, and the natural map q : X → X/G is
affinoid in the (weak) sense that any point y ∈ X/G admits a neighborhood basis of open affinoid
perfectoid subsets Y ⊆ X whose preimages q−1(Y ) are affinoid perfectoid. Moreover, the canonical
morphism X♦/G→ (X/G)♦ is an isomorphism.

Proof. The first portion of the proof is nearly identical to the proof of Theorem 5.3, but we repeat
the details for the reader’s convenience.

Let x ∈ X be any rank one point, with stabilizer Hx and closure {x} ⊂ X. Let |X|h be the
maximal Hausdorff quotient of |X|, and let π : |X| → |X|h be the natural map, so if x ∈ |X| is

any rank one point, then {x} ⊆ π−1(π(x)). By functoriality of the maximal Hausdorff quotient,
G naturally acts on |X|h and π is G-equivariant. By Lemma 5.2 we can choose a G-clean open

neighborhood Ux ⊆ |X|h of π(x). Let Ũx be the preimage of Ux in |X|, so Ũx is a G-clean open

neighborhood of x containing {x}.
By assumption, we can choose an open affinoid perfectoid subspace Vx = Spa(A,A+) ⊆ X

containing {x}. Since X is analytically separated, the intersection ∩h∈HxVxh is affinoid perfectoid
by Lemma 5.5.(2), so after replacing Vx by ∩h∈HxVxh, we can assume that Vx is Hx-stable. The

intersection Wx = Ũx ∩ Vx is still a G-clean open neighborhood of x containing {x}. Now, observe

that Wx ×Hx G ⊂ X is a G-stable open subspace of X containing {x}G with the crucial property
that

Wx/Hx
∼=
(
Wx ×Hx G

)
/G ⊆ X/G

is naturally a perfectoid space, because Vx/Hx
∼= Spa(AHx , A+Hx) is an affinoid perfectoid space

by [Han16b, Theorem 1.4] and |Wx|/Hx is an open subset of |Vx|/Hx. Varying over all rank one
points x ∈ X, the spaces Wx/Hx give an open covering of X/G by perfectoid spaces, so X/G is a
perfectoid space, as desired.

To see that q is affinoid, let y ∈ X/G be any point, so y is contained in some Wx/Hx. Let
Y ⊆ Wx/Hx ⊆ X/G be any open subset containing y such that Y is a rational subset of Vx/Hx.
The set of such Y ’s is clearly a neighborhood basis of y. Moreover, q−1(Y ) is a finite disjoint union
of copies of the preimage of Y in Vx, but the latter preimage is a rational subset of Vx, and hence
is affinoid perfectoid, so q−1(Y ) is affinoid perfectoid. Varying y, we get the claim.

The last point follows exactly as in the proof of Theorem 5.3. �

The next lemma will allow us to extend the Hodge-Tate period map across the boundary of the
minimal compactification, in situations where we already know it extends on some profinite cover
of the Shimura variety.

Lemma 5.9. Let q : X → Y be any map of perfectoid spaces, and let πX : X → Z be any map
to a rigid space which is either affinoid or partially proper. Suppose there is a dense open subset
Y ◦ ⊂ Y with preimage X◦ ⊂ X such that πX |X◦ = πY ◦ ◦ q|X◦ for some morphism πY ◦ : Y ◦ → Z.
Assume the following conditions.

(1) q is affinoid in the sense of Theorem 5.8.
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(2) q is surjective on topological spaces.
(3) The map q and the relation maps X ×Y X ⇒ X are open on topological spaces.

Then πY ◦ extends uniquely to a morphism πY : Y → Z such that πX = πY ◦ q.

Proof. 1) implies that q is qcqs and spectral, and 2) implies that q is a quotient map. Also, 3)
implies that X◦ is dense in X.

We are now going to reduce the lemma to the following statement:
Claim. There is an open cover {Wi ⊂ Y }i∈I such that πX(q−1(Wi)) is contained in an open

affinoid subset of Z.
Granted this claim, it suffices to prove the lemma with X replaced by the preimage X ′ of any

open affinoid perfectoid subset Y ′ ⊂ Y , which we can assume is contained in some Wi. By 1),
shrinking Y ′ if necessary, we can assume that X ′ is affinoid perfectoid. By the claim, we can also
assume that q(X ′) ⊂ Z ′ for some open affinoid subset Z ′ ⊂ Z. This reduces the entire lemma to
the special case where X, Y and Z are affinoid.

In this special case, we argue as follows. Let R = X ×Y X, so R is affinoid perfectoid
and R ⇒ X is an equivalence relation with v-quotient Y . In particular, we get an equalizer
diagram O(Y ) → O(X) ⇒ O(R). Similarly, set R◦ = X◦ ×Y ◦ X◦, so Y ◦ = X◦/R◦. Note that
the spaces labelled (−)◦ are not necessarily affinoid; however, we still get an equalizer diagram
O(Y ◦) → O(X◦) ⇒ O(R◦). Moreover, the natural maps O(T ) → O(T ◦) are injective for each
T ∈ {X,Y,R}, since T ◦ is a dense open subset of the (stably uniform) affinoid adic space T .

Putting things together, we get a commutative diagram

0 // O(Y ◦)
q◦∗ // O(X◦)

δ◦ // O(R◦)

0 // O(Y )
q∗ //

OO

O(X)
δ //

i

OO

O(R)

i′

OO

with exact rows, where all vertical maps are injective. A map X → Z as in the lemma corresponds
to a map f : O(Z)→ O(X) such that i ◦ f ⊆ imq◦∗. But then 0 = δ◦ ◦ i ◦ f = i′ ◦ δ ◦ f , so δ ◦ f = 0
by the injectivity of i′. Therefore f factors uniquely over a map O(Z)→ O(Y ), as desired.

It remains to prove the Claim. If Z is affinoid there is nothing to prove, so assume that Z is
partially proper. Then we can cover Z by open affinoids Zi ⊂ Z ′i such that Zi ⊂ Z ′i. I claim that

given such a cover, we can take Wi = q(π−1
X (Zi)). Since π−1

X (Zi) gives an open cover of X and q
is open and surjective, it is clear that these form an open cover of Y . It remains to understand
πX(q−1(Wi)). For this, note that Si = π−1

X (Zi) and S′i = q−1(q(π−1
X (Zi))) are retrocompact open

subsets of X which agree after intersecting with X◦. Since X◦ ⊂ X is dense, Si = S′i. We deduce

that πX(q−1(Wi)) = πX(S′i) ⊆ πX(S′i) = πX(Si) ⊆ πX(Si) ⊆ Zi ⊆ Z ′i. Since Z ′i is an open affinoid,
this shows the Claim. �

In the next section, we will often be in a situation where we have a morphism between two
inverse systems of Shimura varieties for some closely related Shimura data. In the remainder of
this section, we prove some results which will allow us to transfer information from one inverse
system to the other.

Lemma 5.10. Let (Xi)i∈I
fi−→ (Yi)i∈I be a morphism of cofiltered inverse systems of locally

Noetherian adic spaces. Assume moreover that the maps fi and the transition maps in the inverse
systems are all finite maps, and that Y∞ = lim←−i Yi is perfectoid.

Then X∞ = lim←−iXi is perfectoid, and the morphism f∞ : X∞ → Y∞ is quasicompact. Moreover,
if U ⊆ Y∞ is an open affinoid perfectoid subset which arises as the preimage of an open affinoid
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Ui ⊆ Yi for some i, then f−1
∞ (U) ⊆ X∞ is also affinoid perfectoid. Finally, f∞ is affinoid in the

sense of Theorem 5.8.

With more effort, one can show that the morphism f∞ is proper and quasi-pro-étale in the sense
of [Sch17]. We will not need this.

Proof. Without loss of generality, we may assume that I contains an initial element 0. Next, observe
that

X∞ ∼= lim←−
j

X∞ ×Yj Y∞

∼= lim←−
i≥j

Xi ×Yj Y∞

∼= lim←−
i

Xi ×Yi Y∞

using the cofinality of the diagonal to get the last line. Choose an open affinoid subset U0 ⊆ Y0

with preimages Ui ⊆ Yi, Wi ⊆ Xi, U∞ ⊆ Y∞, W∞ ⊆ X∞. To prove the first part of the theorem,
it suffices to prove that W∞ is a perfectoid space. This can be checked locally on some covering of
U∞ by open affinoid perfectoid subsets V = Spa(R,R+) ⊆ U∞. By our assumptions, the natural
maps Wi → Ui are finite maps of affinoid adic spaces, so in particular O+(Ui) → O+(Wi) is an
integral ring map. By general nonsense, the fiber product Xi ×Yi V = Wi ×Ui V is computed
as Spd(S, S+), where S = R ⊗O(Ui) O(Wi) (topologized in the usual way) and S+ is the integral

closure of im(R+ ⊗O+(Ui) O
+(Wi) → S) in S. In particular, R+ → S+ is an integral ring map, so

the subsequent lemma implies that Wi ×Ui V is an affinoid perfectoid space. Passing to the limit
over i, we deduce that W∞×U∞ V is an affinoid perfectoid space, and then varying over all choices
of U0 ⊆ Y0 and V ⊆ U∞ as above, we conclude that X∞ is a perfectoid space.

Quasicompactness of f∞ is clear. For the remaining claims of the theorem, choose some Ui ⊆ Yi
and U ⊆ Y∞ as in the statement of the claim, and let Uj ⊆ Yj and Wj ⊆ Xj denote the
evident preimages for all j ≥ i. Arguing as in the first part of the proof, we see that f−1

∞ (U) =
lim←−j≥iWj ×Uj U and that Wj ×Uj U is an affinoid perfectoid space for any j ≥ i. Passing to the

limit over j gives the claim. Affinoidness of f∞ now follows from Lemma 5.12 below. �

In the course of this proof, we crucially used the following result, which is essentially just a
rephrasing of a theorem of Bhatt-Scholze.

Lemma 5.11. Let (R,R+) → (S, S+) be a map of Tate-Huber pairs such that R is a perfectoid
Tate ring and the ring map R+ → S+ is integral. Then the diamond Spd(S, S+) is an affinoid
perfectoid space.

Proof. Choose a pseudouniformizer $ ∈ R+. Since R+ is integral perfectoid and R+ → S+ is an
integral ring map, [BS19, Theorem 1.16(1)] guarantees the existence of an integral perfectoid S+-
algebra S+

perfd such that any map from S+ to an integral perfectoid ring factors uniquely through

the map S+ → S+
perfd. Set T = S+

perfd[1/$], and let T+ ⊂ T be the integral closure of S+
perfd in

T . Then T is a perfectoid Tate ring, and the natural map (S, S+) → (T, T+) induces a bijection
Hom((T, T+), (A,A+)) ∼= Hom((S, S+), (A,A+)) for any perfectoid Tate-Huber pair (A,A+). This
shows that Spd(S, S+) ∼= Spd(T, T+) is affinoid perfectoid, as desired. �

We also used the following result.

Lemma 5.12. Let (Xi)i∈I be a cofiltered inverse system of locally Noetherian adic spaces with
finite transition maps. Assume that X = lim←−Xi is a perfectoid space. Then X has a neighborhood



PERFECTOID SHIMURA VARIETIES AND THE CALEGARI–EMERTON CONJECTURES 33

basis of open affinoid perfectoid subsets W ⊂ X which are preimages of open affinoids Wi ⊂ Xi at
(variable) finite levels.

Proof. Without loss of generality, we can assume that I has an initial object 0. The problem is
local on X0, so replacing X0 by an open affinoid subset and using the finiteness of the maps in the
tower, we can also assume that all Xi’s are affinoid, say with Xi = Spa(Bi, B

+
i ). Let (B,B+) be

the completed direct limit of the system (Bi, B
+
i ), so X ∼= Spd(B,B+). Now, let W be the set of

rational subsets W ⊂ X which are contained in some open affinoid perfectoid subset of X. Then
any W ∈ W is affinoid perfectoid, and elements of W clearly form a neighborhood basis of X. On
the other hand, any rational subset of X, and in particular any element of W, is the preimage of a
rational subset of Xi for some large i by standard approximation arguments. �

In applications, we will usually care about inverse systems with the following restrictive proper-
ties.

Definition 5.13. Fix a nonarchimedean field K. A good tower is a cofiltered inverse system of
locally Noetherian adic spaces (Xi)i∈I over SpaK with the following properties.

(1) Each Xi is the analytification of a projective variety over K, and the transition maps are
finite.

(2) The inverse limit X = lim←−iXi is a perfectoid space.

(3) There exists a pair of coverings of X by open affinoid perfectoid subsets Uj , Vj such that

Uj ⊆ Vj for all j, and such that for each j, Uj and Vj occur as the preimages of some open
affinoids Uj,ij , Vj,ij ⊆ Xij for some ij ∈ I.

The point of this definition is captured in the following proposition.

Proposition 5.14. (1) Let (Yi)i∈I be a good tower. If (Xi)i∈I
fi−→ (Yi)i∈I is any map of

cofiltered inverse systems such that the morphisms fi are finite, then (Xi)i∈I is a good
tower.

(2) If (Xi)i∈I is a good tower with an action of a finite group G, then the categorical quotient
X/G is a perfectoid space and X/G ∼= lim←−iXi/G.

Note that in part (2), we are not claiming that (Xi/G)i∈I is a good tower: it’s not clear to us
whether condition (3) is preserved.

Proof. For part (1), let f : X → Y denote the map between the limits of the towers. Note that
since Xi → Yi is finite, the tower (Xi)i∈I satisfies condition (1) of Definition 5.13 by rigid GAGA.
Conditions (2) and (3) then follow from Lemma 5.10. Indeed, (2) is immediate, and (3) follows
from the observation that if Uj ⊆ Vj ⊆ Y are open affinoid perfectoid subsets pulled back from
some finite-level affinoids Uj,ij , Vj,ij ⊆ Yi, then f−1(Uj) is affinoid perfectoid by Lemma 5.10 and

is clearly the preimage of the affinoid f−1
ij

(Uj,ij ) ⊆ Xij (and similarly for the Vj ’s). Finally, the

condition on closures follows from the inclusions f−1(Uj) ⊆ f−1(Uj) ⊆ f−1(Vj).

For part (2), X/G is perfectoid by Theorem 5.8, since by design the limit of a good tower satisfies
the conditions of that Theorem. Indeed, the limit of any good tower is analytically separated by
Lemma 5.6. Moreover, if Uj , Vj ⊆ X are as in the definition of a good tower, then any rank one

point x ∈ X is contained in some Uj , in which case {x} ⊆ Uj ⊂ Vj .
It remains to check that the natural map f : X/G→ lim←−iXi/G is an isomorphism of diamonds.

The source and target of this map are spatial diamonds, so the map is automatically qcqs. Thus,
by [Sch17, Lemma 11.11], it suffices to prove that f induces a bijection on (C,C+)-points for every
algebraically closed perfectoid field C with an open and bounded valuation subring C+ ⊆ C. In
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what follows, we will freely use the fact that (C,C+)-points can be computed “naively”: if X is
a pro-étale sheaf with a G-action for some profinite group G and X/G denotes the quotient as
pro-étale sheaves, then X(C,C+)/G ∼= (X/G)(C,C+). This is an easy consequence of the fact that
any pro-étale cover of a geometric point (C,C+) has a section.8

For surjectivity, let (xi ∈ Xi(C,C
+)/G)i∈I be any inverse system of points. Let Wi ⊆ X(C,C+)

be the preimage of xi. Since Wi
∼= lim←−jWi,j where Wi,j ⊆ Xj(C,C

+) is the preimage of xi, and

each Wi,j is finite and nonempty (use that Xj → Xi is finite), Wi naturally has the structure of a
(non-empty) profinite set. Then W = lim←−iWi is an inverse limit of non-empty compact Hausdorff

spaces, and thus is non-empty. Any choice of x ∈ W ⊆ X(C,C+) maps to the inverse system
(xi)i∈I .

For injectivity, let x, y ∈ X(C,C+) be two elements with the same image in lim←−iXi(C,C
+)/G.

Let xi, yi ∈ Xi(C,C
+) be the images of x and y, and let Gi ⊂ G be the set g ∈ G with gxi = yi.

Then Gi is nonempty by assumption, and Gj → Gi is injective for all j ≥ i, so lim←−iGi is nonempty.
Choosing any g ∈ lim←−iGi, we then have gx = y, as desired. �

5.2. Perfectoid Shimura varieties of Hodge type. We now return to Shimura varieties. Let
(G,X) be a Shimura datum of Hodge type, with reflex field E and Hodge cocharacter µ. For any
open compact subgroup K ⊆ G(Af ), we write ShK(G,X) for the canonical model of the associated
Shimura variety; this is a normal quasi-projective scheme over E. This has a canonical projective
minimal compactification Sh∗K(G,X), which is also normal. Fix a prime p of E lying over p, and
let XK , resp. X ∗K denote the rigid analytic space over Ep associated with ShK(G,X)⊗E Ep, resp.
Sh∗K(G,X) ⊗E Ep. As K varies, these spaces form a pair of inverse systems with finite transition
maps, and compatible open immersions XK → X ∗K . Recall the (rigid analytic) flag variety F`G,µ
attached to (G,X), as defined over Ep in [CS17, §2.1].

Proposition 5.15. Fix any open compact subgroup Kp ⊆ G(Apf ). Then X ∗Kp = lim←−Kp X
∗
KpKp

is

a perfectoid space, and there is a G(Qp)-equivariant Hodge-Tate period map πHT : X ∗Kp → F`G,µ
which is functorial in the tame level.

Moreover, X ∗Kp is analytically separated, and we can find a pair of coverings by finitely many

open affinoid perfectoid subsets Ui, Vi ⊆ X ∗Kp such that Ui ⊆ Vi for all i and such that Ui and Vi
arise as the preimages of some open affinoid subsets of some X ∗KpKp

.

In particular, for any cofinal system of open compact subgroups Kp ⊆ G(Qp), (X ∗KpKp
)Kp is a

good tower (over Ep) in the sense of Definition 5.13.

Note that X ∗Kp may not coincide with the “ad hoc” compactification X ∗Kp constructed in [Sch15],

although by construction there is certainly a map X ∗Kp → X ∗Kp .

Proof. Fix a closed embedding ι : (G,X) → (GSp2g,H
±
g ) into a Siegel Shimura datum. For any

open compact subgroup K ⊆ GSp2g(Qp), let SK , resp. S∗K denote the rigid analytic space over Ep

associated with ShK(GSp2g,H
±
g )⊗QEp, resp. Sh∗K(GSp2g,H

±
g )⊗QEp. By [Sch15, Theorem 3.3.18],

lim←−Kp S
∗
KpKp

is a perfectoid space for any open compact subgroup Kp ⊆ GSp2g(Qp) contained in

some conjugate of a principal congruence subgroup of level ≥ 3. However, this last condition can
easily be removed using [Han16b, Theorem 1.4], noting in particular that S∗Kp is covered by finitely
many GSp2g(Qp)-translates of a certain open affinoid perfectoid subset S∗Kp(ε)a,

9 and that these

8More generally, if F is a presheaf of sets on a site C, and X ∈ C is any object with the property that every covering
of X admits a section, then the natural map F(X)→ Fsh(X) is a bijection, where (−)sh denotes sheafification. This
is easy and left to the reader.

9This subset is denoted X ∗Γ(p∞)(ε)a in [Sch15, §3].
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subsets are invariant under the action of K ′p/Kp for any normal inclusion Kp ⊆ K ′p of tame level
groups.

The chosen embedding ι gives rise to compatible finite maps XK∩G(Af ) → SK for any K ⊆
GSp2g(Af ) as above, which naturally extend to compatible finite morphisms X ∗K∩G(Af ) → S

∗
K .

Now, choose any Kp ⊆ G(Apf ) as in the proposition, and choose an open compact K ′p ⊆ GSp2g(A
p
f )

such that Kp ⊆ K ′p. Choosing a cofinal set of (neat) open compact subgroups K0 ⊇ K1 ⊇ K2 · · ·
in GSp2g(Qp), we get a map of inverse systems (X ∗Kpι−1(Kn))n≥0 → (S∗K′pKn)n≥0 satisfying all the

hypotheses of Lemma 5.10. Applying that lemma, we deduce that X ∗Kp is a perfectoid space and
the natural map f : X ∗Kp → S∗K′p is quasicompact. Moreover, X ∗Kp is analytically separated by
Lemma 5.6.

Now choose some 0 < ε < ε′ < 1/2 and finitely many gi ∈ GSp2g(Qp) such that the translates
S∗K′p(ε)a · gi cover S∗K′p . Note that any such translate is the preimage of an open affinoid subset of
some S∗K′pKn , so again by Lemma 5.10 we see that the preimages

Ui = f−1(S∗K′p(ε)a · gi) ⊆ Vi = f−1(S∗K′p(ε′)a · gi)
are affinoid perfectoid and give open covers of X ∗Kp , and arise by pullback from some finite level.

Moreover, S∗K′p(ε)a · gi ⊂ S
∗
K′p(ε

′)a · gi for any ε < ε′ < 1/2, and clearly Ui ⊆ f−1(S∗K′p(ε)a · gi), so

we conclude that Ui ⊆ Vi as desired.

The Hodge-Tate period map is the composition of the natural map X ∗Kp → X ∗Kp with the

(previously known) Hodge-Tate period map X ∗Kp → F`G,µ, cf. [CGH+18, Theorem 3.3.1] for a
discussion of the latter (the argument there also works to construct πHT : X ∗Kp → F`G,µ without
the use of ad hoc compactifications). �

For later use, we also record an extremely mild generalization of this result.

Corollary 5.16. For any open compact subgroup K ⊆ G(Af ) and any cofinal system of open
compact subgroups Kp ⊆ G(Qp), (X ∗K∩Kp)Kp is a good tower (over Ep) in the sense of Definition
5.13.

Here and in what follows, we adopt the following notational convention: if G is an algebraic
group over Q, H is a subgroup of G(Af ), and Kp is a subgroup of G(Qp), then H ∩ Kp denotes
the group of elements h ∈ H whose image in G(Qp) lies in Kp. In other words, H ∩Kp is short for
H ∩ (G(Apf )Kp). We hope this doesn’t cause any confusion.

Proof. Let Kp ⊆ G(Apf ) denote the image of K along the natural projection. Then K∩Kp has finite

index in KpKp, so we get natural finite morphisms X ∗K∩Kp → X
∗
KpKp

which compile into a map of

towers (X ∗K∩Kp)Kp → (X ∗KpKp
)Kp . Since the target is a good tower by the previous proposition, we

may apply Proposition 5.14(i) to conclude. �

5.3. Perfectoid Shimura varieties of pre-abelian type. In this section we change notation
slightly. Given a Shimura datum (G,X) and an open compact subgroup K ⊆ G(Af ), we write
ShK(G,X) for the associated Shimura variety regarded as a quasi-projective variety over C, and
Sh∗K(G,X) for its projective minimal compactification. For a (usually implicit) choice of connected
component X+ ⊆ X, we write ShK(G,X)0 for the connected component of ShK(G,X) whose
analytification is the image of the natural map

X+ × {e} → G(Q)+\(X+ ×G(Af ))/K ∼= ShK(G,X)an,

and we write Sh∗K(G,X)0 for the Zariski closure of ShK(G,X)0 in Sh∗K(G,X). Note that since
Sh∗K(G,X) is normal, the map π0ShK(G,X)→ π0Sh

∗
K(G,X) is a homeomorphism.
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Now, fix once and for all an isomorphism C ' Cp (for simplicity), and let C/Cp be a complete
algebraically closed extension of nonarchimedean fields. All of the following results hold for any
choice of C. We write X ∗K(G,X) for the rigid analytic space associated with Sh∗K(G,X) ⊗C
C. Similarly, we get rigid analytic spaces XK(G,X), XK(G,X)0, X ∗K(G,X)0 with the obvious
meanings.

For any fixed open compact subgroup Kp ⊆ G(Apf ), define

X ∗Kp(G,X) = lim←−
Kp⊆G(Qp) open compact

X ∗KpKp(G,X)

where the inverse limit is taken in the category of diamonds over SpdC. We also write XKp(G,X),
X ∗Kp(G,X)0, and XKp(G,X)0 for the obvious variants.

Proposition 5.17. Maintain the above notation. The following conditions on a Shimura datum
(G,X) are equivalent.

(1) The diamond X ∗Kp(G,X) is a perfectoid space for any choice of Kp.
(2) The diamond X ∗Kp(G,X)0 is a perfectoid space for any choice of Kp.

We say the Shimura datum (G,X) satisfies Property P if either of these equivalent conditions
holds.

Proof. (1) implies (2): In general, X ∗Kp(G,X)0 is an inverse limit of open-closed subfunctors
Xi ⊆ X ∗Kp(G,X). Therefore, if X ∗Kp(G,X) is perfectoid and U ⊆ X ∗Kp(G,X) is any open affinoid
perfectoid subset, then U ∩ X ∗Kp(G,X)0 = lim←−i U ∩ Xi and each U ∩ Xi is affinoid perfectoid, so

U ∩ X ∗Kp(G,X)0 is affinoid perfectoid. Varying U then gives the result.

(2) implies (1): Choose any open compact subgroup Kp ⊂ G(Qp), so the diamond X ∗Kp(G,X)
has a natural Kp-action. Then Kp acts with finitely many open orbits on the profinite set

π0X ∗Kp(G,X) ∼= G(Q)+\G(Af )/Kp (by [Bor63, Theorem 5.1]). Moreover, each connected com-
ponent of X ∗Kp(G,X) is isomorphic to X ∗gKpg−1(G,X)0 for some g ∈ G(Apf ), and in particular is

perfectoid. By Lemma 5.1, we deduce that X ∗Kp(G,X) is a perfectoid space, as desired. �

We also need to work with connected Shimura varieties. Let (G,X+) be a connected Shimura
datum. If Γ ⊂ G(Q)+ is an arithmetic subgroup, then the quotient Γ\X+ is the analytification
of a connected normal quasiprojective complex variety, defined uniquely up to unique isomor-
phism, which we denote by ShΓ(G,X+). Again, this has a canonical minimal compactification
Sh∗Γ(G,X+), which is a connected normal projective variety. If Γ is torsion-free, then ShΓ(G,X+)
is smooth. Again, we denote the associated rigid analytic spaces over C by X ∗Γ(G,X+), etc.

Definition 5.18. We say a connected Shimura datum (G,X+) satisfies Property P if for every
arithmetic subgroup Γ ⊆ Gad(Q)+, the diamond

X ∗Γ,∞(G,X+) := lim←−
Kp⊂G(Qp) open compact

X ∗Γ∩Kp(G,X
+)

is a perfectoid space.

In this statement, recall our notational convention that Γ ∩Kp is shorthand for Γ ∩ (G(Apf )Kp)

(cf. the discussion following Corollary 5.16).

Proposition 5.19. Let (G,X) be a Shimura datum or a connected Shimura datum. Suppose that
(Gad, X+) satisfies Property P. Then (G,X) satisfies Property P.
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Proof. Let π : G → Gad denote the natural map. When (G,X) is a connected Shimura datum
and Γ ⊆ G(Q)+ is an arithmetic subgroup, then XΓ,∞(G,X+) = Xπ(Γ),∞(Gad, X+) and the
result follows, so let (G,X) be a Shimura variety. By Proposition 5.17 it is enough to show
that X ∗Kp(G,X)0 is perfectoid for any Kp ⊆ G(Apf ). Let Γ = Gad(Q)+ ∩ K be a choice of

congruence subgroup for some open compact subgroup K ⊆ Gad(Af ) with the property that

π(Kp) ⊆ K ∩ Gad(Apf ). Then for any open compact subgroup Kp ⊆ G(Qp), there is a natural

finite morphism X ∗KpKp
(G,X)0 → X ∗Γ∩π(Kp)(G

ad, X+). Moreover, these morphisms are compatible

as Kp varies, and the transition maps in the two towers are finite. Passing to the inverse limit over
Kp, the result now follows from Lemma 5.10. �

We now come to the key result in this subsection.

Proposition 5.20. Let (G,X) be a Shimura datum of Hodge type. Then the connected Shimura
datum (Gad, X+) satisfies Property P.

Proof. We start by proving that

lim←−
Kp⊂Gad(Qp)

X ∗Γ∩Kp(G
ad, X+)

is a perfectoid space when Γ ⊆ Gad(Q)+ is a congruence subgroup. Let π : G → Gad denote the
natural map. Choose a congruence subgroup Γ′ = K ∩ G(Q)+ ⊆ G(Q)+ with π(Γ′) ⊆ Γ, and set
Γ′′ = Γ′∩Gder(Q), so Γ′′ is also a congruence subgroup. Choose a cofinal descending family of open
compact subgroups

Kp,0 ⊇ Kp,1 ⊇ · · · ⊇ Kp,n ⊇ · · ·
in G(Qp), and write Kder

p,n = Kp,n ∩ Gder(Qp). Without loss of generality, we can assume that

Kder
p,0 ∩ZG(Qp) = {1} and that Γ′ ⊆ Kp,0, so then Γ′′ ⊆ Kder

p,0 and Γ′′ ∩ZG(Qp) = {1}, and the map

π induces isomorphisms π(Γ′′ ∩Kp,n) = π(Γ′′ ∩Kder
p,n ) = π(Γ′′) ∩ π(Kder

p,n ). Moreover, the inclusion
Γ′′ ⊆ Γ′ induces a natural map of towers

(X ∗π(Γ′′∩Kp,n)(G
ad, X+))n≥0 → (X ∗K∩Kp,n(G,X))n≥0

where the map at every level n is finite. By Corollary 5.16, the target of this map is a good tower.

Now define Γ′′′ = ∩γ∈Γ/π(Γ′′)γπ(Γ′′)γ−1. By design, Γ′′′ is an arithmetic subgroup of Gad(Q)+,

and is a normal subgroup of Γ with finite index. Since Γ′′′ ∩ π(Kder
p,n ) is of finite index in π(Γ′′) ∩

π(Kder
p,n ) = π(Γ′′ ∩Kp,n), we get another natural map of towers

(X ∗Γ′′′∩π(Kder
p,n )(G

ad, X+))n≥0 → (X ∗π(Γ′′∩Kp,n)(G
ad, X+))n≥0

where the map at every level n is finite. For any n ≥ 0, Γ′′′ ∩ π(Kder
p,n ) is a normal finite-index

subgroup of Γ ∩ π(Kder
p,n ). Set ∆n = (Γ′′′ ∩ π(Kder

p,n ))\(Γ ∩ π(Kder
p,n )), so ∆n is a finite group

and the natural maps ∆n+1 → ∆n are injective. Write ∆ = lim←−n ∆n, so ∆ = ∆n for all

sufficiently large n. Then ∆ operates naturally on the tower (X ∗
π(Γ′′′)∩π(Kder

p,n )
(Gad, X+))n≥0, and

X ∗
Γ′′′∩π(Kder

p,n )
(Gad, X+)/∆ ∼= X ∗Γ∩π(Kder

p,n )
(Gad, X+) for all sufficiently large n.

Summarizing the situation so far, we have a diagram of towers

(X ∗
π(Γ′′′)∩π(Kder

p,n )
(Gad, X+))n≥0

//

��

(X ∗π(Γ′′∩Kp,n)(G
ad, X+))n≥0

// (X ∗K∩Kp,n(G,X))n≥0

(X ∗
Γ∩π(Kder

p,n )
(Gad, X+))n≥0
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where all the morphisms at any given level n are finite. We’ve already observed that the upper-
right tower is a good tower, so by two applications of Proposition 5.14(i), we deduce that
the upper-left tower is a good tower. Since ∆ operates naturally on the upper-left tower and
X ∗

Γ′′′∩π(Kder
p,n )

(Gad, X+)/∆ ∼= X ∗Γ∩π(Kder
p,n )

(Gad, X+) for all sufficiently large n, we may apply Proposi-

tion 5.14(ii) to deduce that X ∗Γ′′′,∞(Gad, X+)/∆ is a perfectoid space and that X ∗Γ′′′,∞(Gad, X+)/∆ ∼=
lim←−nX

∗
Γ′′′∩π(Kder

p,n )
(Gad, X+)/∆. But lim←−nX

∗
Γ′′′∩π(Kder

p,n )
(Gad, X+)/∆ ∼= lim←−nX

∗
Γ∩π(Kder

p,n )
(Gad, X+) =

X ∗Γ,∞(Gad, X+), so we conclude that X ∗Γ,∞(Gad, X+) is a perfectoid space, as desired. This finishes
the proof when Γ is a congruence subgroup.

Now assume that Γ ⊆ Gad(Q)+ is an arithmetic subgroup. By Propositions 2.11 and 2.13, there
is a congruence subgroup Γ′ such that Γ ⊆ Γ′ ⊆ Gad(Q)+. Then(

X ∗Γ∩Kp(G
ad, X+)

)
Kp⊆Gad(Qp)

→
(
X ∗Γ′∩Kp(G

ad, X+)
)
Kp⊆Gad(Qp)

is map of towers with finite transition maps, and by above XΓ′,∞(Gad, X+) is perfectoid. By Lemma

5.10 XΓ,∞(Gad, X+) is perfectoid, as desired. �

We may now summarize our results in this section the following theorem.

Theorem 5.21. Let (G,X) be a Shimura datum (resp. a connected Shimura datum) of pre-abelian
type. Then, for any compact open subgroup Kp ⊆ G(Af ) (resp. arithmetic subgroup Γ ⊆ Gad(Q)+),
the diamond X ∗Kp(G,X) (resp. X ∗Γ,∞(G,X)) is a perfectoid space.

Proof. Choose a Shimura datum (G1, X1) of Hodge type with a central isogenyGder1 → Gad inducing
an isomorphism (Gad1 , X

+
1 ) ∼= (Gad, X+). By Proposition 5.20, (Gad, X+) satisfies property P, and

then Proposition 5.19 implies that (G,X) satisfies property P, as desired. �

This has the following consequence for compactly supported completed cohomology, which may
be viewed as a generalization of [Sch15, Corollary 4.2.2].

Corollary 5.22. Let (G,X) be a connected Shimura datum of pre-abelian type. Then Conjecture
3.5 for ? = c holds for G.

Proof. Note that the towers used to formulate Conjecture 3.5 correspond to the towers used in this
section. Once we know that the towers of minimal compactifications are perfectoid in the limit (by
Theorem 5.21), the argument in the proof of [Sch15, Corollary 4.2.2] goes through verbatim. �

Remark 5.23. We give some remarks on the possibility of proving vanishing above the middle

degree for H̃∗ using perfectoid methods instead of the topological methods used in sections 3 and 4.
In [CS19], Caraiani and Scholze prove that toroidal compactifications of certain unitary Shimura
varieties are perfectoid in the limit and that the (étale) cohomology of this perfectoid space computes
completed cohomology, which implies the desired vanishing (see [CS19, Theorem 2.6.2, Lemma
4.6.2]). The perfectoidness result relies on a result of Pilloni–Stroh [PS16] for Siegel modular
varieties. It seems to us that these methods should extend directly to Shimura varieties of Hodge
type. However, the more general case of abelian type is not clear to us.

We also note that the perfectoid methods do not directly give that H̃ i
c → H̃ i is an isomorphism

in a range of degrees including the middle. In principle, however, there is a connection between the
perfectoid method and the method of this paper. The result [CS19, Lemma 4.6.2], which essentially
goes back to Pink [Pin92], morally says that infinite level toroidal compactifications behave like
Borel–Serre compactifications. Thus, one could get more detailed information from the perfectoid
method by studying the map from the toroidal compactification to the minimal compactification, as
in [Pin92]. Morally, this should give the same information in the end as the topological method in
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this paper. However, in our opinion, our topological method is far more elementary and transparent,
and far less technically demanding.

5.4. The Hodge-Tate period map. In this section we prove the following result.

Theorem 5.24. Fix a complete algebraically closed extension C/Qp. Let (G,X) be a Shimura
datum of pre-abelian type, with X ∗Kp(G,X) the associated infinite-level perfectoid Shimura variety
over Spa C as constructed in the previous section. Then there is a canonical G(Qp)-equivariant
Hodge-Tate period map

πHT : X ∗Kp(G,X)→ F`G,µ
of adic spaces over Spa C which is functorial in the tame level. Away from the boundary, πHT

coincides with the map constructed in [Han16a].

This completes the proof of Theorem 1.5 as stated in the introduction.

We begin with some observations. First, as indicated in the theorem, we will construct our
Hodge–Tate period maps as extensions of those for open Shimura varieties constructed in [Han16a].
Note that the extension, if it exists, is necessarily unique since open Shimura varieties are dense in
their minimal compactifications. In particular, G(Qp)-equivariance and functoriality in the tame
level follow automatically once we know existence, so we can and will focus on this.

Next, for (G,X) of pre-abelian type, let (G′, X ′) be a Shimura datum of Hodge type such that
(Gad, X+) ' (G′ad, X ′+). Let (G′ad, X ′ad) be the associated adjoint Shimura datum, which is also of
pre-abelian type. Moreover, the target of the Hodge-Tate period map depends only on (Gad, Xad).
Functoriality in the Shimura datum now implies that the Hodge-Tate period map for (G,X) should
factor over the Hodge-Tate period map for (Gad, Xad) ' (G′ad, X ′ad). These statements reduce us
to proving the following result.

Theorem 5.25. Let (G,X) be a Hodge type Shimura datum. Then the Hodge-Tate period maps for
(Gad, Xad) exist. Away from the boundary, πHT coincides with the map constructed in [Han16a].

Proof. Fix Kp ⊂ G(Apf ) open compact, and K ′p ⊂ Gad(Apf ) open compact containing the im-

age of Kp. The space of connected components of X ∗Kp(G,X) is then the profinite set S =

G(Q)+\G(Af )/Kp, and the space of connected components of X ∗K′p(Gad, Xad) is the profinite set

Sad = Gad(Q)+\Gad(Af )/K ′p.

There are natural right G(Qp)-actions on S and Sad, compatible with the evident map S → Sad.

Moreover, G(Qp) acts with open orbits on S and Sad, using that im(G(Qp)→ Gad(Qp)) has finite

index in Gad(Qp) for the latter. Let S0 and Sad0 be the G(Qp)-orbits of the identity double coset,

and let X ∗Kp(G,X)0 and X ∗K′p(Gad, Xad)0 be the corresponding open-closed subsets of the infinite-
level minimally compactified Shimura varieties, which are perfectoid. Then there is a natural
G(Qp)-equivariant surjective map

q : X ∗Kp(G,X)0 → X ∗K′p(Gad, Xad)0,

which becomes a finite surjective map of normal rigid spaces after passing to the quotient by any
open compact subgroup of G(Qp). Using Lemma 5.26 below, it is easy to see that q satisfies
hypotheses 1)-3) of Lemma 5.9, so applying that Lemma and Theorem 5.15 we get that πHT on
X ∗K′p(Gad, Xad)0 r Z extends to a map X ∗K′p(Gad, Xad)0 → F`G,µ.

Finally, we spread the extendability of πHT around to all of X ∗K′p(Gad, Xad) by changing the

tame level. More precisely, X ∗K′p(Gad, Xad) has a disjoint covering by open-closed pieces of the form

X ∗gK′pg−1(Gad, Xad)0 for some finite list of elements g ∈ Gad(Af ). (The g’s are just representatives

of the G(Qp)-orbits in Sad.) �
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Lemma 5.26. Let G be a locally profinite group, and let q : X → Y be a G-equivariant map
of perfectoid spaces over a nonarchimedean field C. Suppose that for any open compact subgroup
K ⊂ G, qK : X/K → Y/K is a finite surjective map of normal rigid spaces. Then q satisfies
conditions (1)-(3) of Lemma 5.9.

Proof. Condition (2), i.e. the surjectivity of q, is clear. Condition (1) follows from Lemma 5.10.
For condition (3), note that either of the maps pri : X ×Y X → X identifies with the inverse limit
of the system of maps pri,K : X/K ×Y/K X/K → X/K. Condition (3) then follows from several
applications of the following general claim.

Claim. If X → Y is the limit of an inverse system (Xi → Yi) of finite surjective maps of rigid
spaces with the Yi being normal, and the transition maps Xj → Xi are finite and surjective for
j ≥ i, then |X| → |Y | is open.

To see the claim, note that each |Xi| → |Yi| is open (this is well-known, and can easily be
deduced from [Man20, Theorem 0.1]). This reduces us to a statement in pure topology, namely
that if f : X → Y is the inverse limit of an inverse system (fi : Xi → Yi) of open surjective
quasicompact spectral maps of locally spectral spaces with quasicompact spectral transition maps,
and the transition maps Xj → Xi are surjective for j ≥ i, then |X| → |Y | is open. This is an easy
exercise, using the fact that any quasicompact open U ⊂ X is the preimage of a quasicompact open
Ui ⊂ Xi for some large i, with U mapping surjectively onto Ui. Then f(U) is the preimage of the
open subset fi(Ui) along Y → Yi, and hence is open. �
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